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INTRODUCTION

Recent research involving dense raingage networks has added materially
to our basic knowledge concerning the duration, intensity, and areal extent
of storm rainfall. Such studies have often been concerned with interrelation-
ships between storm rainfall parameters and with relationships of these param-
eters to hailfall, synoptic type, weather type, etc. (Changnon, 1967; Huff
and Neill, 1957; Huff, Shipp, and Schickedanz, 1969; Huff, 1970; Huff and Schickedanz,
1970; and Hershfield, 1971). Sometimes the raingage data have been used to
determine how well rainfall can be measured by radar (Jones, 1966; Huff, 1966;
Huff, et al., 1956; and Stout and Mueller, 1968) or in conjunction with scientific
field projects (Wilk, 1961; and Changnon, 1969). It is not the intent of this
report to repeat these previous analyses, but rather to concentrate our atten-
tion on the applicability of dense raingage data to estimate rainfall parameters
in areas of sparse data coverage.

Unfortunately, the economic cost of installing and maintaining dense rain-
gage networks of appreciable size over the continental United States is prohibitive.
Often, iIn weather modification experiments, the size of area in which it is
economically feasible to install and operate a dense raingage network is too
small to properly study many of the desired features, in particular extra-area
effects due to seeding. Therefore, it is of utmost importance to determine which
results from dense raingage networks are applicable in larger areas, in areas
of limited data coverage, and in different climatic regimes. Often, the only
data available in the region of interest will be the daily rainfall (24 hr)
amounts from the existing climatological network. These networks have roughly
a density of 250 mi?/gage in the midwest. IFf it is desired to use hourly data,
one is Tfaced with the dismal prospects of 600 mi’/gage. All analyses in this
report will be based on either daily or hourly amounts. Data terms used in this
report are defined in the appendix.

The specific purposes of the research described in this report are twofold.
The First purpose is to present a method of estimating the required density of
a raingage network in order to insure that various rainfall parameters will be
measured with a desired level of precision. This method will be based on



the available climatological network in the area of interest. The second pur-
pose is to determine the reliability of measurements made in an area of limited
data coverage as compared with the reliability that would be available from a
more dense network. Knowledge of this reliability enables the user to determine
which measurements would or would not be improved If a more dense network were
available. The set of techniques presented in this report can be used to fulfill
both purposes. These techniques are based on the use of various statistical
methods; namely, sampling, regression analysis, and theoretical frequency
distributions. In particular, the relations between frequency distributions

of point and areal rainfall and the relation of these distributions to distance ,
the correlation between points, and the time scale on which the event is mea-
sured will be investigated.

The techniques are very useful in the design, planning, and evaluation of
weather modification experiments. The methods presented are especially useful
in evaluating the economic cost of installing additional raingages as opposed
to increasing the duration of the experiment.

ESTIMATION OF RAINGAGE DENSITY NECESSARY TO INSURE A
DESIRED LEVEL OF PRECISION FROM EXISTING CLIMATOLOGICAL DATA

Hydrological and meteorological field investigations of precipitation, such
as rain enhancement experiments, are often required in geographical regions where
an inadequate number of raingages exist. A goal of such investigations is to
obtain measurements of various rainfall parameters that are measurable within
a specified error range or precision. In many applications, it is the areal
mean rainfall, not the areal pattern that is desired. For example, in many
weather modification experiments, the rainfall is averaged over the area of
interest for seeded and non-seeded days, and a test of significance is eventually
made without regard to the areal pattern. Thus, in this section a method will
be presented for estimating raingage density to insure specified precision, with-
out regard to areal pattern, from the existing climatological network.

In other applications, the areal rainfall pattern is of interest. If the
effect of a weather modification experiment, an urban-industrial complex, or some



orographic-marine feature on an isolated high and low in the rainfall pattern

is being determined, then the density of gages becomes a crucial factor. In
order to estimate the required raingage density, it will be necessary to have
prior knowledge of the relationship of correlation decay with distance. There-
fore this section also will present a method for estimating the raingage density
with regard to areal pattern using correlation decay information obtained from

the climatological network.

Analysis of Variance Technique for Estimating
Raingage Density without Regard to Areal Pattern

Such a method requires prior estimates of the raingage density, the number
of experimental units sampled per year, and the number of years of investigation
to insure the desired precision in the parameter of interest. These prior es-
timates of density must be made on the basis of the existing climatological
raingage network, usually 250 mi’/gage. The prior estimates thus obtained are
tested by empirically determing the precision of the areal mean rainfall by
taking progressively smaller samples of data from a dense raingage network.

Although the method should be generally applicable to various areas
throughout the country, the results were tested by using dense raingage data
from a 400 mi? area. The effect of areal size on the procedure will be discussed

in a later section.

Expected Mean Squares and Components of Variance

The variability inherent in the mean rainfall for any period (ignoring
areal size, measurement errors, and areal pattern) is composed of variations
due to raingages, days, and years. The proposed technique is to estimate the
sampling density of the various components from the expected mean squares of

the appropriate analysis of variance model. Such a model provides suitable



relationships between sampling sizes and density so that it will be necessary
only to estimate the components of variability from existing raingages in the
area under consideration. The sampling size will then be computed through
algebraic relationships.

The analysis of variance model pertaining to an extended completely random
design with subsampling is proposed (Ostle, 1963; Steele and Torrie, 1960). This
design utilizes the nested or hierarchical classification. It is assumed that
the rainfall amounts from year to year are random quantities. It is further
assumed that the arrangement of gages in the network constitutes a random
sampling of the storms which move through the network.

A gage observation of rainfall from the above design is composed of a sum
of components, namely, a mean and several random elements. The appropriate
statistical model is

xijk = Xees + Y4 Dij + Gijk (1)
i=1, r
j=1, s
k=1, t
where X ... is the overall mean rainfall, Y;. is the effect of year 1, D;; is the

effect of day j within year i, and G is the effect of gage k on the jth day.

