


CORRECTION 
For figures 4 and 5, pages 10-11, Bulletin 65 

On pages 10 and 11, the figure captions are on the correct pages, but the 
illustrations have been reversed. The correct illustration for figure 4 appears 
on page 11, and the correct illustration for figure 5 appears on page 10. 
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A "Random-Walk" Solute Transport Model 
for Selected Groundwater Quality Evaluations 

by Thomas A. Prickett, Thomas G. Naymik, and Carl G. Lonnquist 

ABSTRACT 

A general ized computer code is given tha t can simulate a 
large class of solute t r a n s p o r t problems in g roundwate r . The 
effects of convection, d i spers ion , and chemical react ions a r e 
inc luded. The solutions for groundwater flow include a fi­
nite difference formulation. The solute t r a n s p o r t port ion of 
the code is based on a par t ic le - in-a-ce l l t echn ique for the 
convective mechanisms, and a random-walk t echn ique for the 
dispers ion effects . 

The code can simulate o n e - or two-dimensional nons teady/ 
s teady flow problems in he te rogeneous aqui fers unde r water 
table a n d / o r a r tes ian or leaky a r tes ian condi t ions . F u r t h e r ­
more this program covers t ime-vary ing pumpage or injection by 
wells, na tu ra l or artificial r e c h a r g e , the flow re la t ionships 
of water exchange between surface wa te r s and the groundwater 
r e se rvo i r , the process of g roundwate r evapo t ransp i ra t ion , the 
mechanism of possible conversion of s torage coefficients from 
ar tes ian to water table condit ions, and the flow from 
s p r i n g s . 

In addi t ion, the program allows specification of chemical 
const i tuent concentra t ions of any segment of the model in­
cluding, but not limited to , injection of contaminated water 
by wells, ver t ical ly ave raged sa l t -water f ron ts , leachate 
from landfills, leakage from overlying source beds of differ­
ing quali ty t h a n the aquifer , and surface water sources such 
as contaminated lakes and s t r e a m s . 

F u r t h e r fea tures of the program include var iable finite 
difference grid sizes and p r in tou t s of input data , time 
ser ies of heads , sequent ia l plots of solute concentra t ion 
d i s t r ibu t ions , concentra t ions of water flowing into s inks , 
and the effects of d i spers ion and dilution or mixing of 
waters having various solute concen t ra t ions . 

The discuss ion of the digital t echnique includes the n e c ­
es sa ry mathematical background , the documented program l is t ­
ing , explanat ions of job s e t u p p rocedu re s , sample input data , 
theoret ical v e r s u s computer comparisons, and one field appl i ­
cat ion. 
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INTRODUCTION 

Presen t ly , t he re are four classes of 
problems of concern in s tud ie s of 
solute t r a n s p o r t in g r o u n d w a t e r : 
1) chemical problems such as pred ic t ing 
TDS, Cl , n i t r a t e s , e t c . , as when deal­
ing with sea water in t rus ion , excess ive 
fert i l izer appl icat ions, haza rdous 
waste leachate , and injection of chemi­
cal wastes into the subsu r f ace using 
disposal wells; 2) bacter ia l problems 
associated with cesspools , artificial 
r e c h a r g e , sani tary landfi l ls , waste 
injection wells, e t c . ; 3) thermal p r o b ­
lems involving injection of hot water 
into the groundwater r e s e r v o i r , devel­
opment of geothermal e n e r g y , and in­
duced infil tration of surface water 
having va ry ing t e m p e r a t u r e s ; and 
4) mul t i -phase problems a r i s ing from 
such s i tuat ions as development of 
s team-water sys tems , secondary recovery 
of water by a i r injection, and possible 
a i r -wa te r interfaces due to over -
pumping . Although th i s t r a n s p o r t p ro ­
gram may be ex tended , the emphasis of 
th i s repor t is placed on t h e chemical 
problems. 

One form of the govern ing equat ion 
for solute t r a n s p o r t in one dimension 
is 

DISPERSION - CONVECTION ± PRODUCTION = QUALITY 
ACCUMULATION 

where 
V = in ters t i t ia l velocity 
D = coefficient of hydrodynamic 

d ispers ion 
D = d xV + D*, where dx = 

longitudinal d i spe r s iv i ty 
and D* = coefficient of 
molecular diffusion ( n e g ­
lected in the following 
development) 

x = space dimension 
R d = re ta rda t ion factor 

CSQ= source or sink function 
having a concentrat ion Cs 

C = concentrat ion 
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Problems including solute t r a n s p o r t in 
g roundwater involve solving equat ion 1 
in one, two, or ( ra re ly ) t h r e e dimen­
s ions . For the derivat ion of the e q u a ­
tion and fu r the r explanat ion, refer to 
Freeze and C h e r r y (1979), Bear (1972), 
and Ogata (1970) . 

A popular numerical t echn ique used 
for solving equat ion 1 is the method of 
charac te r i s t i c s (MOC), or the par t ic le -
in-a-cel l method. MOC t r e a t s the e q u a ­
tion in two p a r t s . F i r s t , the convec-
t ive term containing the veloci ty (V) 
is solved with an adapta t ion of t h e 
usual finite difference flow type of 
model. Then the d i spers ive term is 
solved by using another finite differ­
ence grid associated with the concen­
t ra t ion d i s t r i bu t i on . A la rge number 
of computer—generated par t ic les move 
about by the veloci ty vec to r s which a r e 
solved in the flow model and which 
ca r ry the concent ra t ion information 
between the convection and d i spers ion 
terms dur ing the solution of the equa­
t ion. The descr ip t ion of the MOC is 
s t r a igh t fo rward , bu t the computer code 
is highly involved and ve ry expens ive 
to opera te , and it r e q u i r e s a l a rge 
computer to effect a solut ion. T h e r e ­
fore, r e s e a r c h e r s have been looking for 
a more efficient and more d i rec t way to 
solve problems concerning solute t r a n s ­
port in g roundwa te r . The conceived 
"random-walk" method follows. 

The random-walk t echn ique is based 
on the concept t h a t d i spers ion in po­
rous media is a random p r o c e s s . On a 
microscopic bas i s , d i spers ion may occur 
as shown in f igure 1. As indicated in 
f igure 1C, d i spers ion can take place in 
two direct ions even though the mean 
flow is in one direct ion to the r i g h t . 
A par t ic le , r e p r e s e n t i n g the mass of a 
specific chemical cons t i tuent contained 
in a defined volume of water , moves 
th rough an aquifer with two types of 
motion. One motion is with the mean 
flow (along s t reamlines determined by 
finite d i f fe rences ) , and the o ther is 
random motion, governed by scaled p r o b -



Figure 1. Basic concepts of "random-walk" computer program 

ability cu rves re la ted to flow length 
and the longitudinal and t r a n s v e r s e 
d ispers ion coefficients. Finally, in 
the computer code, enough par t ic les a re 
included so that the i r locations and 
dens i ty , as they move t h r o u g h a flow 
model, are adequa te to descr ibe the 
d i s t r ibu t ion of the dissolved cons t i tu ­
ent of i n t e r e s t . 

The advan tages of this random-walk 
technique over the MOC or, for that 
mat ter , over many other numerical 
schemes are many: 

1) There is no d ispers ion equation 
to solve. The d ispers ion part of 
equation 1 is solved in the com­
pu te r code by the addi t ion of 
only 11 For t r an s ta tements a t ­
tached to the solution of the 
convection par t of equat ion 1. 

2) There is only one finite differ­
ence grid involved in solving the 
convective port ion of equat ion 1. 
The part icle movement t a k e s place 
in continuous s p a c e . 

3) Concentrat ion d i s t r ibu t ion needs 
to be calculated only when it is 
of i n t e r e s t . In the MOC, after 
each part icle is moved, new con­
cent ra t ions are ass igned on the 
basis of the solution of the d i s ­

persion term in the above equa­
tion for e v e r y time s t e p of t h e 
sim ulation. 

4) Computer CPU time is dras t ica l ly 
r e d u c e d . The simulations in 
Part 4 of th i s bulletin took no 
more than a few seconds , inc lud­
ing compiling and loading on a 
CDC CYBER 175. 

5) Part icles a re needed only where 
water qual i ty is of i n t e r e s t . 
These par t ic les a re not needed 
everywhere in the model, as with 
the MOC. 

6) Solutions a re add i t ive . If not 
enough par t ic les a re included for 
adequate definition in one r u n , a 
second run can be done and t h e 
resu l t s accumulated. Th i s is not 
t r u e of t h e MOC, where possible 
spa r se a reas of par t i c les may 
occur , caus ing loss of a c c u r a c y . 

7) This method is par t i cu la r ly su i t ­
ed to t ime-shar ing sys tems where 
velocity fields can be s to red and 
manipulated in conjunct ion with 
an on-line particle mover code. 

8) In the t radi t ional sense of the 
words , finite di f ferencing p h e ­
nomena associated with "over­
shoot" and "numerical d i spers ion" 
are eliminated. 
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Although t h e r e a re numerous a d v a n ­
tages to th i s t echn ique , t h e r e a re also 
some d i s advan tages : 

1) As with the MOC, concen t ra t ions 
g rea t e r than initial condit ions 
a re possible, especially when 
coarse discre t iz ing is u s e d . 

2) A pr in tout of concent ra t ions may 
not be pleasing to the eye when 
the number of par t ic les is small. 
(A Calcomp plott ing and smoothing 
rout ine could be added to th i s 
model to eliminate th i s problem; 
however, this is beyond the scope 
and objectives of th i s r e p o r t . ) 

3) The method may take an unusual ly 
la rge number of par t ic les to p ro ­
duce an acceptable solution for 
some problems. No more than 
5,000 par t ic les are used in th i s 
r e p o r t , however . 

4) Engineering judgment is an abso­
lute requirement in a r r i v ing at 
an acceptable solut ion. Th i s is 
because of the "lumpy" cha rac t e r 
of the o u t p u t . There fore , e x p e ­
rience with t h i s t e chn ique is 
needed before one can apply the 
code successful ly to a field s i t ­
ua t ion . 

The main objective of t h i s r epo r t is 
to p resen t a generalized computer code 
that will simulate a la rge class of 
solute t r a n s p o r t problems involving 

convection and d i s p e r s i o n . In the 
p r e sen t vers ion , t he effect of dens i t y -
induced convection is not inc luded . 
This complication is neces sa ry only 
when a vert ical ly a v e r a g e d concen t ra ­
tion d is t r ibu t ion is i n a d e q u a t e . The 
class of problems tha t r e q u i r e a v e r t i ­
cal averaged concent ra t ion d i s t r ibu t ion 
is sufficiently l a rge , and the effects 
of dens i ty differences will be a d ­
d r e s s e d in a la ter publ ica t ion . 
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PART 1. MATHEMATICAL BACKGROUND 

The computer code contained in th i s 
r e p o r t can be broken into two p a r t s . 
The f i rs t par t re la tes to the "flow 
model" and the second par t to the p a r ­
ticle moving section which is termed 
the "solute t r a n s p o r t model." 

Some sort of model is needed to p r o ­
vide the velocity vec to r s of an aquifer 
flow system in o rde r to calculate the 
convect ive movement of pa r t i c l e s . In 
most of the s i tuat ions to follow, a 
finite difference scheme is used to 
gene ra t e the head d i s t r i bu t i on . From 
th i s head d is t r ibu t ion a velocity field 
is d e r i v e d . The velocity field t hen 
prov ides the means of moving the p a r t i ­
cles advect ively in the aqui fer . 

Calculations of Flow 
T h r e e methods for head calculations 

a r e wr i t ten into the computer code in 
o r d e r to genera te a head d i s t r ibu t ion 
which can then be used to calculate a 
velocity field. Two of these head cal­
culat ions a re analyt ical and the t h i r d 
is a finite difference method. A brief 
backg round of the finite difference 
scheme for producing a head d i s t r i b u ­
tion follows. 

The part ial differential equat ion 
(Jacob, 1950) govern ing the n o n s t e a d y -
s ta te two-dimensional flow of g r o u n d ­
water may be e x p r e s s e d as 

where 

K x b= T x = aquifer t r ansmis -
sivity in the x direct ion 

K y b= T y = aquifer t r ansmis -
sivi ty in the y direct ion 

K x = aquifer hydraul ic conduc­
t ivi ty in the x direct ion 

K y = aquifer hydraul ic conduc­
t ivi ty in the y direct ion 

S = aquifer s torage coefficient 

h = head above bottom of aquifer 
b = s a tu ra t ed th i ckness of aquifer 
t = time 
Q = source or sink funct ions ex­

p r e s s e d as net flow ra tes per 
unit area 

A numerical solution of equat ion 2 
can be obtained t h r o u g h a finite dif­
ference app roach . The finite dif fer­
ence approach involves first replacing 
the cont inuous aquifer system parame­
t e r s with an equivalent set of d i sc re te 
e lements . Second, the equat ions gov­
erning t h e flow of g roundwate r in t h e 
d iscre t ized model are wr i t t en in finite 
difference form. Finally, the r e s u l t ­
ing set of finite difference equat ions 
is solved numerically with t h e aid of a 
digital computer . 