It is assumed that X ... is a constant, and that Yi’ Dii’ and Giﬁ are normally

and independently distributed with a mean of zero and a common v:riance.
The above considerations lead to the analysis of variance table presented
in Table 1. The table illustrates that the expected mean square for gages
within days (sampling error) contains only one component of variance, in this
case, the variance due to gages within days. This term contains only one component
of variance because the only factor which affects the variation among samples (gages)
within days is the G;jx Tactor (equation 1) . However, the expected mean square
for days within years (experimental error) contains two components of variance
since this source of variation reflects the variation among the means of the gage

amounts on each day, and these means will vary not only because of the variation



from day to day but also because of the variation among the gages on each day.
The expected mean square for years reflects the variation among the means of
all the gage observations recorded for each year. These will vary because of
three contributing factors: 1) variation among years, 2) variation among days
within years, and 3) variation among gages within days.

Table 1. Analysis of variance model for the random design with subsampling.

Source of Degrees of Mean Expected
variation Sum of squares freedom square mean square
Bet ' YT g
ctween 8s = st ) (X, -X...)? r-1 88/r-1 6? + to?  + tsc?
years iy e £ d V4
A days T g s T
mong day ss=t)] ) (X, -X. )2  »p(s-1) sS/r(s-1) o2+ tg?
within years LaLE ij. i.. g d
1=1 j=1
A r s T _
wiae 8L ss= [ ] T (x - %)% rs(t-1) sS/ps(t-1) o2
in day i=1 j=1 k=1 ] - g
r s t _
Total ss= ) ¥ 7 (Xi'v - X...)? pst-1
izl =1 k=1 3

When the experimental error is designated as o’ , manipulation of the expected
mean square for days within years yields the following relationship for o’ (the
variance due to the differences between days)

= g2 - g2 (2)

When the variance for years is designated as ¢’ , manipulation of the
expected mean square for years yields the following relationship for ¢, (the
variance due to differences between years)

2 o A2 2 2
a gy = o (U_g_f to d) (3)

ts



The variance of daily areal mean, V(Eii }, can be obtained by dividing

the estimated variance 0; of the individual gages contribution to i&j (the
daily areal mean) by the number of gages per day. Thus the equation for the
variance of the daily areal mean becomes

V(X., ) =0%- =02 / /¢ (C))
13- E g
The variance of a yearly areal mean, V (ii }, can be obtained by dividing

+ .

the estimated variance o’ of the individual items contributing to ?i by

+ .

the number of gage amounts averaged to obtain the mean. The division of the
experimental error by ts yields the following relationship

z - a2 2 - 42 2
V(Xi..) of * 1oty = 0%+ 0%, o)
ts ts =

An examination of equation 5 leads to certain conclusions: 1) IT the estimates
of the components of variance ¢ and ¢’y remain relatively constant, an increase
in t or s will result in a smaller estimated variance of a yearly mean. 2) An
increase in s (the number of days per year) will have more of an effect than an
increase in t (the number of gages per day) in reducing V(i&)- This suggests
that in a weather modification experiment, differences in weather conditions from
day to day contribute more to the variance than differences in gage amounts within
an area. 3) If either ¢’y or ¢’%, or both, can be made smaller, the variance
of the yearly mean could be made smaller also. This can be done by choosing more
homogeneous days (stratification) or improving the experimental technique in a
weather modification experiment.

In order to estimate the variance of the overall mean, the expected mean
square for years is divided by rst to yield the following relationship

V(X...) =062 + g2 + o2 ()
£ _4 _y
rst rs T

Examination of equation 6 leads to the conclusion that an increase in r (the

number of years) has more of an effect on V(X...) than s (the number of days

per year), and s has more of an effect on V{(X...) than t (the number of gages
per day) .



The precision of a mean is a measure of the repeatability of the mean.
Precision may be expressed in terms of the variance of the mean, with a large
variance indicating lack of precision and a small variance indicating high
precision. Absolute precision would be represented by zero variance. Thus,
precision is an expression of the variance of the mean, whereas the coefficient
of variation is an expression of the variability of individual values about the
mean .

Examples of the Technigue

Error of the daily areal mean. The computation of required sample sizes to
insure that the daily areal mean (areal mean on an individual day) will be mea-
sured within a given precision level requires an estimate of ¢ . Certainly,
o’y could be estimated from a dense raingage network, but it would be strictly
applicable for that region only. Thus, estimates of o will be made by using
all gages in the ECI network (49) and from using only the four corner gages
(see Figure 4) . Since the four corner gages are approximately 16.8 miles apart,
they represent a climatological network of 282 mi’/gage. When estimates of a7
or ga’; are based on the 4-gage network, they will be designated as 'predicted.
The computations are made by using the mean square relationship from Table 1 and
equation 4. The predicted estimates will then represent the degree to which o7
or gzé can be approximated from the climatological network.

Figure 1 shows estimates of the relative standard error, RSE,(cé expressed
as a percentage of the daily mean®) for differing distances between gages and
for different raingage amounts for the period 1964-1967. (Raingage amounts DRHA,
DHA, CRHA, and CHA are defined in the appendix.) Both the predicted and the
actual curves show a considerable increase in the error of the daily mean as
the distance between gages is increased. The actual RSE increases from 4% at

# Whenever a standard error is expressed as a percentage of the mean, it will be
defined as the relative standard error (RSE).
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Figure 1. Effect of gage density on the relative standard
error (RSE) of daily areal means.



a distance of 1 mi to 60% at the distance of 16 mi for DHA. There is excellent
agreement between predicted and actual values of RSE. This agreement indicates
that an adequate approximation of ozg and ozgcan be made from a climatological
network.

At a density of 282 mi’/gage or a distance separation between gages of
16.8 mi the actual error In measuring the areal mean rainfall on a particular
day will be 80% of the mean for DRHA and 62% for DHA. Convective rainfall has
more variability than other types, and this is evidenced by the curves for con-
vective hour rainfall which show that the actual error is 142% of the daily
areal mean for CRHA and 114% of the mean for CHA when the climatological density
is 282 mi’/gage. There is a huge reduction in the error as the density of gages
increases. At a density of 8.2 mi’/gage (the density of the Illinois dense net-
works) the error is 12, 11, 25, and 19% respectively for DRHA, DHA, CRHA, and
CHA. For a very dense network of 1 mi2/gage the error is 4, 4, 9, and 6%
respectively for DRHA, DHA, CRHA, and CHA.

Error of the yearly areal mean. The computation of required sample size

to insure that the yearly areal mean (average of all daily areal means within
an individual year) will be measured within a given precision level requires
estimates of 0% and 0% in addition to ¢’ . Again, the 4-gage climatological

network was used to obtain predicted values. Both predicted and actual estimates
were made of ¢% and ¢’ using the mean square relationship of Table 1 and
equation 5. Estimates of RSE for the yearly areal mean are shown in Figure 2.
The predicted and actual curves are relatively flat, indicating a very small
effect of gage density on the yearly areal mean. The actual RSE increases from
21% at a distance of 1 mi to 22% at a distance of 16 mi for DHA, 50 days. This
is In direct contrast to the large effect of gage density on the daily areal
mean.

There are differences according to the duration of the network operation
within the year (Figure 2). IT the network operation involves 25 days with rain,
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Figure 2. Effect of gage density on the relative standard
error (RSE) of yearly areal means.
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the actual RSE is 30%, as opposed to 21% for 50 days at a distance of 1 mi
for DHA. For a distance of 16 mi, the RSE is 32% and 23% respectively for 25
and 50 days with rain which indicates a very small change for variation in
gage density. There is excellent agreement between predicted and actual values
of RSE. This agreement indicates that a good approximation can be made of the

standard error of the yearly areal mean from the climatological network.

At a density of 282 mi?/gage, the actual error in measuring the yearly areal
mean rainfall in a partieular year will be 20% of the yearly mean for DRHA and
23 % of the mean for DHA (50 day duration). The error is larger for convective
rainfall with RSE being 51% for CRHA and 53% for CHA (60 day duration). The
RSE differences between rainy and all-hour amounts, and the RSE differences
between convective and total-day amounts are much less for the yearly areal
mean than similar differences for the daily areal mean (Figures 1 and 2).

Error of the period areal mean. The computation of required sample sizes

to iInsure that the period areal mean will be measured within a given precision
level requires estimates of a% in addition to & and a?;. Again, the 4-gage
climatological network was used to obtain predicted values. Both predicted and
actual estimates were made of 02; and g2y using the mean square relationship
of Table 1 and equation 6, and the results are shown on Figure 3. Again the
predicted and actual values are relatively flat, indicating a very small effect
of gage density on the period areal mean. For a 5-year period mean, there is
no change in the actual RSE with density for DHA.

There are differences in RSE as the duration is increased. For a measure-
ment period of one year, the actual RSE is approximately 30% for all densities,
whereas it is only 13% for 5 years and 9% for 20 years for DHA.

The agreement of predicted with actual period means is good for DHA. For
DRHA the agreement is adequate for the longer periods but not for a period of
1 year. The agreement between predicted and actual values is certainly not as
good for the period means as it was for the daily and yearly means. The greater



RELATIVE STANDARD ERROR (%)

OENSITY {mi’/gage)

DENSITY {mi?/gage)

251 68.220 40 70 100 140 180 220 282 .251 68.2 20 40 70 100 140 118G 220 282
60 T1 il 1 | | | [ | i 'l I | 1 | ] I | l
50 DRHA DHA
40
30 1 yr 1 y5=_ —— =L
20 —t =

i
5 yr —-—-'———P—-————-— ————— . —— = =
‘0-__.-_--__'___ — s N S L S e e p—— 20 yr

o 20 yr T
70
60 CRHA CHA

«— |ACTUAL (49 gage dense network estimate)
50 [ —— [PREDICTED {4 gage climatological estimate)}™ |
1
80 1y _ ) e
o — —_d—--'_-"---.-q R s mimad —----_—-—‘-—-4.--- - =1
30—
20 5 ¥ 5 yr
— e ] - — - _--—-----——ﬂ *-—--_—-_'—____.-__-______-_ pu—
10 20 yr == ==#20 :V" e e
0
0 2 4 6 8 10 12 14 16 0 2 . 6 B 10 12 14 16

DISTANCE BETWEEN GAGES (mi)

DISTANCE BETWEEN GAGES (mi)

Figure 3. Effect of gage density on the relative standard
error (RSE) of period areal means.

-Z1-



-13-

discrepancy is because the equation for ¢ has more terms than the equations for
oze and ng and therefore the chance for error is greater.

The net results of these examples indicated that there is considerable
trend of error with density for daily areal means (Figure 1). However, the
variability between days is a much more important factor for yearly and period
means. In fact, for the yearly and period means, there is considerable trend of
error with duration of the measurement period but very little trend with density.

Regression Technique for Estimating Raingage
Density with Regard to Areal Pattern

For the estimation of raingage density with regard to areal pattern, a
knowledge of the relationship of correlation decay with distance will be necessary.
The assumption will be made that the correlation-distance relationship can be
obtained from existing climatological data for the purpose of estimating sample
sizes. Dense raingage data will be used to evaluate the validity of this assump-
tion.

Method for Estimating the  Correlation Pattern
from the Climatological  Network

Two estimates will be made of the correlation pattern from the climatological
network. As stated previously, the density of stations recording daily rainfall
amounts is approximately 250 mi®/gage, while the density of stations recording
hourly amounts is approximately 600 mi/gage.