A finite difference grid is s u p e r ­
posed over a map of an aquifer , as 
i l lus t ra ted in f igure 2. The aquifer 
is t h u s subdivided into volumes having 
dimensions bΔxΔy, where b is the s a t u ­
ra ted t h i c k n e s s of the aqu i fe r . The 
differentials ∂x and ∂y a re a p p r o x i ­
mated by the finite l eng ths Δx and Δy, 

Figure 2. Finite difference gr id 
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respec t ive ly . The area ΔxΔy should be 
small compared with the to ta l area of 
the aquifer to the extent t h a t t h e d i s ­
c re te model is a reasonable r e p r e s e n t a ­
tion of the cont inuous sys t em. The 
in tersec t ions of grid lines a re called 
nodes and are referenced with a column 
(i) and row (j) coordinate system coli-
near with the x and y d i rec t ions , r e ­
spec t ive ly . 

The general form of the finite dif­
ference equat ion governing t h e flow of 
g roundwate r in the discre t ized model is 
then given by 

where 
T i , j , 1= aquifer t ransmiss iv i ty 

between nodes i,j and 
i,j + 1 calculated as 
P E R M i , j , 1 t i m e s h where 
PERM is nydraul ic conduc ­
t iv i ty 

T i , j , 2
= aquifer t ransmiss iv i ty 

between nodes i,j and 
i+l, j calculated as 
PERM i , j ,2 times h where 
PERM is hydraul ic c o n d u c ­
t ivi ty 

h i , j= calculated heads at nodes 
i, j at t he end of a time 
increment measured from 
an a r b i t r a r y re ference 
level 

= calculated heads at nodes 
i,j at the end of the 
previous time increment 
measured from the same 

reference level defining 
hi,j 

Δt = time increment e lapsed 
since last calculation of 
heads 

S i , j= aquifer s torage coeffi­
cient at node i,j 

Q i , j= net withdrawal ra te if 
posi t ive, or net a c c r e ­
tion r a t e if nega t ive , at 
node i,j 
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Since the re is an equat ion of the 
same form as equat ion 3 for eve ry node 
of the digital model, a l a r g e set of 
simultaneous equat ions must be solved 
for the principal unknowns h i , j . The 
modified i t e ra t ive a l t e rna t i ng d i r e c ­
tion implicit method (MIADI) given by 
Pr icket t and Lonnquis t (1971) is used 
to solve the set of s imultaneous equa ­
t i ons . 

Briefly, the MIADI method involves 
f i r s t , for a given time increment , r e ­
ducing the l a rge set of s imultaneous 
equat ions down to a number of small 
s e t s . This is done by solving the node 
equa t ions , by Gauss elimination, of an 
individual row of the model while all 
t e rms related to the nodes in the two 
adjacent rows a r e held c o n s t a n t . After 
all row equations have been p rocessed 
row by row, the node equa t ions a re 
solved again by Gauss elimination for 
an individual column while all t e rms 
re la ted to the two adjacent columns a r e 
held cons tan t . After all equa t ions 
have been solved column by column, an 
"i terat ion" has been completed. The 
above process is r epea ted unti l conve r ­
gence is achieved, completing the cal­
culations for the given time i n c r e m e n t . 
The calculated heads are then used as 
initial conditions for the nex t time 
inc rement . This total p rocess i s r e ­
peated for success ive time inc remen t s 
unti l the des i red simulation is com­
p le ted . 

Equation 3 may be r ewr i t t en to 
i l lus t ra te the genera l form for calcu­
lations by rows . As a f irs t simplifi­
cation it is assumed tha t t he finite 
difference grid is made up of s q u a r e s 
such tha t Δy = Δx. (The case where Δy 
does not equal Δx is t r e a t e d by 
Pr icke t t and Lonnquis t , 1971.) Equa­
tion 3 is then expanded , the s igns a r e 
r e v e r s e d , and t e rms of h i , j a r e g rouped 
toge the r to yield 



Equation 3 is of the form 

A similar set of equa t ions can be 
wri t ten for calculations by columns. 

One of the flow calculations used in 
this r e p o r t , which pe r t a ins to the 
above mathematical descr ip t ion , is the 
"composite aquifer simulation program" 
given by Pr icket t and Lonnquis t (1971). 
The repor t by Pricket t and Lonnquis t is 
a companion to this r e p o r t , as many 
detai ls of flow modeling a r e taken 
direct ly from it for use in th i s r e ­
po r t . 

Let us emphasize again tha t several 
methods can be used to p roduce head 
d is t r ibu t ions from which velocities can 
be calculated. As will be explained 
la te r , heads can be en t e red from theo­
retical d i s t r ibu t ions , field da ta , or 
o ther techniques involving total ly dif­
ferent methods for numerically genera ­
t ing h e a d s . 

Once a head d is t r ibut ion is defined 
for all the nodes of the finite differ­
ence grid, then the velocity d i s t r i b u ­
tion is calculated according to 

where 

V = in ters t i t ia l velocity 
K = hydraul ic conduct iv i ty 
I = hydraul ic gradient 
n = effective porosi ty 

Since the model in th i s r e p o r t i n ­
cludes nonhomogeneous aquifer p r o p e r ­
ties and var iable grid dimensions, the 
calculation of the velocity d i s t r i b u ­
tion by equat ion 5 accordingly t akes 
th i s into accoun t . Velocities a re t h u s 
s to red on the basis of e i ther 

V ( I , J , 1 ) = V defined midway between 
nodes I , J and I , J+1 , or 

V ( I , J , 2 ) = V defined midway between 
nodes I , J and I+1,J 

These velocities are used as the 
input to a r a t h e r elaborate in te rpo la ­
tion scheme to provide velocity v e c t o r s 
for the movement of each part icle in 
cont inuous space . 

Solute Transport Calculations 
The basis for the t r a n s p o r t calcula­

tions of dissolved cons t i tuen ts in t h i s 
computer code is that the d i s t r ibu t ion 
of the concentra t ion of chemical con­
s t i t uen t s of the water in an aquifer 
can be r e p r e s e n t e d by the d i s t r ibu t ion 
of a finite number of d i sc re te p a r t i ­
c l e s . Each of these par t ic les is moved 
by g roundwate r flow and is ass igned a 
mass which r e p r e s e n t s a fraction of the 
total mass of chemical cons t i tuent in ­
volved . In the limit, as the number of 
par t ic les gets extremely la rge and a p ­
proaches the molecular level , an exact 
solution to the actual s i tuat ion is 
ob ta ined . However, i t is our e x p e r i ­
ence tha t relat ively few par t ic les a re 
needed to a r r i v e at a solution t h a t 
will suffice for many eng ineer ing a p ­
plications . 

T h e r e a re two prime mechanisms which 
can change contaminant concent ra t ion in 
g roundwa te r : d ispers ion , and dilution 
and mixing. The effects of mechanical 
d ispers ion as the fluid s p r e a d s t h r o u g h 
the pore space of the porous medium are 
desc r ibed by the first and second te rms 
on the left side of equat ion 1. The 
effects of dilution and mixing a re e x ­
p re s sed in the second and t h i rd t e rms 
on the left side of equation 1. 
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Dispersion 
To i l lus t ra te the deta i ls of the 

random-walk t echn ique as it relates to 
d i spe r s ion , consider the p r o g r e s s of a 
unit slug of t r a c e r - m a r k e d fluid, 
placed initially at x = 0, in an infi­
nite column of porous medium with 
s teady flow in the x d i r ec t ion . With 
C sQ equal to zero, equat ion 1 d e ­
scr ibes the concentra t ion of the slug 
as it moves downstream. Bear (1972) 
desc r ibes the solution as 

where 
C = concentra t ion 

dL = longi tudinal d i spe r s iv i ty 
V = in ters t i t ia l velocity 
t = time 
x = dis tance along the x axis 

The shapes of the c u r v e s C( , t ) are 
shown in f igure 3 where = x - V t . 

Based upon concepts found in compre­
hens ive s ta t i s t ics books (for example, 
see Mood and Graybil l , 1963) a random 
variable x is said to be normally d i s -

t r i bu t ed if i ts dens i ty function, n ( x ) , 
is given by 

where 
σ = s t a n d a r d deviation of the d i s ­

t r ibu t ion 
u = mean of the d i s t r ibu t ion 

Now, let us equate the following t e r m s 
of equat ions 6 and 7 as 

With the ident i t ies of equat ions 8 
t h r o u g h 10 t aken into account , it will 
be seen tha t equat ions 6 and 7 a r e 
equ iva len t . 

The key to solute t r a n s p o r t as d e ­
scr ibed in t h i s repor t is the real iza­
tion tha t d i spers ion in a porous medium 
can be cons idered a random p roces s , 
t end ing to the normal d i s t r i bu t ion . 

Figure 3. Progress of a slug around the mean flow 
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There are no new concepts here , as ve ry 
complete discussions of s ta t is t ical 
models of dispersion and the way d i s ­
pers ion affects water qual i ty have been 
given by o t h e r s , including Bear (1972) 
and Fried (1975). The method by which 
th is s tat is t ical approach gets into the 
computer code and is applied to t r a n s ­
port problems is new. 

F igure 4A r e p r e s e n t s the way p a r ­
ticles are moved in t h e computer code 
when the flow is in the x direct ion and 
one cons iders only longi tudinal d i s pe r ­
s ion. During a time increment , DELP, a 
part ic le with coordinates x x , y y is 
first moved from an old to a new posi­
tion in t h e aquifer by convection ac ­
cording to i ts velocity at t he old 
position V x . Then , a random movement 
in the +x or -x di rect ion is added to 
r e p r e s e n t the effects of d i spe r s ion . 
Th i s random movement is given the mag­
ni tude 

where 

ANORM(0) = a number between -6 
and +6, drawn from a 
normal d is t r ibut ion 
of numbers having a 
s t a n d a r d deviation of 
1 and a mean of zero 

The new position of the par t ic le in 
f igure 4A is the old position plus a 
convect ive term (V x DELP) plus the 
effect of the dispers ion term, 

If t he above process is r epea ted for 
numerous par t ic les , all having the same 
initial position and convective term, a 
map of the new positions of the p a r t i ­
cles can be created having the d i sc re te 
dens i ty dis t r ibut ion 

where 

dx = incremental d is tances over 
which N par t ic les a re found 

No = total number of par t ic les 
in the experiment 

Equat ions 6, 7, and 12 a r e equ iva­
lent , with the except ion tha t equa ­
tions 6 and 7 are continuous d i s t r i b u ­
tions and equation 12 is d i s c r e t e . As 
i l lus t ra ted in f igure 4A, the d i s t r i b u ­
tion of par t ic les a round the mean posi­
tion, VXDELP, is made to be normally 
d i s t r i b u t e d via the function ANORM(0). 
The function ANORM(0) is genera ted in 
the computer code as a simple function 
involving a summation of random num­
b e r s . Probable locations of par t i c les , 
however, are considered only out to 6 
s t a n d a r d deviations ei ther side of the 
mean. On a pract ical bas i s , the p roba ­
bility is low of a par t ic le moving 
beyond tha t d i s t ance . 

One fu r the r emphasis is app rop r i a t e 
concerning the so-called "dens i ty func ­
tion" of equat ions 6, 7, and 12. The 
equivalent densi ty funct ions C ( x , t ) and 
N / d x provide the means for re la t ing 
the concentrat ion of a contaminant in a 
field problem to the concentra t ion of 
part icles found in port ions of a finite 
difference model. Various dens i ty 
functions will be defined la te r , by 
example, as they a re needed for appl i ­
cation p u r p o s e s . 

F igure 4B i l lus t ra tes the ex tens ion 
of the random-walk method to account 
for d ispers ion in a direct ion t r a n s ­
verse to the mean flow. F igures 5A and 
5B i l lus t ra te the a lgebra involved when 
the flow is not aligned with the x -y 
coordinate sys tem. Finally, f igure 6 
shows both longitudinal and t r a n s v e r s e 
d ispers ion taking place s imultaneously, 
and the appropr i a t e vec tor a lgeb ra . 

Dilution, Mixing, Retardation, 
and Radioactive Decay 

Consider the one-dimensional flow 
problem in figure 7A in which the flow 
and concentra t ions of the sources a re 
g iven. With d i spers ion set to zero and 
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Figure 4. Computer code scheme for convection and longitudinal (A) 
and transverse (B) dispersion along x axis 
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Figure 5. General scheme for convection and longitudinal (A) 
and transverse (B) dispersion 
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Figure 6. General scheme for convection and dispersion 
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Figure 7. Mixing and dilution effects in water quality problems 
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r e t a rda t ion set to one, the d i s t r i b u ­
tion of concent ra t ions in the system is 
simply a resu l t of pu re mixing as 
i l lus t ra ted in f igure 7B. 

Now, let us assume tha t in the com­
pu t e r model one part icle r e p r e s e n t s 10 
m g / l . F igure 7C shows the time dens i ty 
of par t ic les that would be used for in­
put data in the computer model. F igu re 
7D shows the space dens i ty of par t ic les 
in the computer model tha t would be 
s imulated. Once the space dens i ty of 
par t ic les is known, a multiplication by 
the part ic le mass yields the concen t r a ­
tion of the flowing wa te r . 