The ECI network depicted on Figure 4 is a 49-gage network representing a
density of 8.2 mi’/gage. For purposes of simulating a network of daily recording
stations from a climatological network, the four corner gages 1, 7, 43, and 49
are used. The average distance ﬁi between these gages (along the boundaries) is
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16.8 mi, corresponding to a climatological network of 282 mi?/gage. In order
to approximate the correlation decay with distance, the correlations between
gages 1 and 43, 43 and 49, 7 and 49, and 1 and 7 were used to obtain the average
correlation (R

)-
282
the distance between gages approaches 0.0, the slope By, ofF the regression line

If we then assume that the correlation approaches 1.0 as

of the C-D (correlation-distance) relationship is given by

1.0 - ®
Brgp ° 282 @

Dy

The estimate of correlation R, for varying distances between gages is then given
by the relationship

R, = 1.0 - By, D ®)

For the distance between gages 1 and 49 and the distance between gages 7
and 43, the average distance 52 is 24 mi. This distance corresponds to a clima-
tological network of 576 mi /gage. The slope Bsx of the regression lines of

the C-D relationship is given by
576 ———— €),

The estimated correlation R, at varying distances between gages is then given
by the relationship

Ry = 1.0 = B D (10)

In order to test the representativeness of these estimates of the C-D
relation, an estimate of the C-D relation based on the 49-gage network is
needed. The 49-gage estimate R, IS obtained by Fitting a regression to the data
in the form
Root = exp(-BD} (@ND)

dac

Equation 11 was used as the actual estimate of the C-D relationship.
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Method for Estimating Raingage Density Given the C-D Relationship

Once an estimate is obtained for the C-D relationship, i1t iIs possible to
obtain the required raingage density when pattern information is desired. The
criteria used in this study to determine the error involved in pattern recognition
are based on the predictability of the gage rainfall value from the gage nearest
to 1t. Such an estimate will tend to be "conservative,” that is, 1t will tend
to indicate a higher raingage density than is necessary to insure a specified
precision iIn the prediction of the gage value. The higher estimate of density
occurs because, In drawing a pattern, the analyst has other supporting data
such as other stations and the overall areal trend. However, the predictability
of an individual gage from the gage nearest to it serves as a FTirst approximation

of the error at various points from the predictor gage in the rainfall pattern.

The error involved in predicting an individual value from the regression

line is given by Steele and Torrie (1960) as:

STP =8 [l+i+x—§ ]!‘5 12)
" Y(x-x)?

where Sy x 1is the standard error of estimate, n is sample size, and the quantity

*-X represents a deviation from the mean. We have applied this equation to de-

termine the error in predicting the rainfall at a point from a predictor gage on

a particular day. This application involves the simple regression and correlation

relationship between gages over time.

In order to apply equation 12 to the determination of error from the clima-
tological network, estimates of Sy.X and X(x—§)2 are needed. Our analysis of the
ECI network implies that Z(x-E)Z has a. small variation over the 49-gage network
when it is computed over a period of several years. Therefore, an estimate of
7(x-x)? can be obtained from any gage in the network.

The estimate of SY % will vary according to the distance between gages, and

S =g J1 -p? (13)
y

y.x

can be obtained from
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where the value of r is obtained from the C-D relationships described previously.
The standard deviation S, has a small variation over the network and therefore
any gage can be used to provide an estimate of S, .

The error involved in predicting the mean rainfall (over a particular time
period at a point) from a predictor gage can be determined from

SM=S l:_1_+ (x-ﬁ)z}% 14
T Tx-x)2

where n, sy.x,and (x-x) are defined and estimated as in equation 12. The use of

equations 12 and 13 provides conservative estimates of the error involved in

determining the areal pattern on a given day (equation 12) and in determining

the areal pattern for a given time period (equation 13).

Examples of the Technique

As stated previously, the purpose of these analyses is first to estimate
the C-D relationship from the climatological network, and then to estimate the
required density to insure a given level of precision in the areal pattern.
The following examples iIndicate the extent to which such a scheme is feasible.

Prediction of the C-D relationship from the climatological network. The

data from gages corresponding to densities of 282 mi’/gage and 576 mi’/gage and
equations 7, 8, 9, and 10 were used to estimate the C-D relationship for distances
of separation of gages up to 15 miles. The actual estimate was obtained by
using the data from all four gages and equation 11. Figure 5 illustrates these
estimates for each year of the period 1956-1967 for DRHA. The estimates of
the C-D relationship are better for a gage density of 282 mi’/gage than for one
of 576 mi*’/gage. In some years the agreement between predicted and actual is
quite good (1956, 1957, 1958, 1961, 1963) and for some years the agreement is
poor (19 59, 1962, and 1966). In the years 1960, 1964, and 1967 the estimate is
good for the 282 mi?/gage density but not for a density of 576 mi®/gage.

Figure 6 illustrates estimates of the C-D relationship for DHA (24 hour average)
which is probably the most useful from a climatological point of view. In general,
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the estimates are very good and are much better than those for DRHA. Also, the

correlation decay with distance i1s not as large as with DRHA.

Since it is iImpractical to vary the raingage density of a network each
year, an estimate of the C-D relationship over a period of years is more useful.
Figure 7 illustrates estimates of the C-D relationship based on 12 years of
data. Actual estimates of the data from a 12-yr and a 4- yr period are included
for comparison. The figure indicates that there is less difference between
the 4- and 12-yr actual values than between the actual and predicted. There is
also a greater difference between the estimated and actual values for CHRA than
for DRHA, and for CHA than for DHA. This simply illustrates the larger variability
of convective rainfall over that of rainfall in general, which makes i1t more
difficult to determine the required density for convective rainfall. It is also
apparent that DRHA has a greater difference between estimated and actual than
DHA and that CRHA has a greater difference than CHA. This is a direct reflection
of the fact that all-hour rainfall tends to cancel out the extremes typical of
the more localized condition in time and space of rainy hour rainfall.

The estimates of the C-D relationship in these examples tend to overestimate
the correlation between gages. Thus when the C-D relationship iIs used to estimate
error in the areal pattern, the effect will be to understate the error. These
opposite effects tend to make the estimate of error more realistic.

Error in estimating an individual point in a daily pattern. Equation 12

was used to estimate the error SIP involved in predicting an individual value

in the rainfall pattern. Values of Sy and Z(x—§)2 from gage 25 were used iIn
equations 12 and 13 to obtain an estimate of SIP. Estimates were obtained for
three different magnitudes of gage rainfall amounts, X. These were values equal

to the mean, the mean plus 1 standard deviation, and the mean plus 2 standard
deviations. The SIP values were then expressed as a percentage of the mean®* (RSEp).
The RSE for the daily areal mean was also included on FLgure 8 for comparison.

% Whenever the error for an individual point is expressed as a percentage of
the mean 1t will be defined as the relative standard error for a point (RSEp).
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The error is certainly larger for an individual point on a particular
day than it is for the areal mean. For separation distances of 4 mi and
larger the difference In error is approximately 60% for DHA. The trend of
RSEp is much steeper at the higher raingage densities than it is for RSE.

For example, RSEp ranges from 15 to 80% while RSE ranges from 20 to 10% when
the density is varied from 0.25 mi?/gages to 8.2 mi®gage for DHA.

The errors for the convective hour amounts are much higher than those
for the total-day amounts. At a density of 8.2 mi?’/gage RSEp is 80% for DRHA
compared with 135% for CRHA, and this again illustrates the greater variability
of convective rainfall.

Instead of predicting the gage rainfall at a point from the gage nearest to
it, 1t would also be possible to use all surrounding gages to predict the gage
rainfall amount. Such a procedure would entail the use of multiple regression
instead of simple regression. For DRHA and DHA, the error involved in predicting
an individual point (equal to the mean) from a multiple regression relationship
was determined. These results are also shown on Figure 8. The reduction In RSEp
is on the order of 20% when a multiple regression relationship Is used instead
of a simple linear relationship. When we consider the order of magnitude of RSE
and RSEp, the simple relationship certainly yields a sufficient estimate of point
error in the rainfall pattern if it is treated as a conservative estimate.

The differences between the three magnitudes of RSEp are of little practical
importance in light of the wide range In RSEp over the raingage densities, so
the predictions of RSEp were made only for individual points equal to the mean.
Predictions were made from the 282 mi? and the 586 mi? climatological network
and are depicted in Figure 9.

The differences between the RSEp curves for the two types of predictions
are small. Although there are differences between the predicted and actual,
they are sufficiently small to adequately depict the trend of error with density.
Also, i1t was iIndicated in Figure 8 that a multiple regression using the 8 surround-
ing stations yields smaller RSEp values, which are very comparable to the predicted

values in Figure 9.
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Error in estimating an individual point in yearly and period patterns. Equa-
tion 14 was used to estimate the error SM involved iIn predicting the rainfall at

a point in the yearly rainfall pattern. Values of Sy and Z(x—§)2 from gage 25
were used In eguations 12 and 13 to obtain an estimate of SM. The average number
of warm season railn days per year was used for n. The results of these computa-
tions for DRHA and DHA are shown in Figure 10 (1-yr curves). For values of
rainfall equal to the mean, the actual RSE is 20% at a density of 282 mi®/gage
and 13% at a density of 8.2 mi?/gage for DRHA. For similar values of DHA, the
RSE is 17 and 9% respectively. These values of RSE represent a considerable
reduction from the error for the daily areal pattern (see Figures 8 and 9).

Equation 14 and an n equal to the appropriate multiple of the average number
of rain days per warm season were used to determine the error (SM) for the period
patterns. For DRHA, as the period of measurement is iIncreased from. 1 year to
20 years, RSE is reduced (Figure 10). For values of rainfall equal to the mean,
the actual RSE is reduced from 20 to 9% as the number of years is increased
from 1 to 5 years, and the actual RSE is reduced further to 5% as the number of
years is increased to 20 for a climatological density of 282 mi’/gage. Comparable
figures for DHA are 17, 8, and 4% for 1, 5, and 20 years, respectively.

The reduction of RSE for periods of 5 and 20 years was so small for values
of rainfall equal to the mean plus 1 standard deviation and the mean plus 2
standard deviations that curves for these are not shown. However, the curves
for a period of 1 year show that the error is much larger for values away from
the mean than for values at the mean.

This agreement between predicted and actual values appears to be close
enough to enable one to make the estimates from the climatological network.

Inclusion of the Areal Factor into Estimation
Procedures for Raingage Density

The emphasis of this section will be on estimating the relative standard
error for a specified raingage density in areas larger than the areal size of most
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dense raingage networks. The estimation of error could be made in either of

two ways: 1) from the dense network in a small subarea or 2) from a climatological
network In the larger area. The examples In this section are based on the former
but the results will also be applicable for the latter.

Technigue without Regard to Areal Pattern

Certainly one of the handicaps of a dense network is that they are often
small in areal size. The data used in this report were obtained from a 400 mi?
network. In weather modification experiments the area of interest is often
larger. In Project Whitetop, a major weather modification experiment in the
midwest (Decker and Schickedanz, 1967), the experimental area was 11,310 mi2.

The analysis of variance technique is generally applicable to larger areas,

provided estimates of Uzg and 62, are available for the larger area. In actual

practice, the estimation of Uzg \;dvould of necessity come from the climatological
network. The results of the previous section indicate that an estimate of Uzg
from a climatological network is sufficient for estimating the error from various
densities of gages. However, for the purpose of demonstrating the effect of

the areal size for larger densities, the error will be estimated from the 400 mi?
network.

We will consider areas which are multiples of the 400 mi? network. The
estimation of ozg for a larger network can then be expressed as the pooled estimate
of the subareas as follows:

62 =[0?2  (t-1)+02 (t-1)+ ---02 (t, -DII[(t +1t +t +t )-K] (15)
g g ! g, 2 g K 1 2 3 b
where 1:1, is the number of gages in the subarea 1, t2 is the number of gages iIn
the subarea 2, etc., and k represents the number of subareas under consideration.
Under the special conditions that 62 = 62 = ---0¢?2 andt =t = -=--t , 6%
g1 g2 &, . 1 2 k g
for the large area is equal to 02g of any subarea.
Therefore, for the areal extension of the estimate of error i1t iIs sufficient

to use a pooled estimate of czg values from the subareas; or, when the values for
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each subarea are equal, the value of any subarea is equal to the value of
the total area. Therefore, the estimate of Uzg for the 400 mi? area can be
used in equation 4 to obtain the variance of a daily areal mean.