In equation 1 the re ta rda t ion factor 
(Rd) is used to r ep resen t t h e change 
in the solute concentrat ion in the 
fluid caused by chemical react ions with 
the medium. T h e s e react ions include 
adso rp t ion , organic fixation, e t c . 
Chemical react ions between the d i s ­
solved const i tuent and the medium tend 
to r e t a r d the movement of the cons t i t u ­
ent re la t ive to the groundwater veloci­
t y . The re ta rda t ion of a concent ra t ion 
front in groundwater re la t ive to the 
bulk mass of water is descr ibed by the 
re la t ion 

where 
V = in ters t i t ia l velocity of the 

g roundwater 

Vc = velocity of the C/Co = 
0.5 in the concent ra t ion 
front 

= bulk mass densi ty 
n = effective porosi ty 

Kd = d i s t r ibu t ion coefficient 
Rd = re ta rda t ion factor 

T h e t r a n s p o r t code herein can take 
e i the r Kd or Rd as input in o rde r 
to incorporate the effects of chemical 
r e a c t i o n s . Later , in f igure 42, exam­
ple output will be shown for t = 1000 
d a y s us ing Rd = 1.0 and Rd = 2 .0 . 
Determining Kd or Rd for a cons t i t ­
uen t in groundwater r equ i r e s a great 
deal of information r ega rd ing t h e com­
position of the groundwater and the 
in te rac t ion of the const i tuent with the 
medium. To p u r s u e th i s , one should 
consul t o ther r e fe rences , such as Helf-
fer ich (1962), Higgins (1959), Baetsle 
(1967,1969), Freeze and C h e r r y (1979), 
and Borg et al . (1976). 

Radioactive decay may be added to 
the model if d e s i r e d . The s ta tement 
"PM = PM*(0.5)**(TIME/HL)" should be 
added to subrou t ine ADVAN(DELP) after 
t he s tatement "TMAP = TMAP+DELP." In 
the s ta tement , HL is the half-life of 
the isotope in d a y s . The number of 
days can ei ther subs t i tu t e for HL or be 
made an input pa rame te r . 
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Figure 8. List ing of the transport program 
(See Part 2) 15 
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F igure 8. Cont inued 
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Figure 8. Concluded 
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PART 2. RANDOM-WALK SOLUTE TRANSPORT PROGRAM 

The solute t r a n s p o r t code l is t ing 
given in f igure 8 was coded in FORTRAN 
IV to solve the se ts of equat ions in­
volved. This section i l lus t ra tes what 
parameters are included and how to set 
up a simulation model. The operat ional 
sequences of the computer code are 
given later in Part 3. 

Figure 9 i l lus t ra tes some important 
parameters included in the program. 
Briefly, the program can simulate one-
or two-dimensional n o n s t e a d y / s t e a d y 
flow problems in he te rogeneous aqui fers 
under water table a n d / o r a r tes ian or 
leaky ar tes ian condi t ions . F u r t h e r ­
more, this program covers t ime-vary ing 
pumpage or injection from or into 
wells, na tu ra l or artificial r echa rge 
r a t e s , the relat ionships of water ex­
change between surface wa te r s and the 
groundwater r e se rvo i r , the process of 
groundwater evapo t ransp i ra t ion , the 
mechanism of possible conversion of 
s torage coefficients from ar tes ian to 
water table condit ions, and the mecha­
nism of flow from s p r i n g s . In add i ­
tion, the program allows specification 
of the water qual i ty concent ra t ions of 
any part of the model inc luding , but 
not limited to, injection well water , 
sa l t -water f ronts , leachate from land­
fills, leakage from over ly ing source 
beds of different quali ty than the 
aquifer , and surface water sources such 
as lakes and s t r eams . F u r t h e r fea tures 
of the code allow var iable finite dif­
ference grid sizes and p r in tou t s of in ­
put da ta , time ser ies of aquifer heads , 
and sequences of maps of aquifer water 
concent ra t ion , concentra t ion of water 
flowing from s inks , and the effects of 
d i spers ion and mixing of water of v a r i ­
ous concen t ra t ions . 

The program list ing of f igure 8 is 
wri t ten in such a way as to be in the 
gallon-day-foot system of u n i t s . How­
ever , th i s code can be conver ted to a 
consis tent set of uni t s by simply r e ­
placing the cons tan t s , 7.48 gallons/ 
cubic foot and 8.3453 pounds /ga l lon , by 

the equivalent measure of the un i t s 
d e s i r e d . 
Job Setup 

The computer job se tup will be e x ­
plained in general f i rs t , and then in 
more detail as necessa ry . 

The aquifer system p rope r t i e s a re 
d iscre t ized by supe rpos ing a finite 
difference grid over a map of the aqu i ­
fer system as shown in f igure 10. The 
total dimensions of the grid a r e d e ­
fined by NC, the number of columns of 
the model, and by NR, the number of 
rows of the model. Next, a parameter 
card (line) and default value card 
(line) are p repa red according to the 
formats i l lus t ra ted in f igures 11A and 
11B. The default value card (line) 
p rov ides data for simulating an NC by 
NR aquifer system model having homo­
geneous p roper t i es with identical ini­
tial heads and net withdrawal r a t e s . 
Then , pumping and parameter schedule 
ca rds ( l ines) are p repa red according to 
the card (line) format i l lus t ra ted in 
f igures 11C and 11D. Next , a g roup of 
cards (l ines) is p r epa red which define 
the sizes of the var iable grid in the x 
and y direct ions according to the for­
mat shown in f igures HE and 11F. Fol­
lowing th i s are the ca rds (l ines) p e r ­
taining to the water qual i ty a spec t s of 
the problem. Included a r e the card for 
initial conditions of pollution (see 
format in f igure 11G) and the card for 
the part icle information, aquifer d i s -
pers iv i t ies , and porosi ty of the aqu i ­
fer (see format in f igure 11H). The 
sink location cards are then p r epa red 
according to the format i l lus t ra ted in 
f igure H I , and the source concen t ra ­
tion cards are p r epa red accord ing to 
f igure 11J. Finally, a node card deck 
is p r epa red according to the format 
i l lus t ra ted in f igure U K . The node 
card deck contains one card for each 
node that has any aquifer system p r o p ­
er t ies differing from those defined on 
the default value ca rd . 
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Figure 9. Generalized aquifer cross section showing simulation 
program parameters 



Figure 10. Plan view of f ini te difference grid over majority 
of sample aquifer system 

The program deck and data decks a re 
assembled in the o rde r i l lus t ra ted in 
f igure 12. Appropr ia te control ca rds 
a re included for the par t icu la r com­
pu te r instal lat ion, and the program is 
r eady to r u n . 

Preparation of Data 
Parameter Card 

Enter numerical values for NSTEP, 
DELTA, ERROR, and NPITS according to 
the format given in f igure 11A. A gen­
eral rule for choosing an initial DELTA 
is to decide at what minimum time draw­
downs or heads of in te res t occur and 
then precede th is time by at least six 
time inc rements . Choose an initial 
value of ERROR from the following for­
mula: 

ERROR = Q x DELTA/(10 x DELX 

x DELY x 7.48 x s) (14) 

where 
Q = total net with­

drawal r a t e of 
model, in gpd 

DELTA = initial time in­
crement , in days 

S = ave rage s to rage 
coefficient of 
model, in gpd/ f t 

DELX and DELY= typical gr id 
spac ing in cen­
ter of model 

The computer program is then " tes ted" 
by making a few preliminary r u n s with 
different values of ERROR, with a final 
value being chosen at t he point where 
reduc t ion in t h a t term does not signif­
icant ly change the solut ion. 

To produce a steady s ta te head d i s ­
t r i bu t ion , set NSTEPS equal to 1, DELTA 
equal to 10 1 0 , and ERROR equal to 0 . 1 . 
A water balance subrou t ine may be added 
he re to fu r the r check on the accuracy 
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46 F igu re 1 1 . Data deck setup f o r a mass t r a n s p o r t problem 



Figure 12. Order of input cards for job setup 

of a s teady s ta te solut ion. Otherwise , 
the solution should be t e s ted by p r i n t ­
ing out the head d is t r ibu t ion eve ry 10 
i te ra t ions or so to check to see if the 
heads have reached a s teady v a l u e . 

NPITS is the number of times pa r t i ­
cles will be advanced in the t r a n s p o r t 
simulation dur ing each DELTA. T h e r e ­
fore NPITS x DELP = total simulation 
time over which t r a n s p o r t occurs in a 
s t e a d y - s t a t e flow s i tua t ion . 

Default Value Card 
After en te r ing values of NC and NR 

on the card ( l ine) , en te r the most com­
monly occur r ing values of the aquifer 
system p a r a m e t e r s . 

Pump Parameter Card and Pumping 
Schedule Cards 

A stepwise pumping schedule , as il­
l u s t r a t e d in f igure 13, is set up for 

each well of the model. The computer 
program can manipulate posi t ive (pump­
i n g ) , negat ive ( r e c h a r g e ) , or zero 
withdrawal ra tes for the total number 
of wells (NPUMP). Between changes in 
pumping r a t e , the computer program 
opera tes with nonuniform time s t eps 
within each period of pumping . How­
ever , the initial DELTA is rese t at 
each change in pumping r a t e for the 
r easons outlined in the nonuniform time 
increment section of this r e p o r t . 

As an example, f igure 13 shows four 
pumping ra t e changes (NRT = 4 ) . Each 
pumping r a t e is in effect for 11 time 
increments (NSP = 11), and the total 
number of time increments is 44 (NSTEPS 
= 4 4 ) . The l eng th of time tha t each 
pumping ra t e is effective is the same 
for all wel ls . 

Once the pumping schedules have been 
set u p , the pump parameter card is in­
cluded to define NP, NSP, and NRT ac­
cording to the format shown in f igure 
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Figure 13. Example variable pumping rate schedule 

11C. Next the r a t e and well location 
coordinates a re en t e red on pumping 
schedule cards accord ing to the format 
shown in f igure 11D. 

Variable Grid Cards 
The va ry ing l e n g t h s , DELX(I) and 

DELY(J) , of the finite difference gr id, 
as i l lus t ra ted in f igures 2 and 10, are 
p r e p a r e d in accordance with the formats 
shown in f igures HE and 11F. Al though 
it is not n e c e s s a r y , it is s u g g e s t e d 
tha t large jumps in grid sizes be held 
to a minimum to maintain a c c u r a c y . It 
is recommended tha t l eng th changes from 
one node to the nex t be less t han dou­
b le . Having a uniform grid size in the 
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detai led area of i n t e r e s t will also 
simplify the i n t e rp r e t a t i on of the com­
pu te r o u t p u t . 

Pollution Initial Conditions Card 
T h e r e a re severa l mechanisms avai l ­

able in this computer program for gen­
e ra t ing part icles which r e p r e s e n t water 
of var ious chemical concen t r a t i ons . 
T h e r e are two pr incipal pa ramete rs of 
concern he re : the area and the time 
period over which the par t ic les s p r e a d . 
F igure 14 i l l u s t r a t e s the t ypes of 
a reas for which the computer program 
can genera te pa r t i c l e s . The most com­
monly used area for field problems is 
the r ec t ang le shown in f igure 14C. 



F igu re 14. Def in i t ion of par t ic le emi t t i ng subrout ines 49 



Since th is t ype of area would be used 
most f r equen t ly , it is made par t of the 
card input da ta as opposed to changes 
being made in some s u b r o u t i n e . The 
da ta to be en tered on the pollution 
initial condit ions card a r e t h u s de ­
fined in f igure 14C. 

At this point , it is essent ia l to 
realize tha t in this model the pa r t i -
icles are moving on the basis of an x-y 
coordinate system congruent with and on 
the same scale as the I-J numbers of 
the finite difference g r i d . In other 
words , if a part icle is gene ra ted at 
the location x = 15, y = 4, th is pa r t i ­
cle is at gr id coordinates I = 15, J = 
4 even though the actual field d is tance 
measured from the origin is something 
e l s e . For ins tance , refer to f igure 10 
where the sample d iscre t ized area of a 
s treambed is ass igned to node I = 7, J 
= 6. To genera te part icles within that 
area you would en ter Xl = 6 .5 , DX = 
1.0, Yl = 5 .5 , and DY = 1.0 on the pol­
lution initial conditions c a r d . Of 
course , by a change in DX or DY the 
size of the rec tangle can be adjusted 
from a point (DX = DY = 0) on up to an 
area the size of the remainder of the 
model (DX = NC - Xl, DY = NR - Y l ) . 

The last e n t r y on the pollution ini­
tial conditions card is the time i n t e r ­
val DELP over which par t ic les will be 
gene ra t ed . In general , DELP governs 
the time the part icles a re allowed to 
move and goes hand in hand with the 
time increment DELTA of the flow 
model. 

F u r t h e r reference to f igure 14 will 
be made la ter in this r epo r t when o ther 
ways of genera t ing par t ic le locations 
will be expla ined . 

Pollution Parameter Card 
In most cases , the total pollutant 

load (PL) , which is the total mass of 
pollutant at 100 percen t concent ra t ion , 
is calculated on the basis of the par­
ticle mass (PM) and the flow ra t e s or 
number of par t ic les desired within vol­
umes of the finite difference grid 
chosen to r e p r e s e n t the concent ra t ion 
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of the so lu te . The usual way to p r o ­
ceed is the following: Assume an ini­
tial concentra t ion of total dissolved 
solids (TDS) of 200 mg / l . You suspec t 
tha t , because of the effects of d i spe r ­
sion and di lut ion, the concent ra t ion 
will reduce eventual ly to no more than 
1 mg/1 . T h e n , calculate the mass (PM) 
of a single par t ic le according to the 
following formula: 

In terms of the computer model, equa ­
tion 15 is wri t ten 

where 

APOR = actual poros i ty of 
aquifer 

62.4 = pounds per cubic 
feet of water 

CONC= ppm ≈ mg/1 
H-BOT = s a tu r a t ed th ickness 

of aquifer 
NPART= number of par t ic les 

r e p r e s e n t i n g con­
cent ra t ion of TDS 
in the pe r t i nen t 
volume 

DELX, DELY = dimensions of typ i ­
cal finite dif fer­
ence grid 

PM= pounds of TDS per 
par t ic le 

Good resolut ion of the d i s t r ibu t ion of 
the TDS as th is water moves t h r o u g h the 
aquifer can be obtained if we a r range 
to have 200 par t i c les per grid space in 
the model. (Choice of the number of 
part icles per grid depends upon the 
resolut ion d e s i r e d . ) The d is t r ibu t ion 
of the TDS t h r o u g h the aquifer may be 
obtained from the par t ic le d i s t r ibu t ion 
in the model by the following formula: 



The computer code has I , J subsc r i p t s 
on all of the parameters of equat ion 16 
except PM and APOR such tha t the v a r i ­
able na tu re of the aquifer parameters 
is accounted for . 

The value of PL to be filled in then 
is the total number of par t ic les wanted 
times PM. Under most c i rcumstances , PM 
is the only calculation to be made, and 
the computer will determine a PL. 

The maximum number of par t i c les , 
MAXP, should seldom exceed 5000. T h e r e 
may be problems tha t r equ i r e more, but 
exper ience indicates that 5000 is u s u ­
ally a d e q u a t e . 

Values of longitudinal d i spe r s iv i ty , 
in feet , dL = DISPL; t r a n s v e r s e d i s ­
pe rs iv i ty , in feet , dT = DISPT; ef­
fective aquifer porosi ty EPOR (f rac­
t i o n ) ; actual porosi ty (APOR); the r e ­
tardat ion factor (RD1); the d i s t r i b u ­
tion coefficient (KD) for the solute in 
the par t icular aquifer material; and 
the bulk mass dens i ty of the aquifer 
material should then be en t e red on the 
pollution parameter card accord ing to 
the format indicated in f igure 11H. 

Sink Location Cards 
Prepa re a card with the I , J coordi­

nate for each s ink des i red , according 
to the format of f igure 11I. On each 
of these cards is a location for e n t e r ­
ing an in teger , o ther than zero, termed 
MARK. All sinks with the same number 
in MARK will be t r ea ted as a common 
sink when repor t ing concen t r a t ions . If 
separa te r e p o r t s on all s inks a re 
wanted , enter different i n t e g e r s on 
each of the sink location ca rds in the 
field MARK. 

Source Concentration Cards 
Each node of the model t ha t has a 

source of water with a concentra t ion 
different from zero needs a source con­
cent ra t ion card with the I , J coordi­
na tes and concentrat ion CONC, in mg/ l , 
l is ted according to the format shown in 
f igure 11J. 

Node Card Deck 
I t should be emphasized t h a t the 

node deck (lines) contains one card 
(line) for each node tha t has any 
aquifer system proper t i e s differ ing 
from those defined on the default value 
card ( l i ne ) . If a node card (l ine) is 
inc luded , all values must be punched on 
it even if some of the values a re equal 
to the default va lue s . I t is essent ia l 
to have a copy of the r epo r t of P r i ck -
ett and Lonnquist (1971) to fully 
u n d e r s t a n d the detai ls of se t t ing up 
the flow model. 

Barrier Boundary Conditions. Ba r ­
r ier boundar ies are simulated by se t ­
t ing PERM ( I , J , 1 ) and PERM ( I , J , 2 ) 
equal to zero on individual node c a r d s . 

Leaky Artesian Conditions. For 
leaky ar tes ian conditions calculate the 
r e c h a r g e factors (R i , j ) in gallons per 
day per foot ( gpd / f t ) from the follow­
ing formula: 

where 
= vertical hydraul ic conduc t iv ­

ity of confining bed, in gal­
lons per day per squa re foot 
( g p d / f t 2 ) 

= th ickness of confining bed , 
in feet 

The recharge factor defines the slope 
of the line given in f igure 9C. 

Appropr ia te source bed heads (RH) , 
elevations of the top of the aquifer 
(CH) , and r echa rge factors are e n t e r e d 
on the default value card, and any dif­
fer ing values are en te red on the node 
c a r d s . 

Induced Infiltration. For in­
duced infiltration calculate the r e ­
charge factors (in gpd/ f t ) from the 
following formula: 

where 
= hydraul ic conduct iv i ty of the 

stream bed, in g p d / f t 2 
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= th ickness of s t reambed, in 
feet 

As = fraction of the area of the 
s t reambed ass igned to full 
area node, a fraction 

The r echa rge factor defines the slope 
of the line shown in f igure 9E. 

Appropr i a t e va lues of stream water 
sur face elevations (RH) , elevations of 
the bottom of the s t reambed (RD), and 
r e c h a r g e fac tors calculated from the 
above equation a r e en te red on node 
c a r d s . 

Constant Head Conditions. If a 
cons tan t head is des i red in the model, 
and the concent ra t ion of the water 
flowing into that node to maintain the 
head is of zero concent ra t ion , then set 
S F I ( I , J ) at tha t node equal to 1 0 3 0 . 
If the concent ra t ion is o ther than 
zero , set R ( I , J ) equal to 10 1 0 for that 
node c a r d . This is done to maintain a 
small res i s tance to flow from the 
source to the aquifer enabling the flow 
ra t e to be measu red . 

Storage Factors . In the program 
desc r ibed by Pr icket t and Lonnquis t 
(1971), s torage fac tors were en t e r ed on 

the node c a r d s . T h i s is not neces sa ry 
h e r e . J u s t en te r the a r t e s i an and 
water tab le s to rage coefficients d i ­
rec t ly in to S F 1 ( I , J ) and SF2 ( I , J ) 
posi t ions on the node and default value 
c a r d s . 

Evapotranspiration. E v a p o t r a n -
spira t ion is defined by the slope of 
the line shown in f igure 9D and is cal­
culated from field data (Pr icket t and 
Lonnquis t , 1971). The value of the 
slope of tha t line is then en t e red on 
node cards in the space r e s e r v e d for 
the r e c h a r g e fac to r . Set va lues of 
both RD and RH equal to one a n o t h e r . 
RD is defined as the elevation of the 
water table below which the effects of 
evapo t ransp i ra t ion cease . 

Flow from Spr ings . Determine a 
r echa rge factor (slope of the line 
shown in f igure 9D) from field da ta of 
flow v e r s u s head changes in the v ic in i ­
ty of the s p r i n g . A recharge factor 
may also be found empirically by match­
ing simulated with observed s p r i n g 
flows. The elevation at which water 
flows from the s p r i n g is r eco rded in 
both RH and RD. 
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PART 3. PROGRAM OPERATIONAL SEQUENCES 

The basic operat ion of the computer 
program is explained in the following 
discussion according to the l is t ing 
given in f igure 8 and t h e flow cha r t s 
and associated explanat ions given in 
f igures 15 t h r o u g h 36. 

The computer program consis ts of a 
MAIN section, 20 s u b r o u t i n e s , and 3 
funct ions . As i l lus t ra ted in f igure 
15, it first reads and wr i tes all input 
da t a . After t h i s , the MAIN program 
calls a sequence of s u b r o u t i n e s , as 
needed, tha t 1) solves for the heads 

for a par t icu la r time increment DELTA; 
2) p r in t s the heads ; 3) gene ra t e s pa r ­
ticles and in se r t s them in the flow; 
4) allows the par t ic les to move a time 
s t ep DELP; and 5) p r i n t s maps and sum­
maries of part icle locations and con­
centrat ion d i s t r i b u t i o n s . The sequence 
of subrou t ines called by the MAIN p r o ­
gram can be changed according to the 
par t icular flow and mass t r a n s p o r t 
problem unde r s t u d y . After the desired 
sequence of subrou t ines is called, the 
MAIN program cycles to the second time 

F i g u r e 15. Flow char t f o r MAIN program 
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increment of the flow model and pe r ­
forms the above 5 s t eps repea ted ly 
until all time increments are p roc­
e s sed . 

There a r e 5 r e q u i r e d sub rou t ines and 
3 requ i red func t ions . T h e r e are also 
15 optional sub rou t ines to choose from, 
depending on the t r a n s p o r t problem of 
i n t e r e s t . Of t h e s e , t he re a re 3 s u b ­
rout ines for p roduc ing the head d i s t r i ­
bution for the flow model, and 7 s u b ­
rout ines t ha t genera te different con­
figurations and numbers of pa r t i c les . 
The re is 1 s u b r o u t i n e to calculate 
r e t a rda t ion , and 4 s u b r o u t i n e s that 
pr int out va r ious maps of par t ic le lo­
cation, concent ra t ion d i s t r i bu t ions , 
and summaries of concent ra t ion of water 
flowing into s i n k s . Table 1 provides 
brief descr ip t ions of the subrou t ines 
and func t ions . The detai ls on how to 
mix and match the various subrou t ines 
will be given in the example problems 
section (Part 4 ) . 

Required Subroutines and Functions 

Function ANORM(0) 
Figure 16 gives the flow char t for 

this funct ion. This function produces 
a number between -6 and +6 from a nor­
mal d is t r ibut ion of numbers having a 
mean of zero and a s t a n d a r d deviation 
of one . In f igure 8 it can be seen 
that this function uses yet another 
function called RANF(O), which is a CDC 
system subrou t ine tha t p roduces a r an ­
dom number between 0 and 1. If other 
systems are used , an app rop r i a t e s u b ­
s t i tu te random number gene ra to r that 
produces numbers in the same range can 
be used . 

Function V(I,J,K) 

As shown in f igure 17, whenever 
calls a re made to this funct ion, it is 
the node- to -node in te rs t i t i a l velocity 
that is supp l i ed . These velocities are 
the basis for which an e laborate i n t e r ­
polation scheme is applied to provide 
velocities anywhere in x-y s p a c e . 
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Subroutine INIT 
This subrou t ine could jus t as easily 

have been placed as a pa r t of MAIN. 
However, by i ts na tu re it can be useful 
as a subrou t ine for some special appli­
ca t ions . As shown in f igure 18, this 
subrou t ine merely zeros out the TMAP 
and NP var iables and the S O R ( I , J ) , 
CONSOR(I , J ) , and MARK(I,J) a r r a y s . 

Subroutine CLEAR 
As i l lus t ra ted in the flow cha r t in 

f igure 19, th is sub rou t ine zeros out 
the NPART(I , J ) and TABLE(I) a r r a y s . 
This is like e ras ing the b lackboard in 
prepara t ion for keeping t r a c k of p a r t i ­
cle locations each time par t ic les are 
going to be moved. 

Subroutine ADD(XX,YY) 
Any time tha t a new par t ic le is 

added to the simulation, you must call 
ADD(XX, YY) and supply the XX, YY coor­
dinates of the part ic le tha t you want 
a d d e d . As indicated in f igure 20, the 
part ic le counter NP is incremented and , 
as long as NP is less than the maximum 
number of par t ic les allowed MAXP, the 
part icle XX, YY coordinates are s to red 
in the X and Y a r r a y s . In the event 
tha t you a re a t tempt ing to add pa r t i ­
cles beyond the limits of the X and Y 
a r r a y s , the code is wri t ten in such a 
way as to eliminate an a d d r e s s i n g 
e r r o r . For many cases , you don' t know 
how many par t ic les will be needed for 
your simulation s ince, for ins tance , 
the ra te of flow from a nea rby pollu­
tion source may be unknown. In th is 
case, the flow may be sufficient to 
r equ i r e a number of par t ic les far in 
excess of the dimensions of the X and Y 
a r r a y s . I f th i s happens , the program 
is wri t ten to randomly remove a p a r t i ­
cle somewhere in the model and make 
room for the new one. It may be tha t 
even the new part icle itself gets 
thrown ou t . In any case the part ic le 
mass (PM) of all o ther par t i c les is 
then propor t ionate ly inc reased to main­
tain conservat ion-of-mass p r inc ip l e s . 
The var iables NP and PM should be 
checked as the simulation p r o g r e s s e s to 



Table 1. Srief Descript ions of Subrou t ines and Functions 

ADD(XX,YY) : add s ingle par t ic le a t coord ina te s (XX,YY) 

ADVAN(DELP): a d v a n c e s all pa r t i c l e s DELP d a y s 

ANORM(O): p r o d u c e s a s ingle number from a normal d i s t r ibu t ion of mean 
range +6 to -6 

CLEAR: c l ea r s a r r a y s NPART and TABLE 

CONMAP: p r i n t s concen t ra t ions at all nodes of model 

GENP(PL) : p r o d u c e s PL/PM par t i c les randomly in a r e c t a n g l e Xl, Y l . D X , D Y 
and randomly in time increment DELP 

GENP2: g e n e r a t e s 29 pa r t i c l e s along column 30 of model, 1 pa r t i c l e 
pe r node 

GENP3: g e n e r a t e s 51 p a r t i c l e s , all at coord ina te XX = 1, YY = 2 

GENP4: g e n e r a t e s 360 pa r t i c l e s a r o u n d an R = 0.7 c i rc le with c e n t e r 
a t coord ina tes ( 1 5 , 1 5 ) , randomly d u r i n g DELP 

GENP5: g e n e r a t e s 101 pa r t i c l e s a r o u n d an R = 0 .7 c i rc le with c e n t e r 
at coord ina tes ( 1 5 , 1 5 ) , at t he onset of t h e call 