This procedure will be used in an example to illustrate the effect of
areal size on the RSE of daily areal means utilizing network data. However,
in actual practice one would use an estimate of Uzg based on the climatological
stations in the area of iInterest.

In order to estimate the RSE of a yearly area mean, of an area larger

than the dense network, an estimate of a2, must be available for the larger

d
area. In actual practice, 02d like ng could be estimated from the climatological

stations available. However, for our purposes, sz for the larger area can be

obtained from the pooled estimate of 02d for the k subareas. Again, if 02d1 =

02d X the value of sz from a subarea will equal
2

that of the total avea. Therefore, the estimates of ng and Uzd for the 400 mi?

= --g2 and t; = tp = ---t

area can be used In equation 5 to obtain an estimate of the variance of a yearly
areal mean for the larger area. In a similar fashion, a pooled estimate of d§

can be used in conjunction with Uzg and 02, in equation 6 to get an estimate

of the variance of a period areal mean. ‘
Figure 11 illustrates estimates of the relative standard error (RSE) for
differing distances between gages for the period 1964-1967. The main feature
of the graph is the tendency for the estimate of RSE to be less as the areal
size iIncreases. The other feature is the tendency for the response to density
to be much less as the size of the area increases. For example, the change
in RSE from a density of 8.2 mi’/gage to a density of 282 mi’/gage is 72% for
a 400 mi? area, but is only 12% for a 12,800 mi? area.
Estimates of the relative standard error for the yearly areal means were
made for the areal sizes depicted in Figure 11. The results of these computations
indicated that the difference between curves for 400, 1600, and 12,800 mi? areas
were so small that the curves of Figure 2 (400 mi?) are sufficient for the larger
areal sizes. The change in relative error in response to the number of days was
also similar to that indicated in Figure 2.



-29-

Technigue with Regard to Areal Pattern

The estimation of error with regard to areal pattern was based on the C-D
relationships discussed previously. As a smaller area iIs expanded into a larger
area, the C-D relationship is never based on a gage separation more than that of
a climatological network. Thus, even though there is a decrease in correlation
as the density of raingages is increased, an increase in areal size does not
affect the estimate of relative standard error. Since the climatological esti-
mates of the C-D relationships for the 282 mi? network were adequate for the
purpose of estimating error, the curves of Figures 8 and 9 can also be used as a
good approximation of larger areas.

In actual practice the estimate of the C-D relationship would be made from
the large climatological network, and the differences between various subareas

would be accounted for.

FREQUENCY INFORMATION FOR A CLIMATOLOGICAL NETWORK COMPARED
WITH THAT FROM A DENSE NETWORK

The previous sections of this report have been directed toward the estimation
of raingage density in order to insure a given level of precision in the daily
areal means (all gage average). We now turn our attention to the amount of
error involved in deriving frequency information from a climatological network
in relation to a more dense network. This phase of the analysis is based on
theoretical frequency distributions. A determination will be made of the error
involved in parameter estimation in both areal and temporal frequency distribu-
tions. In addition, trends of the parameters with density and area and the good-

ness of fit of the distributions will be investigated.

Estimation of Areal Distributions
from Climatological Data

The approach to the determination of error will again involve the analysis
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of variance technique which was described previously. In addition, relationships
of the distributional parameters with density and area, interrelationships
between parameters, and goodness of fit information will be presented.

Determining Relative Standard Error for
the  Distributional Parameters

The treatment of frequency distributions will be limited to the 2-parameter
log-normal and gamma distributions. Initially the extreme value and Weibull
distributions were considered. However, the data samples used included the
complete range of rainfall values and were not samples of extremes. Furthermore,
a technique involving the 3rd and 4th moments (Hahn and Shapiro, 1967) which
indicates distributions most likely to fit was used. (Graphs for this purpose
can be found in Hahn and Shapiro, 1967.) The employment of this technique led
to the conclusion that the data were more likely to be gamma or log-normal
rather than the other distributions considered.

The 2-parameter log-normal and gamma distributions include only values
greater than zero. Hence, all areal distributional parameters are based only
on gages with rain. The analyses of the previous sections of the report in-
cluded all gages, irrespective of whether they had rain.

Description of the technique. The equations for the estimation of distri-

butional parameters as well as the density functions are presented elsewhere
(Schickedanz et al ., 1969; Thom, 1958; Hahn and Shapiro, 1967) and will not
be repeated here.

In addition to the gamma parameters (scale B and shape y) and the log-
normal distributional parameters (scale inx and shape oy« ), the non-transformed
means X and standard deviations ¢ for the gages with rain were also considered.
The non-transformed means and standard deviations represent the normal distribu-
tional parameters and are useful for comparison purposes.

The technique used for the determination of RSE for the mean x and log
mean Inx iS the same as was described and used previously in determining error
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for the daily areal means (all gage average). However, a subset of 6 gages from
the ECI network was used for the climatological estimate instead of the set of
4 gages used previously. This was necessary because a subset of 6 gages had an
average of only 4 gages with rain, and a distributional parameter based on less
than 4 gages would have little meaning. This means that in actual practice,
the areal distributional parameters can not be estimated unless the area is larger
than 400 miZ.

The variance of the gamma shape parameter y was estimated from the following
eqguation (Thom, 1958)

. Y
Vi) = g Ly ¥(y) -1] (16

where ¥(y) is the tri-gamma function and can be evaluated from tables of the tri-
gamma function (Davis, 19 33). The value of gamma used for daily areal values in
this research was a pooled estimate of all areal daily values at a particular

density and areal size for the 1964-1967 data. The value of y obtained from the
distribution of daily areal means was used for yearly areal values. The variance
of the gamma parameter B was estimated from the following equation (Thom, 1958)

8Z v(y)
N (y ¥(yv) - 1) an

where ¥{(y} iIs again the tri-gamma function and the value of R used for daily

V(g8} =

areal values is the pooled estimate of all areal daily B values at a particular
density and areal size. The value of [} obtained from the distribution of daily
areal means was used for the yearly areal values.