HSOLVE: ISVVS Bulletin 55 (P r i cke t t and L o n n q u i s t , 1971), composite 
program 

HSOLV2: ca lcula tes l inear heads per gr id left to r i g h t 

HSOLV4: Thiem equa t ion , rad ia l flow from an injection well at coor ­
d i n a t e s (15,15) 

INIT: ini t ial izes or zeros out a r r a y s TMAP, NP , ANC, ANR, SOR, 
CONSOR, and MARK 

MAP: p r i n t s number of par t i c les r e s i d i n g in each zone for whole 
model 

MOVE(XX, YY, DEL) : moves par t i c les and t a b u l a t e s in which zone par t ic le 
r e s i d e s and removes pa r t i c l e s when c a p t u r e d by a sink 

R D S O L V ( E P O R , R H O , K D , R D l ) : ca lcula tes r e t a r d a t i o n fac tor from inpu t da ta 

SNKCON: for time DELP, p r i n t s concen t ra t ion at s inks specif ied by 
MARK 

SORGEN: p r o d u c e s pa r t i c l e s based on e i ther head d e p e n d e n t flow r a t e s 
or injection wells randomly in space in time d u r i n g DELP 

SOURCE: p r o d u c e s pa r t i c l e s when par t ic le mass h a s sufficiently a c c u ­
mulated from any s o u r c e 

SUMMRY: p r i n t s out number of pa r t i c l e s c a p t u r e d by a sink d u r i n g 
time DELP 

V: p r o v i d e s p r o p e r veloci t ies to s u b r o u t i n e VELO 

VELO(XX, YY, VX, VY) : calculates i n t e rpo la t ed veloci t ies for par t ic le movement 
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Figure 16. Flow chart for 
Function ANORM(0) 

Figure 17. Flow chart for 
Function V ( I , J , K ) 

Figure 18. Flow chart for 
Subroutine INIT 

Figure 19. Flow chart for 
Subroutine CLEAR 

Figure 20. Flow chart for 
Subroutine ADD(XX,YY) 
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see if this is h a p p e n i n g . If it i s , 
back up the simulation and make neces ­
sa ry changes such that PM s tays con­
s t a n t . Suitable changes might be to 
increase PM or MAXP and the X,Y a r r ay 
dimensions. 

Subroutine VELO(XX,YY,VX,VY) 
This subrou t ine (see f igure 21) p r o ­

vides velocity vec tors for the p a r t i ­
cles as they move anywhere within the 
bounds of the model. It is ve ry impor­
tant that an accura te scheme be em­
ployed to produce a cont inuous velocity 
field from d i sc re te velocities provided 
from Funct ion V ( I , J , K ) . One of the 
main drawbacks of the MOC is i ts ina­
bility to handle the s t r o n g l y d ive rgen t 
problem. For ins tance , in the vicinity 
of injection wells the flow is ent i rely 
d ive rgen t away from the center of the 
well. 

This d ive rgen t flow problem is 
avoided in the code by borrowing an 
idea from the finite element method. A 
set of Chapeau functions is defined for 
the purpose of in te rpola t ing velocities 
anywhere in the model on the basis of 
the d i sc re te velocities between n o d e s . 
The explanat ion of how these Chapeau 
functions work is shown in f igures 22 
t h rough 24. 

The interpolat ion of velocities is a 
t h r e e - s t e p p r o c e d u r e . The first i n t e r ­
polation involves the use of the four 
in te r -node velocities in the immediate 
vicini ty of the x, y position of the 
par t ic le , as i l lus t ra ted in f igure 22. 
The second s tep of the interpolat ion is 
i l lus t ra ted in f igure 23, where the 
next closest four i n t e r -node velocities 
a re u sed . The t h i r d interpolat ion is 
shown in f igure 24, where the final 
velocity vec to r s VX and VY are calcu­
la ted . 

In the event that t he par t ic le is 
near the model bounda r i e s , the vec to r s 
used for interpolat ion a r e as shown in 
f igure 25. 

The r e su l t of th i s interpolat ion 
scheme is a cont inuous velocity field 
that provides accura te velocities even 
for the s t rong ly d ive rgen t problem (see 
f igure 42, for example) . 

Figure 2 1 . Flow char t fo r Subrout ine 
V E L O ( X X , Y Y , V X , V Y ) 
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Figure 22. First step in calculating x and y velocity 
vectors for particle 

58 



F igu re 23. Second step in ca lcu la t ing x and y ve loc i ty 
vectors f o r par t i c le 
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Figure 24. Th i rd step in calculating x and y velocity 
vectors for particle 
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Figure 25. Node to node velocity vectors used in 
interpolation scheme 
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Subroutine ADVAN(DELP) 
This subrou t ine controls and ad­

vances all par t ic les p resen t ly in the 
flow field and does some bookkeeping on 
par t ic le x, y coordinate locations as 
some par t ic les d i sappea r in s i n k s . The 
flow char t in f igure 26 indicates the 
sequence of e v e n t s . The par t ic les are 
all allowed to move for a time period 
defined by DELP. For most cases DELP 
is equal to the flow model time inc re ­
ment DELTA. 

However, if it is des i red to move 
the part icles more often between DELTA 
time s t e p s , call ADVAN(DELP) more often 
and such tha t the sum of the DELPs 
equals DELTA. S teady s ta te flow p r o b ­
lems are an example, as i l lus t ra ted in 
the examples section of this r e p o r t . 

Function MOVE(XX,YY,DEL) 
Every time tha t this function is 

called, a part icle is moved. Calls 
will be coming from subrou t ing ADVAN 
(DELP) and certain part ic le genera t ion . 
As mentioned p rev ious ly , the par t ic les 
move on the basis of the I , J coordinate 
system n u m b e r s . The flow char t for 
function MOVE is given in f igure 27 and 
should be s tudied along with the l i s t ­
ing in f igure 8. 

The function MOVE moves a par t ic le 
on the basis of i ts velocity vec to r s as 
calculated from s u b r o u t i n g VELO. New 
velocity vec to r s a re computed at least 
5 times du r ing the time a par t ic le is 
moving across 1 gr id of the model. This 
is done to maintain high a c c u r a c y . 
T h e r e are cases where this res t r i c t ion 
can be re laxed , and some cases where it 
can be t igh tened u p . However, 5 times 
is a good number for most p rob lems . It 
is advised tha t the flow char t in fig­
ure 27, the l is t ing in f igure 8, and 
the vec tor a lgebra in f igure 6 be s t u d ­
ied to see how the sequence of even t s 
occu r s when the funct ion MOVE is 
cal led. 

The function MOVE performs two other 
t a s k s besides moving a pa r t i c l e . F i r s t , 
it checks to see if the part icle goes 
into a s ink; i . e . , within half a grid 
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Figure 26. Flow chart for 
Subroutine ADVAN(DELP) 

of M A R K ( I , J ) . If so, the mass of the 
part ic le is tabula ted in the TABLE(I) 
a r r a y . Secondly, after the part ic le 
moves i t s ass igned DELP time, if it 
doesn' t go into a s ink , i t s x , y coordi ­
nates a r e used to t abu la te i ts position 



Figure 27. Flow chart for 
Function MOVE(XX, YY,DEL) 

in the NPART ( I , J ) a r r a y . The NPART and 
TABLE a r r a y s are pr in ted when a map of 
part icle positions and s ink his tor ies 
is d e s i r e d . 

Optional Subroutines That 
Produce Head Distributions 

A set of heads must be obtained for 
all nodes of the flow model from which 
to compute the velocity field. The 
three subrou t ines d iscussed here can be 
used to fill in the head a r r a y H ( I , J ) , 
However, it should be realized tha t 
almost any means can be used to do 
t h i s . A new code could be wr i t t en , 
someone else's code could be used, or 
field da ta for the head a r r a y could be 
i n s e r t e d . The t h r e e following methods 
are jus t examples . 

Subroutine HSOLVE 
This subrou t ine comes direct ly from 

SWS Bulletin 55 (Pr icke t t and Lonn-
quis t , 1971) and is a por t ion of the i r 
" Composite Aquifer Simulation Program." 
The section of Par t 2 of this r epo r t 
entitled "Job Setup" is based upon 
using this sub rou t ine as the means to 
fill in the H ( I , J ) a r r a y . The flow 
char t in f igure 28 is t hus a b b r e v i a t e d . 
A copy of SWS Bulletin 55 is needed to 
fully u n d e r s t a n d t h i s . The "Job Setup" 
section of this r e p o r t , however, is 
adequa te for a s t a r t . 

F igu re 28. Flow cha r t for 
Subrou t ine HSOLVE 
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Subroutine HSOLV2 
This subrou t ine calculates heads as 

a function of column number such that a 
uniform flow of 1 foot per day in the x 
direction is rea l ized . Refer to the 
l i s t ing in f igure 8 and the flow chart 
in f igure 29 for the de ta i l s . 

This is one example of genera t ing a 
head d is t r ibut ion d i rec t ly without the 
need of solving some complex matrix 
problem associated with finite differ­
ence formulation. 

Subroutine HS0LV4 
This subrou t ine fills the H ( I , J ) 

a r r a y with a solution to the s t eady-
s ta te Theim formula with the center of 
the well at x = 15 and y = 15. The flow 
char t in f igure 30 and the subrou t ing 
code in f igure 8 show how th i s was 
done . The idea here is to waste no 
time in p roduc ing a head d is t r ibut ion 
when you know exactly what you want . 

Figure 29. Flow chart for 
Subroutine HSOLV2 

64 

Figure 30. Flow chart for 
Subroutine HSOLV4 

Optional Subroutines That 
Generate Particles 

Seven different subrou t ines a re 
included as examples of ways part icles 
can be genera ted in var ious configura­
t ions . Configurat ions available a r e 
points , l ines , r ec t angu la r a r e a s , and 
c i rc les . T h r o u g h o u t the following d i s ­
cussion, r epea ted reference will be 



made to figure 14, as this f igure indi­
cates the needed input data for gener ­
a t ing part icles for the var ious s u b ­
r o u t i n e s . 

In general , the part icle genera t ing 
subrou t ines merely genera te x, y coordi ­
na tes in var ious configurat ions and 
then call the subrou t ine ADD(XX,YY) to 
get the part icle into the flow. 

Subroutine GENP2 
The flow char t in f igure 31, the 

l i s t ing in f igure 8, and the i l lus­
t r a t ed definition in f igure 14B shows 
how to place one part icle at each node 
of the flow model in a l ine . Again x, y 
coordinates a re genera ted and then the 
subrou t ine ADD(XX,YY) is called. 

Subroutine GENP3 
Figure 14A and the l ist ing in f igure 

8 i l lus t ra te how one or more par t ic les 
can be placed at a par t icular point in 
the model at one ins tant of t ime. The 

flow char t is given in f igure 32. Su i t ­
able changes in the xx, yy coordinates 
of this subrou t ine could enable the 
generat ion of par t ic les at any point in 
the model. 

Subroutine GENP(PL) 
This subrout ine genera tes any number 

of par t ic les randomly located within a 
r ec t angu la r area of configuration given 
by f igure 14C. The necessa ry Xl, DX, 
Yl, DY, DELP coordinates may be spec i ­
fied by the initial pollution condi­
tions card or by a call from another 
subrou t ine such as SORGEN. The total 
pollutant load PL can also be specified 
in the pollution parameter card or by a 
call to another subrou t ine such as 

Figure 3 1 . Flow char t for 
Subrou t ine GENP2 

F igu re 32. Flow char t fo r 
Subrou t ine GENP3 
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SORGEN. The idea here is that once PL 
is suppl ied , the s u b r o u t i n e b reaks up 
the total into p a r t s PL/PM and s p r e a d s 
par t ic les randomly in the r ec t angu la r 
area specified and randomly over the 
time increment DELP specified until the 
total PL is accounted for . The l is t ing 
in f igure 8 and t h e flow char t in f ig­
u re 33 give more de ta i l s . 

Subroutines GENP4 and GENP5 
The flow char t and l is t ing in fig­

u re s 34 and 8, r e spec t ive ly , i l lus t ra te 
how a circle of par t ic les is genera ted 
accord ing to the configurat ion shown in 
f igure 14E. Here again, the x and y 
coordinates are genera ted and ADD(XX, 
YY) is called to c rea te the pa r t i c l e s . 
GENP5 genera tes 101 par t ic les in a 
circle uniformly spaced at R = 0.7 at 
the beginning of the time increment 
DELP. Subrout ine GENP4 is the same as 
GENP5 except tha t 360 par t ic les are 
genera ted randomly du r ing the time in­
crement DELP. The l is t ing in f igure 8 
shows tha t this is done by calling 
RANF. 

Subroutine SORGEN 
This subrou t ine is similar to SOURCE 

in tha t part icles a r e emitted on the 
basis of flow ra tes from sources having 
a concentra t ion different than ze ro . A 
value in the a r r a y CONSOR(I ,J ) is all 
tha t is necessary to ac tua te a par t ic le 
when this sub rou t ine is called. Both 
sub rou t ines SORGEN and SOURCE calcu­
late the total mass (PL) involved in 
the water flowing from the var ious 
sources of the model on the basis of 
the specified par t ic le mass (PM) and 
the flow r a t e . As shown in the l is t ing 
in f igure 8, the flow char t in f igure 
35, and the area definition in f igure 
14D, par t ic les are emitted by calling 
GENP(PL) on the bas is of calculated PL 
va lues . T h u s , par t ic les a re emitted by 
sub rou t ine SORGEN randomly in both 
space and time (DELP) . 

66 

Figure 33. Flow chart for 
Subroutine GENP(PL) 

Subroutine SOURCE 
This subrou t ine is similar to SORGEN 

with the except ion tha t part ic les are 
emitted r igh t at the I , J coordinates of 
the source and by calling subrou t ine 
ADD (XX, YY ) only when a sufficient q u a n ­
t i ty of water has left the source in 
the amount of PM. In o the r words, the 
part icle is emitted at the beginning of 
the front and then no other one is 
emitted until the specified PM has 
flowed from the s o u r c e . T h u s , the p a r ­
ticles are emitted in uniform lumps at 
var ious times du r ing the in terva l DELP 



Figure 34. Flow chart for 
Subroutine GENP5 

when us ing the sub rou t ine SOURCE. The 
flow cha r t , l i s t ing, and area configu­
ration a r e shown in f igures 36, 8, and 
14F, r e spec t ive ly . 

Optional Subroutine for Calculating 
Particle Retardation 
Subroutine RDSOLV 

RDSOLV is a simple sub rou t ine which 
can be used to calculate a re ta rda t ion 

Figure 35. Flow chart for 
Subroutine SORGEN 

fac tor . I t solves the equat ion 

RD1 = 1 + (RHO/EPOR) x KD (18) 

only when RD1 is set equal to ze ro . If 
RD1 is known and en t e red as inpu t , the 
code will use tha t v a l u e . IF KD is 
known then RD1 will be calculated if 
0.0 is the initial value of RD1. 
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Figure 36. Flow chart for Subroutine SOURCE 
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Optional Subrout ines That 
P r i n t Results 

There are four subrou t ines t ha t can 
be called which will pr in t summaries of 
concent ra t ions , maps of par t ic le loca­
t ions , and concentra t ions of water 
flowing into s i n k s . Any of t he se can 
be called at any time for a r epor t of 
where and what is going on . 

Subroutine MAP 
This subrout ine p r in t s out PM, NP, 

and TMAP and the NPART(I , J ) a r r a y so 
t h a t the location of par t ic les in the 
g r ids can be no ted . This map, however , 
does not repor t the location of pa r t i ­
cles within each g r id . (It would be 
n e c e s s a r y to pr int out the X,Y a r r a y s 
to obtain this information.) This is a 
convenient map to contour to get an 
overal l p ic ture of the s i tua t ion . Fig­
u r e 37 gives the flow char t for this 
s u b r o u t i n e , and f igure 8 gives the 
l i s t i ng . 

Subroutine CONMAP 

On the basis of equation 16, the 
concentra t ion d is t r ibu t ion is calcu­
lated and pr in ted out in numeric tab le 
form. Figure 38 shows the flow cha r t 
and equation 16 can also be found in 
the l is t ing in f igure 8. 

Subroutine SUMMRY 
The flow char t for th is sub rou t ine 

is given in figure 39. Any time du r ing 
the time increment DELP that a par t ic le 
falls within the cap tu re area (half of 
a grid ei ther side of a specified 
s i n k ) , the particle is removed from the 
flow system and is summed into the 
TABLE(I) a r r a y . This sub rou t ine p r i n t s 
out a summary of this action in t e rms 
of s ink number and total mass deleted 
d u r i n g any par t icular time increment 
DELP. 

F igu re 37. Flow char t fo r 
Subrout ine MAP 

F igu re 38. Flow cha r t for 
Subrou t ine CONMAP 

F igu re 39. Flow cha r t fo r 
Subrou t ine SUMMRY 
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Subroutine SNKCON 
This subrou t ine calculates the con­

cent ra t ion of water en te r ing s inks on 
the basis of whether the sink is pump­
ing (value in the Q a r r a y ) or is an 
area of runoff (value in R a r r a y ) . The 
app rop r i a t e formula for pumping s inks 
is 

where 
TABLE(MOVE) = mass of par t ic les 

dele ted by th i s 
s ink , mg/l , du r ing 
DELP 

Q ( I , J ) = pumping ra te of 
s ink, in gpd 

DELP = time increment 
over which pa r t i ­
cles were deleted, 
days 

The appropr i a t e formula for area 
runoff is 

F igure 40 i l lu s t r a t e s the flow cha r t 
for th i s s u b r o u t i n e . The l ist ing in 
f igure 8 contains the code for equa ­
tions 19 and 20. 

Figure 40. Flow chart for Subroutine SNKCON 
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PART 4. EXAMPLE PROBLEMS AND COMPARISONS WITH THEORY 

The following group of example p r o b ­
lems was chosen to i l lus t ra te how the 
computer code is assembled and appl ied . 
Where possible, theoret ical solutions 
are compared with the computer ou tpu t 
so the reader can obse rve the accuracy 
of the technique and gain confidence. 
Each of the examples includes a d e ­
script ion of the problem, a list of the 
r equ i red data input c a r d s , the chosen 
sequence of subrou t ine calls, and a 
comparison of the r e s u l t s with t h e o r y . 

Divergent Flow from an Injection 
Well in an Infinite Aquifer without 
Dispersion or Dilution 

This example problem is a convection 
problem chosen to demonst ra te how well 

the velocity VELO works for a severe ly 
d ive rgen t problem. The problem is also 
chosen to demonstrate how a c i rcular 
d i s t r ibu t ion of par t ic les appea r s when 
r e p o r t e d on the basis of the s q u a r e 
grid configuration produced by the s u b ­
rout ine MAP. 

F igure 41 gives the input data nec ­
e s s a r y to do th is problem. In ac tua l ­
i ty , the only data used in the input 
ca rds come from the parameter card 
(NSTEPS = 1) , the default value card 
(NC = 30, NR = 29), the var iable grid 
ca rds [DELX(I) and DELY(J) = 1000 
f e e t ] , the pollution initial conditions 
card where DELP = 100 d a y s , and the 
pollution parameter card where MAXP = 
5000, DISPL = 1E-10, DISPT = 1E-10, and 
EPOR = 0 .2 . All o ther data are read 

Figure 41 . Input data for divergent flow problem (A) and 
subroutine sequence (B) 
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and wri t ten b u t not used since all this 
information is suppl ied by sub rou t ines 
HSOLV4 and GENP5. Refer to f igures 8 
and 42 for these other da t a . The ex t ra 
data cards a re included to avoid r e ­
wri t ing the code in MAIN . 

F igure 41B gives the sequence of 
subrou t ine calls that will solve this 
problem. The subrou t ine calls in fig­
ure 15A and B are merely replaced by 
those in 41B. Subrou t ine HSOLV4 p r o ­
duces the s t e a d y - s t a t e head d i s t r i b u ­
t ion, GENP5 gene ra t e s 101 par t ic les in 
a circle a round the injection well, and 
the DO 620 loop p r in t s out the part icle 
d i s t r ibu t ion as the par t ic les follow 
along the velocity vec tors eve ry 100 
d a y s . 

F igure 42 shows some of the r e s u l t s 
of the particle positions as produced 
by subrou t ine MAP as a function of 
t ime. The theoret ica l solution of pa r ­
ticle location and dens i ty is also 
given in f igure 42. One should recall 
tha t MAP is r e p o r t i n g on t h e basis of 
par t ic les found in an area 1/2 grid 
e i the r side of the I , J coo rd ina t e s . If 
the x, y coordinates of the par t ic les 
themselves were p r in ted , a smooth curve 
drawn th rough them would still be a 
c i rc le . A Calcomp sub rou t ine would be 
useful here , bu t that is left to the 
user to implement. 

Pumping from a Well Near a Line 
Source of Contaminated Water, with 
Dilution but without Dispersion 

Consider pumping 1 million gallons 
of water per day from a well located 
5000 feet from a constant line source 
of contaminated water of concent ra t ion 
200 mg/l g rea te r than the res ident 
g roundwa te r . Assume a semi-infinite 
aquifer and s t e a d y - s t a t e flow. Also 
assume that the line source becomes 
polluted at time zero and tha t you are 
in t e re s t ed in the t ime-concent ra t ion 
cu rve for the pumped well. A c r o s s -
sectional view of this s i tuat ion is 
shown in f igure 43 along with o ther 
da t a . 

Subrout ine HSOLVE and the inpu t data 
(f igure 44) were used to solve this 

72 

problem. An NC = 30 by NR = 29 var i ­
able grid model was used and a pumping 
well located at I = 25, J = 15 was 
specified. A time increment DELTA = 
1E10 was used to produce the s t eady-
s ta te head d i s t r ibu t ion ; a s ink was 
specified at I = 25, J = 15 and MARK = 
1; and source concentra t ion da ta were 
p repa red along column 30. Node lines 
were p repa red specifying r e c h a r g e fac­
t o r s R ( I , J ) of 1E10 to obtain a con­
s tan t head along column 30 and a means 
of measuring flow from that sou rce . 
The part icle mass PM was calculated 
from equation 15 as 500 so that 50 p a r ­
ticles found in one of the 1000' x 
1000' gr ids would r e p r e s e n t 200 mg/1. 
This was judged to be sufficient for 
resolut ion of the d i s t r ibu t ion of the 
concen t ra t ion . 

Figure 44B shows the sequence of 
subrou t ines t ha t was chosen to solve 
th i s problem. Here again , the s u b r o u ­
tine calls in f igure 15A and B are r e ­
placed by those in f igure 44B. S u b r o u ­
t ine HSOLVE p roduces the s t e a d y - s t a t e 
head d i s t r ibu t ion , subrou t ine SORGEN 
genera tes the cor rec t number of pa r t i ­
cles on a node- for -node basis according 
to their individual flows, and the 
pr in tou t subrou t ines give r e p o r t s on 
concentrat ion and par t ic le locations as 
the simulation p r o g r e s s e s DELP days at 
a time. 

Figure 45A shows the r e s u l t s of the 
s ink concentra t ion as a function of 
time as compared to t h e o r y . (See func­
tion MOVE in f igure 8 for the defini­
tion of D. ) Note the lumpy cha rac t e r 
of the o u t p u t . Engineer ing judgment is 
needed in drawing a cu rve t h r o u g h the 
computer da t a . From a simple knowledge 
of the aquifer condi t ions, it should 
follow that the concentra t ion c u r v e for 
th i s well should be a smooth monoton-
ically inc reas ing function of time 
approach ing 200 mg/1 . Knowing in gen­
era l what the solution should look like 
grea t ly aids drawing c u r v e s t h r o u g h the 
computer da t a . If no idea is known of 
what the solution should look l ike, 
simply dec rease the part ic le mass and 
time increment DELP unti l the computer 
answer s achieve the des i red smoothness . 



F igu re 42. Outward rad ia l f low of par t ic les f rom an in ject ion well 
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Figure 43. Cross section view of well pumping near a 
line source of pollution 

This may be an expens ive method to use , 
however . 

With pract ice and some exper i ence , 
it may be possible to obtain a valid 
solution from v e r y few par t ic les and 
r a t h e r l a rge time increments DELP. For 
i n s t ance , the above problem was run 
with PM = 500 and DELP = 100 d a y s , as 
shown in f igure 45B. Another r u n was 
made with PM = 1500 and DELP = 100 
d a y s , as shown in f igure 45C, and an ­
other was made with PM = 2497 and DELP 
= 200 days (f igure 45D). An examina­
tion of the differences between the 
computed r e su l t s of f igures 45A th rough 
45D indicates what is really needed to 
define the concentra t ion c u r v e . 

F igure 45E shows that some loss of 
accuracy occurs when velocities of p a r ­
ticles a re computed only 2.5 times per 
grid movement. 

F igure 46 shows a plan view of the 
same aquifer condition as would be de ­
picted by the sub rou t ine MAP just at 
the time of b r e a k t h r o u g h to the well. 
The map was p roduced with the same data 
input as was shown in f igure 44A, but 
with a different sequence of s u b r o u ­
t i ne s , as shown in f igure 47. 
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In the plan view the difference be­
tween the actual x, y location of the 
par t ic les and the method of p r in t ing 
out the NPART matrix on a square pat ­
t e rn must be rea l ized . This explains 
most of the p r in t ed numbers less than 
50 along the front depic ted in f igure 
46. Here again a Calcomp rout ine would 
eliminate the need of i n t e r p r e t a t i o n . 

A th i rd example of the same condi­
tion is given by calling the sequence 
of subrou t ines shown in f igure 48. The 
quest ion of i n t e r e s t answered in this 
example is the shape of the interface 
as t h e front moves from the source to 
the well as a function of time. The 
sub rou t ine GENP2 is called, which gen­
e ra t e s a single par t ic le per node along 
the l ine sou rce . Then the sequence of 
calling subrou t ines MAP, CLEAR, ADVAN 
(DELP) produces a ser ies of maps as 
shown in f igure 49 . The front is eas i ­
ly desc r ibed in t h i s fashion with only 
29 p a r t i c l e s . An excellent definition 
of the front can be obtained by add ing 
more part icles t h r o u g h calls to GENP 
(PL) with Xl = 30, DX = 0 , Yl = 1, DY = 
29, PL = 5000, and PM = 1 and pr in t ing 
out the X,Y coordinate h is tory of the 
pa r t i c l e s . 