Examples of the technique. The appropriate equations from Table 2 was used

to estimate the a®> for the non-transformed rainy gage data and for the log-
transformed data. For computational purposes, the value to t was replaced by

the average number of gages with rain on a given day. Equation 4 was used to

compute the variance of X and Inx for the rainy gage data. The results are pre-
sented on Figure 12. The actual values are based on the 49-gage network for

which the average number of gages with rain is 33. The predicted (climatological)
values are based on a subset of 6 gages for which the average number of gages

with rain is 4. As mentioned previously, this would indicate that in actual practice
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(density of 282 mi?/gage), the network would have to be more than 400 mi? before
the areal distributions could be calculated. However, because of the similarity
of the actual and predicted values of the log-normal mean, an estimate of error
based on 600 mi? or more with the usual climatological density would be adequate.
However, there are differences in the curves for convective amounts (Figure 12),
and it is doubtful if the error can be approximated adequately from the climatological
network for areal means (rainy gage average).

The striking feature of Figure 12 is the small error involved in measuring
the daily areal log-normal scale parameter with a coarse network of gages. For
example, the actual curves for DRHA indicated only a 18% error in the log-normal
mean for a density of 282 mi?/gage compared with a 4% error at a density of 8.2 mi?/
gage. Corresponding numbers for the non-transformed mean are much larger, 60 and
10% respectively.

The variance of the daily areal values of y and B were determined by using
equations 16 and 17 and the pooled values of y and R. The relative standard
error was also computed and the results are depicted on Figures 13 and 14.

The agreement between predicted and actual values is very good for the
total-day amounts DRHA and DHA, whereas the agreement for the convective averages
is not as good. The striking feature of Figures 13 and 14 is the sharp response
of y and B to the density of raingages. The response is much greater for the
gamma distribution parameters than for the log-normal scale parameter inx or for
the nontransformed mean X. In fact the results indicated that the estimation
of gamma areal parameters on a particular day will produce errors of such magnitude
that the parameter would be virtually useless for the typical climatological
network. In general, to keep the error less than 30% a gage density of 8.2 mi?/
gage is required.

The appropriate equation from Table 1 and equation 2 were used to estimate
025 for the yearly areal mean (rainy gage average) for non-transformed and trans-
formed data. The relative standard error for various densities was then computed,

and the results are shown on Figure 15.

For both the non-transformed mean and the log-normal scale parameter 1lnx, the re-

sponse of relative error to density is nil. The striking feature of the graph is the
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the small change In error using a period of 50 days instead of 25 days.

Since the response of the relative standard error for x and 1nx is small,
the relative standard error for the gamma parameters was computed only by equa-
tions 16 and 17 for the density of 8.2 mi /gage. The results are tabulated iIn
Table 2. The results iIndicate that the error in the yearly areal values are
nearly the same for all types of gage, amounts and that the error for B is larger
than that for y. Also, the difference between the estimate of error for a period
of 25 days and 50 days is larger than it was for 1nx and approximately the same
as that for X (see Figure 15).

Table 2. Effect of sample size on the relative standard error (RSE)
of yearly y and R values (density of 8.2 mi®/gage).

Relative standard error (%)

Days DRHA DHA CRHA CHA
Y parameter

25 26.0 24.5 25.9 25.1

50 18.4 17.4 18.3 17.8
3 parameter

25 30.1 32.2 30.4 31.7

50 21.2 22.8 21.4 22.4

Inclusion of the areal factor. An estimate of error for areas larger than

the dense network can be obtained from the climatological network. This is pos-
sible because the trend of the pooled estimates of o, Sinx® ¥ and B with density
is small, as will be shown in a later section. Conceivably, the estimate could
be made by extending the estimates from small areas into longer areas (page 27),
This might be possible in the case of x and Inx because the trend of ¢ and 9nx
with areal size is relatively small. However, in case of y and B the estimate
must be made from the climatological network, because there is a strong trend
of these parameters with area. In addition, for practicable use the estimate

woulld of necessity come from the climatological network.
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Relationships of Areal Distribution Parameters
with Raingage Density and Area! Size

In the previous sections information was presented on the effect of density
and areal size on the relative standard error of various distributional parameters.
We now turn our attention to the expected value of the distributional parameter
for a given density and areal size.

Relationships with raingage density. The average values of areal distribu-

tional parameters for a given density and areal size were computed for the period
1964-1967 and the results are shown in Table 3, for DRHA, DHA, CRHA, and CHA.

Table 3. Relationship of density with areal distributional
parameters based on rainy gage amounts.

Value of the parameter in percent*
Standard Log standard % of gages
Derzlsity Mean Log mean deviation deviation Gamma Beta with. rain
(mi“/gage) X Inx o % nx ¥ B
DRHA
8.2 93 97 99 103 73 96 67
16. 99 99 106 108 88 104 68
30.8 102 100 104 102 94 109 69
66.7 106 104 91 87 109 92 67
DHA
8.2 92 97 92 103 79 91 67
16. 96 99 101 107 83 102 68
30.8 101 101 101 100 115 100 69
66.7 111 103 106 90 124 107 67
CRHA
8.2 91 97 100 105 63 75 51
16. 101 97 102 115 75 84 52
30.8 94 103 110 99 125 131 54
66.7 114 106 88 81 137 111 67
CHA
8.2 87 96 96 110 61 91 51
16. 92 99 100 107 71 96 52
30.8 102 101 104 101 87 106 54
66.7 118 104 101 82 180 107 67

% Percent is computed as the percentage of the average of all densities for
a given parameter.
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In all cases the areal mean and areal log-normal mean iIncreases in magni-
tude as the density of gages decreases. There is a greater change in the non-
transformed mean than in the log-normal scale parameter. Also there is a greater
change for all-hour amounts, CHA and DHA, than for the rainy hour amounts, DRHA
and CRHA, in the case of the non-transformed mean. For the log means, the amount
of change is nearly the same for DRHA, DHA, CRHA, and CHA. Note that in the case
of the non-transformed means, the change in density is greater for the convective
amounts than for the total-day amounts. Why does the daily areal mean (rainy
gage average) increase as the density of gages decrease? The explanation lies
in the fact that the areal distributions have a positive skew with more values
below the mean than above the mean. When the density of gages decreases, more
of the small values are missed than large values. The net effect of this is to
decrease n in the computation of the mean (] x/n) at a greater rate than }x. Thus,
the mean increases as the density decreases. This effect is apparent only when
the areal means are based on rainy gage amounts.