F igu re 44. I npu t data f o r pumping in the v i c i n i t y of a po l lu ted 
l ine source (A) and sub rou t i ne sequence (B) 75 



Figure 45. Concentration of water derived from a well pumping 
near a line source of pollution 
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Figure 46. Distr ibution of particles in the v ic in i ty of a well 
pumping near a line source of pollution 
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Figure 47. Subroutine sequence to 
produce f igure 46 

Figure 48. Subroutine sequence 
to produce f igure 49 

Figure 49. Advance of a f ront toward a well pumping 
near a line source 
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Long i tud ina l D ispers ion in Uni form 
One-Dimensional Flow wi th Cont inuous 
In ject ion at X = 0.0 

The data deck for this s i tuat ion is 
shown in f igure 50A. An NC = 30 and NR 
= 3 flow model is used for this p r o b ­
lem. Longitudinal d i spers iv i ty is set 
at 4.5 feet and the t r a n s v e r s e d i s pe r ­
s ivi ty at ze ro . The total pollutant PL 
is set at 100. The sequence of s u b r o u ­
tine calls for this problem is shown in 
f igure 50B. The subrou t ine HSOLV2 is 
used to provide the head d i s t r ibu t ion 
such that the x-direct ion velocity of 
flow is 1 foo t /day . A grid in te rva l of 
10 feet is used to map the d is t r ibu t ion 
of par t ic les as they are genera ted at x 
= l , y = 2 randomly over the time i n c r e ­

ment DELP. This approximates the con­
t inuous injection scheme des i red and 
fully randomizes the flow. 

The resul t ing set of maps provided 
the necessa ry data to plot the g r aphs 
of f igure 51. The theoret ical c u r v e s 
were der ived from equat ions given by 
Fried (1975). Again, note the lumpi-
ness of the r e s u l t s . Remedies could 
include using more part icles than 100 
per time increment , and smaller grid 
s i ze s . Likewise, application of eng i ­
neer ing judgment would allow fewer pa r ­
t ic les . Notice in f igure 51 tha t t h e r e 
is no "overshoot" in the t radi t ional 

F igu re 50. I npu t data fo r d ispers ion in a un i form one-dimensional f low 
w i th cont inuous in ject ion at x=0 (A) and subrou t ine sequence (B) 
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Figure 51. Longitudinal dispersion in uniform one-dimensional flow 
with continuous injection at x=0 
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mathematical sense of the word . An 
increase in the number of par t ic les of 
the simulation will r educe the magni­
tude of the C/Co > 1 phenomenon shown 
in f igures 51B and 51C. No number of 
additional part icles would cure such a 
phenomenon in the MOC. 

Stat is t ic ians note tha t it is poss i ­
ble to e x p r e s s the probabi l i ty of the 
variat ion in magnitude of the number of 
part icles ei ther side of the number 
actually p r in t ed . With th i s type of 
simulation, the possible r ange in the 
number of part icles p r in t ed var ies 
according to a Poissan d i s t r ibu t ion , 
and the magnitude of tha t possible 
variat ion would va ry accord ing to the 
squa re root of the number p r i n t e d . 
T h u s , if the number 10 shows up , i t s 
actual value could range from (10-10½) 
to (10+10½), or 6.8 to 13 .2 . This fact 
helps in deciding what may be signifi­
cant when in te rp re t ing pr in tou t in th i s 
type of simulation. Use of th is con­
cept , applied to the theore t ica l cu rve , 
shows tha t nearly all simulated values 
of f igure 51C fall within the expected 
r a n g e . 

Longitudinal Dispersion in Uniform 
One-Dimensional Flow with a Slug of 
Tracer Injected at X = 0.0 

The data for th is problem are the 
same as those used in f igure 50. The 
only difference between the previous 
continuous injection scheme and t h i s 
problem of an injected slug is in the 
sequence of subrou t ines called. F igu re 
52 shows that GENP3 is called once to 
get the slug injected and the remainder 
of the subrou t ine calls advance the 
par t ic les and pr in t out the r e su l t s as 
the s lug moves downst ream. 

F igure 53 gives the r e su l t s of th is 
simulation compared with the t h e o r e t i ­
cal r e s u l t s der ived by an equation 
given by Bear (1972). The effects of 
injecting s lugs of increas ing numbers 
of par t ic les are i l lus t ra ted by compar­
ing f igures 53A, 53B, and 53C. F igures 
53A t h r o u g h 53C can actual ly be p r o ­
duced with a single simulation by call­
ing GENP3 applicable to t h ree sepa ra te 

rows of the flow model. T h e n , the con­
centra t ion curve of f igure 53A would be 
plotted on the basis of the first row 
da ta . F igure 53B would be plotted by 
supe rpos ing data from rows 1 and 2. 
And finally, figure 53C would be plot­
ted on the basis of the sum of all 
t h r e e rows . 

Longitudinal Dispersion in a 
Radial Flow System Produced 
by an Injection Well 

Figure 54A gives the input data for 
an NC = 30 by NR = 29 model with longi ­
tudinal d i spers iv i ty set to 450 feet (a 
high d i spers iv i ty like th i s is unheard 
of in the t radi t ional sense of d i s p e r ­
sion t h e o r y ; however, it could be a t ­
t r ibu ted to the effects of aquifer 
s t r a t i f i ca t ion) . A grid in te rva l of 
1000 feet is used to give a severe tes t 
to the d i sc re te part icle t e c h n i q u e . 

F igure 54B i l lus t ra tes the choice of 
subrou t ine calls to solve th is problem. 
The subrou t ine HSOLV4 defines the head 
d i s t r ibu t ion by the Theim formula, and 
GENP4 genera tes the par t ic les in the 
vicini ty of the injection well. 

F igure 55 gives the r e su l t s of this 
problem compared with theo ry der ived 
from an equation given by Bear (1972) . 
A plan view map of the concentra t ion 
d i s t r ibu t ion at time = 350 days is 
given in f igure 56 along with the 
theo ry for comparison. If more infor-

Figure 52. Subroutine sequence for 
longitudinal dispersion in a uniform 
one-dimensional flow field with a 

slug of tracer injected at x=0 
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Figure 53. Longitudinal dispersion in a uniform one-dimensional flow 
with a slug of tracer injected at x=0 
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F igu re 54. Inpu t data for l ong i tud ina l d ispers ion in a radia l 
f low pa t t e rn (A) and s u b r o u t i n e sequence (B) 
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Figure 55. Radial dispersion from an injection well 
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F igure 56. Map of theore t ica l ve rsus computed radia l d ispers ion 
from an in jec t ion well 
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mation is desired to be t t e r define the 
concentra t ion d i s t r ibu t ion in f igure 
56, the simulation should be r e r u n with 
a finer grid in te rva l and more p a r t i ­
cles . 

Long i tud ina l and T ransve rse 
D ispers ion in Un i fo rm One-
Dimensional Flow w i t h a Slug of 
T racer In jected at X = 0.0 

Figure 57A gives the input data for 
this problem with a longi tudinal d i s -
pe r s iv i ty of 4.5 ft and a 1.125-ft 
t r a n s v e r s e d i s p e r s i v i t y . The s u b r o u ­
tine calls are given in f igure 57B, 
showing tha t HSOLV2 is used to produce 
the head d is t r ibu t ion and GENP3 is 

called once to gene ra t e the s l u g . 
Before this problem is r u n , GENP3 has 
to be modified to the following: 1) DO 
10 I = 1,200; 2) YY = 15; and 3) XX = 
5. F igu re 58 gives the computer r e ­
sul t s compared with a theoret ical solu­
tion der ived from an equation given by 
Fried (1975) . In th i s example, concen­
t ra t ion is replaced simply by the d i s ­
t r ibu t ion of par t ic les found in the 
model. The agreement between computer 
r e s u l t s and theory is excel lent . 

F igures 59 and 60 i l lus t ra te in plan 
view the ou tpu t for this problem as 
p roduced by sub rou t ine MAP when the 
number of part icles is var ied between 
500 and 2000. 
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Figure 57. Input data for longitudinal and transverse 
dispersion (A) and subroutine sequence (B) 
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Figure 58. Dispersion of a slug injected in a uniform 
one-dimensional flow in the x direction 
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Figure 59. Map of the number of particles of the model 
gr id 20 days after injection of a slug into a 

uniform flow compared to theory 
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Figure 60. Map of the number of particles of the model 
gr id 70 days after injection of a slug into a 

uniform flow compared with theory 
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PART 5. FIELD APPL ICAT ION; MEREDOSIA, ILLINOIS 

The field problem is located in 
Morgan County , Illinois, south of Mere-
dosia, near the Illinois River ( f igure 
61) . The area is indust r ia l ized, with 
petroleum and agr i cu l tu ra l chemical 
companies occupying most of the p r o p e r ­
t y . The contamination problem was 
first de tec ted in 1978 at a d i s t r i bu ­
tion terminal for liquid ammonia fe r t i ­
l izer . This facility r e q u i r e s 1000 gpm 
(5420 m 3 / d a y ) groundwater supply to 
opera te condensers in the ref r igera t ion 
sys tem. The water is fed direct ly into 
the system from high capacity p r o d u c ­
tion wells . During 1978 the pump bowls 
of the production wells s t a r t ed binding 
du r ing operat ion because of calcium 
carbonate precipi ta t ion. The purpose 
of th is s tudy was to identify and cha r ­

acterize the newly developed g r o u n d ­
water condition in o rde r to recommend 
cor rec t ive measures . 

Groundwater Flow System 

The site outlined in f igure 62 is 
about 850 ft (257.4 m) by 625 ft 
(189.2 m ) . The major s t r u c t u r e s a re 
the terminal , the office bui lding, and 
two large s torage t a n k s . Under ly ing 
the site is 90 ft (27.2 m) of uncon­
solidated sand and gravel on top of 
Pennsylvanian age bedrock (Heigold and 
Ringler , 1979). T h e r e is a gent le 
slope (.006 f t / f t ) in land surface from 
east to west across the s i t e . The 
water tab le , contoured from data for 12 
wells ( f igure 62), ref lects a gent le , 

Figure 6 1 . Locat ion o f f i e ld s i te 
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Figure 62. Water table contours and control wells at the field site 
(The zero datum for the contours is the water 

table level inferred at the source) 

na tu ra l gradient toward the Illinois 
River (west) and i l lus t ra tes the cone 
of depress ion from the product ion well, 
PW4. Aquifer t ransmiss iv i t ies r ange 
from 150,000 g p d / f t (1863 m 2 / d a y ) to 
300,000 gpd/ f t (3727 m 2 / d a y ) in th i s 
pa r t of the Illinois River bottom­
lands . 

The pump binding problem first d e ­
veloped in two wells housed in the west 
end of the office building (f igure 62 ) . 
Leached chemical cons t i tuen ts from an 
uncovered chemical fert i l izer bin 
(SOURCE) migrated down-grad ien t , t o t h e 
w e s t - n o r t h w e s t , and were drawn into the 
cone of depress ion of the produc t ion 
wells in the office bui lding, which a re 
now abandoned . The source consis ted of 
ammonium sulfate , n i t r a t e s , and t r a c e s 
of inorganic phospha tes salvaged from 
f i re-damaged fert i l izer p rocess ing 
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p l a n t s . It had been in place for at 
l eas t a year p r io r to the development 
of pump-b ind ing problems and near ly 
t h r e e years before th i s s tudy was in­
i t ia ted . 

Quality of Native and 
Contaminated Groundwater 

The nat ive g roundwater at t h e site 
is of good chemical qua l i ty . The par ­
tial chemical analysis in table 2 shows 
tha t the water is only moderately min­
eral ized a l though levels of n i t r a t e are 
somewhat h igher than the USEPA pr imary 
s t a n d a r d of 10 mg/1 . 

On the s i te , ten sand-poin t wel l s - -
SP1 th rough SP10 (f igure 62) - -were 
d r i ven to check g roundwate r qua l i ty and 
l e v e l s . Wells SP1 , SP4, and SP10 were 



Table 2. Chemical Composition of 
Uncontaminated Groundwater 

Calcium 
Magnesium 
Sodium 
Potassium 
Iron 
Manganese 
Ammonia 

Bicarbonate 
Sulfate 
Chloride 
Nitrate 
Fluoride 

(mg/l) 

68.0 
24.0 

7.5 
2.0 
0.4 
0.14 
0.04 

278.0 
33.0 
11.0 
13.4 

0.10 

permanent ly instal led for the purposes 
of t r ace r exper iments and moni tor ing. 
Two production wells, PW3 and PW4, were 
also used as monitoring wel ls . PW4 was 
produc ing 1000 gpm (5420 m 3 / d a y ) d u r ­
ing the s t u d y , while PW3 was pumped 
only for sampling and a groundwater 
t r a c e r exper iment . On the basis of the 
chemical analysis of g roundwater taken 
from 11 wells ( table 3 ) , the g round­
water quality was classified into th ree 
g r o u p s : 1) in te r ior plume, 2) marginal 
plume, and 3) distal or native g round­
wa te r . 

The groundwater in the plume in t e ­
r ior had ammonia concentra t ions rang ing 
from 285 mg/1 to 2100 mg/1 ( f igure 63 ) . 
Nitrate ranged from 570 mg/1 to 1885 
mg/1 in the in te r ior , while calcium and 
magnesium concentra t ions were well 
below concentra t ions of nat ive g round­
w a t e r . Sulfate, potassium, chlor ide , 
phospha te , and iron were found in con­
cent ra t ions above background (f igure 
64) . The pH of the in ter ior plume 
water ranged from 8.6 to 8 .9 . The pH 
of the nat ive groundwater is 8.0 or 
s l ight ly l e s s . 

The groundwater on the margins of 
the plume was identified as having con­
cent ra t ions noticeably above back­
g round , bu t considerably lower than 
in te r ior concentra t ions ( f igures 63 and 
64) . Observat ion wells to the n o r t h , 
f a r thes t from the sou rce , had the low­
est concentra t ions and were termed 
d i s t a l . 

A. chemical analysis was made on the 
scale deposit which bound the pump. 
Calcium carbonate was the major con­
s t i tuen t (95 p e r c e n t ) , and magnesium 
carbonate comprised 0.5 to 5 pe rcen t of 
the scale sample by weight . The rapid 
precipi tat ion of CaCO 3 on the pump 
bowls was probably caused by the high 
pH and by degass ing due to the ag i t a ­
tion of the groundwater in the pump 
bowls . 

Table 3. Chemical Composition of Groundwater Samples from Study Site (mg/1) 

Potassium 

Calcium 

Magnesium 

I ron 

Chlor ide 

Sulfate 

Phospha te 

Ni t ra te 

Ammonia 
( to ta l ) 

K 

Ca 

Mg 

Fe 

Cl– 

SO 

PO 

NO– 

NH° 

SP1 

60.0 

2.80 

3.90 

0.60 

59.0 

196. 

20.7 

1380. 

2114. 

SP2 

34.0 

6.40 

5.10 

2.00 

26.0 

141. 

12.3 

680. 

457. 

SP3 

42.0 

4.40 

11.0 

0.55 

29.0 

140. 

8.80 

1280. 

801 . 

SP4 

62.0 

68.0 

34.0 

0.20 

47.0 

112. 

3.60 

570. 

282. 

SP5 

22.0 

104.0 

39.0 

0.30 

14.0 

89.0 

<0.10 

480. 

187. 

SP6 

65.0 

10.8 

8.20 

0.25 

49.0 

159. 

16.5 

1180. 

967. 

SP7 

31.0 

84.0 

27.0 

0.27 

12.0 

103. 

<0.10 

390. 

191. 

SP8 

6.00 

64 .0 

27 .0 

0 .40 

5.00 

49.0 

<0.10 

60.0 

1.30 

SP9 

2.00 

68 .0 

24 .0 

0 .40 

7.00 

33.0 

<0.10 

55.0 

0.04 

SP10 

8.00 

104.0 

150.0 

0.30 

6.00 

42.0 

<0.10 

220. 

11.6 

PW3 

25.0 

108.0 

150.0 

<0.02 

13.0 

90.0 

<0.10 

440. 

137. 
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Figure 63. Partial chemical analysis from the 
11 non-pumping control wells 
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Figure 64. Partial chemical analysis from the 
11 non-pumping control wells 
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A plume configuration was developed 
based on the chemical da t a . Cons idera ­
tions of chemical equil ibria involved 
then provided insight into the t r a n s ­
port and transformation of ammonia and 
minor cons t i tuen ts of the chemical fer ­
t i l izer . 

Contaminant Plume 
The ammonia concentra t ions were used 

to determine a two-dimensional configu­
ra t ion for the plume. By contour ing 
ammonia values (figure 65) two conclu­
sions were d rawn: 1) the plume was 
migrat ing in a generally wes t e rn d i rec ­
tion, and 2) pa r t of the plume was 
being drawn into the cone of depress ion 
of PW4. Wells SP1 , SP4, SP10, PW3, and 
PW4 were sampled periodically over nine 
mon ths . Concentrat ions at SP1 ave raged 
2020 mg/l with a s t andard deviat ion of 

79 mg/1 (N = 6 ) . Concentra t ions in the 
o the r wells showed no significant 
change (<10 pe r cen t ) in ammonia concen­
t ra t ion du r ing the same pe r iod . P e r i ­
odic f lushing e v e n t s are p robab le , but 
at the scale of the s t u d y s i te , a 
s t e a d y - s t a t e groundwater qual i ty condi­
tion preva i led . 

Two additional inves t iga t ions were 
car r ied out to improve the c h a r a c t e r i ­
zation of the plume: 1) a s t u d y of the 
source solubil i ty, and 2) t r ace r expe r ­
iments near the two product ion wells, 
PW3 and PW4. To assimilate the ammonia 
concentra t ion in the groundwater b e ­
nea th the source , samples of the solid 
fert i l izer were b rough t into the labo­
r a t o r y and washed with disti l led water , 
and success ive washes were analyzed for 
to ta l ammonia. Leachate concentra t ions 
ave raged from 2000-2200 mg/1. A more 
e labora te leaching experiment would 

Figure 65. Ammonia concentrations (mg/l) in the 
groundwater at the field site 
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have revealed no more information be­
cause the var iables affecting the leach 
r a t e a t the source a re u n k n o w n s . 
The re fo re , concent ra t ions encountered 
in the observa t ion well neares t the 
source (SP1) were used as the source 
concen t ra t ion . 

Two t r ace r exper iments were per ­
formed to determine groundwater flow 
r a t e s near the product ion wells: one 
n e a r PW4 at an injection dis tance of 50 
ft (15.2 m) and one near PW3 at 82 ft 
(25 m) injection d i s t a n c e . Rhodamine 
WT, a f luorescent dye developed specif­
ically for t r ac ing work, was used 
because of i t s low adsorpt ion on miner­
al and organic mater ials (Smart and 
Laidlaw, 1977; Aulenbach, Bull , and 
Middlesworth, 1978). The dye was in­
t roduced and f lushed into SP4 and SP10 
while PW3 and PW4 were producing 1000 
gpm (5420 m 3 / d a y ) each . Wells PW3 
a n d PW4 were sampled at 10-minute in­
t e r v a l s . The initial b r e a k t h r o u g h time 
of the dye was 150 minutes at well PW3 
a n d 40 minutes at PW4. The peak con­
cent ra t ion at PW4 occur red at 65 
minutes , and the t r ace r concentrat ion 
was still inc reas ing sl ight ly in PW3 
af ter the termination of the experiment 
(200 m i n u t e s ) . Assuming that the in­
ters t i t ia l velocity (V) can be calcu­
lated from the ave rage arr ival time of 
a nonreact ive t r a c e r , then V equals 
0.77 ft/min (0.23 m/min) between SP10 
a n d PW4. 

The Meredosia Solute Transport Model 
The model developed for the s tudy 

area south of Meredosia, Ill inois, cov­
e red an area of 56.7 acres (22.95 h a ) . 
The model (f igure 66) was 1770 ft 
(539.6 m) along the x-ax is , roughly 
n o r t h - s o u t h , and 1395 ft (425.3 m) 
along the y - a x i s . It contained 61 
cells in the x-d i rec t ion and 36 cells 
in the y -d i rec t ion , p rogress ive ly in­
creas ing in size beyond the s i te toward 
the nor th and west boundar ies of the 
model. 

The boundary conditions for the 
groundwater flow port ion of the model 

consisted of fixed head and flux condi ­
t i ons . Head conditions were taken from 
the water table map which was con­
s t ruc t ed from field data , and flux con­
ditions used along the nor th and west 
boundar ies were calculated from g r a d i ­
en t s in the unconsolidated aquifer 
material . A flux withdrawal of 1000 gpm 
(5420 m 3 / d a y ) was used at PW4. Cali­
brat ion of the flow port ion of the 
model was not difficult because of the 
high dens i ty of data in this small 
a r e a . From the contoured da ta , fixed 
head values were used on the model 
bounda r i e s . The flow model was cali­
b ra t ed and used in the s t e a d y - s t a t e 
mode. The s t e a d y - s t a t e flow computa­
tion was chosen because : 1) t he re was 
no apprec iable change in the concen t ra ­
tion of contaminants in the g roundwate r 
t h roughou t the s t u d y time (9 m o n t h s ) , 
t h u s reduc ing the importance of f lush­
ing even t s at the source , and 2) the 
hydrau l ic gradient remained cons tant 
du r ing the s t u d y t ime. The second con­
dition seems reasonable , with only 5 ft 
(1.54 m) of topographic relief within 
the si te and a hydraul ic conduct iv i ty 
of about 3000 g p d / f t (1.42 x 10 – 3 

m/sec) in the unconsolidated mater ial . 

The boundary conditions for solute 
t r a n s p o r t were: 1) a cons tan t influx 
at the source of 2000 mg/ l , as cali­
b ra ted against observed ammonia concen­
t ra t ions ; and 2) s ink conditions at PW4 
and along the down-grad ien t boundar ies 
(nor th and w e s t ) , in order to obse rve 
the ammonia concent ra t ions in the 
groundwater exi t ing from the model 
b o u n d a r i e s . 

Ammonia was used as the contaminant 
plume indicator and for the pu rpose of 
t r a n s p o r t ca l ibra t ion . F igure 67 dem­
ons t ra t e s the n a t u r e of computer ou tpu t 
after 400 days of t r anspo r t simulation. 
The numbers within the model boundar ies 
r e p r e s e n t the number of par t ic les r e ­
siding in each cell, with one part icle 
per cell equaling a concentra t ion of 
200 mg/1 ammonia. As shown, the plume 
has migrated mainly in the down-
gradient d i rect ion, but it also has 
been drawn toward product ion well PW4. 
The l a rge r numbers of par t ic les near 
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Figure 66. Particle cells superposed over the study area 

the west b o u n d a r y reflect the increase 
in cell s ize. The model was calibrated 
to known ammonia concentrat ions with a 
series of simulations in which the 
longitudinal and t r a n s v e r s e d i spe r s iv -
ity were v a r i e d . 

Solute Transport Simulations 
The approach used in the t r a n s p o r t 

simulations was : 1) to cal ibrate the 
model and to inves t iga te the unknowns--
longitudinal and t r a n s v e r s e d i spe r s iv -
i ty , 2) to obtain the s teady plume con­
figuration within the boundar ies of the 
model, and 3) to inves t igate the most 
feasible remedial action scheme to 
f lush the aquifer of the undes i rab le 
wa te r . 
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The f irst s t ep in the t r a n s p o r t 
model cal ibrat ion involved sor t ing out 
the parameters to which the model was 
sens i t ive . This was done within the 
range of unce r t a in ty of the parameters 
at this pa r t i cu la r s i te . Most of the 
parameters were well-known because of 
the exis t ing data and field e x p e r i ­
men t s . The model was most sensi t ive to 
longi tudinal and t r a n s v e r s e d i spe r s iv -
i t y . Even the effects from va ry ing the 
r echa rge r a t e were small when compared 
to those caused by d i spe r s iv i ty va r i a ­
t ion. Longi tudinal d i spers iv i ty ( d L ) 
was var ied from 0.0 to 11 ft (3.35 m) 
and t r a n s v e r s e d ispers iv i ty ( d T ) from 
0.0 to 6.5 ft (1.98 m). The most r ea ­
sonable r a n g e s for cal ibrat ion to the 
f ield-measured plume geometry were 7 ft 



Figure 67. Distr ibut ion of particles residing in the 
model at 400 days of simulation 



(2.13 m) < dL < 11 ft (3.35 m) and 2 
ft (0.61 m) < dT < 3 ft (0.915 m ) . 

The second issue a d d r e s s e d was 
whether or not the plume had reached a 
s t e a d y - s t a t e configuration within the 
boundar ies of the model or was i nc rea s ­
ing in concentrat ion with time toward 
the down-grad ien t b o u n d a r i e s . Long-
term (1500 days ) simulations were made 
within the range of reasonable dL and 
dT va lues , and the concentra t ion of 
ammonia en te r ing the sink boundar ies 
was plot ted against t ime. A s teady 
concent ra t ion appeared after about 360 
days a t the down-grad ien t boundar ies 
and product ion well us ing the smallest 
reasonable dL, and dT va lues , 7 ft 
(2 .13 m) and 2 ft (0.61 m) , r e s p e c t i v e ­
l y . This r e p r e s e n t s the upper limit or 
longest time it would take the contami­
n a n t s to establ ish a cons tan t plume 
geometry within the boundar ies of the 
model. In other words , the contamina­
tion problem will remain the same at 
the site unti l a source or sink bounda­
ry condition is a l t e red . 

The most likely change in the bound­
a ry conditions and the one tha t would 
produce the most des i rab le r e su l t s is 
removal of the sou rce . This was i nves ­
t igated us ing the model and evaluated 

in t e rms of ammonia concent ra t ion at 
the down-grad ien t boundar ies and the 
product ion well (PW4). With a s t e a d y -
s ta te plume condition exis t ing at 360 
days from the s t a r t of the simulation, 
the source flux was removed from the 
model at the next time s t e p , 390 d a y s . 
The ammonia concentra t ions at the s inks 
diminished to near ly zero at 810 days 
(f igure 68 ) . There fore , 420 days is 
approximately the time it would take 
for the s t u d y area and product ion well 
to na tura l ly flush itself of the con­
taminant . 

The application of solute t r a n s p o r t 
modeling to this g roundwater contamina­
tion problem has been useful in d e t e r ­
mining the ex ten t of the problem. It 
seems unlikely tha t the p r e s e n t condi ­
tion will worsen at the s t u d y s i te , and 
na tura l p rocesses should flush the 
plume within fourteen months of source 
removal . 

As pa r t of continuing inves t iga ­
t ions , the effect of the contaminant 
plume at down-grad ien t wells will be 
emphas ized . Additional sampling and 
modeling efforts will se rve to fu r the r 
define controll ing subsur face processes 
and to improve the usefulness of the 
app roach . 
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Figure 68. Ammonia concentration at the production well and 
down-gradient boundary after source removal 
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