Although ¢ and %1 nx
with density. This is an expected result since the variance of a subsample

vary as the density decreases, there is a lack of trend

should be the same as for the total sample.

The estimate of B has a weak tendency to increase as the density decreases.
This increase is explained by the same reasoning employed with the mean.

The parameter y has a strong increase with decreasing sampling size in
every case. Given that the mean increases and R is nearly constant, the parameter
y must increase because of the relationship 8 = x/y-

Relationships with areal size. The average values of the distributional
parameters for areal sizes of 400, 200, 100, and 50 mi? were computed for the
49-gage network (8.2 mi’/gage) and the results are shown in Table 4 for DRHA and
DHA.

There is a tendency for x and 1nx to increase with decreasing areal size.

The trend is much weaker than it is for the relationship with density. The
explanation is the same as it was for density; i1.e., there are more values below
the mean than above the mean. The trend is weakened, however, because local highs
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Table 4. Relationship of areal size with areal distributional
parameters based on rainy gage amounts.

Value of the parameter in percent*
Standard Log standard % of gages
?Eig) Mfén Log_féan deviatien deviation Gamma Beta with rain
X Inx o] Ulnx Y B
DRHA
400 95 99 111 111 62 116 67
200 101 99 106 105 82 110 72
100 103 100 99 100 95 101 75
50 101 103 83 83 161 73 78
DHA
400 94 94 109 114 58 125 67
200 100 92 106 105 83 109 72
100 103 106 102 99 99 101 75
50 103 108 83 82 161 65 78

* Percent is computed as the percentage of the average of all densities for

a given parameter.
and lows in the rainfall pattern are encountered as the areal size is decreased
and this tends to destroy the trend.

The parameters ¢ and 0% decrease as the areal size decreases. This is an
expected result because raingage amounts are more homogeneous in a small area
than in a large area due to physiographic features and the correlation between
gages.

Beta (3) decreases with decreasing areal size while y increases with decreasing
areal size. The explanation of the trend for y lies in the fact that the raingage
amounts are more homogeneous in a small area than in a large area. Thus the shape
of the distribution tends toward a normal distribution. When the shape of a gamma
distribution approaches a normal distribution, the value of y increases (Hahn
and Shapiro, 1967). Given that x increases weakly and y increases strongly, R
must decrease because of the relationship 8 = x/y.
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Relationships  between  Distributional  Parameters

It Is quite useful to be able to specify the distribution of rainfall over
an area from only the areal mean rainfall. Such a specification resolves into
the problem of establishing the relationships of the daily areal mean rainfall x

)
Inx"’
the ganma shape parameter y and the gamma scale parameter (. Such a relationship

with the log-normal scale parameter 1nx, the log-normal shape parameter (o2

could be established by regressing 1nx, 3%, ¢2. _, y, and R on the x values. How-

1nx
ever, such a method would involve empirical constants and the results in one area

may not be applicable in another. Thus, it would be highly desirable to establish
such relationships without the aid of empirical constants.

With use of the relationships which follow, it was found that the distribu-
tional parameters could be obtained from a knowledge of x and gzlnx’ However,
the relationships shown below apply only when the data are stratified into more
homogeneous subsamples (i.e., storm type or synoptic type). One of the chief
applications of these relationships is in the "Monte Carlo" generation of data
such as was used by Schickedanz and Decker (1969). It should be noted that the
relationships presented below hold only if the data are log-normal or gamma
distributed.

We will assume that from a particular area, an estimate of the daily areal
mean rainfall x has been obtained for each day as well as an estimate of 021nx°
If the data are log-normally distributed, czlnx will be independent of 1lnx.

2
1n 1nx
for all values of 1nx is the average value. It follows that the estimate of

Thus, there will be no trend in & « with Inx, and the best estimate of o2

Uzlnx will also be a constant for all values of x. Figure 16b shows the relation

between x (daily rainy hour average) and the corresponding o? 1nx for days classified
as cold frontal days for the year 1964. The horizontal line represents the value

of Gzlnx as estimated by the average value. Although there is considerable scatter
to the points, there is certainly no trend in the sample.

IT the variate X is log-normal distributed, the parameters x and ¢? are given by

- 2
X = exp [ln X + G_].I_']__}i] (18)

2
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and g
o = x [exp (Ozln x) -1] (19
Manipulation of equation 18 yields the following relationship:
- 2
A=1Inx- 1ln x = E—%;Lji (20)
The shape parameter y of the gamma distribution s given by
1+ V1 + U4/3A
y= 2y (21)

and the scale parameter of the gamma distribution is given by

B = %/Y 22

Thus, from a knowledge of o2 and x it is possible to obtain an estimate for

the shape parameter y and thénlgcation parameter 3 of the gamma distribution. From
equation 20 it follows that y will be a constant over the range of x as was 021n <
Figure 16a shows the relation between x (daily rainy hour average) and the corres-
ponding values of y for the cold frontal case. The horizontal line represents
the estimate of y obtained from equation 20 using the constant estimate of oZln <
and the points are the actual sample estimates. It is apparent that there is
scatter about the line, but there is no trend of y with Res Figure 17b shows the
relation between x and R for the cold frontal case. The curved line is the esti-
mate of [ obtained from equations 20, 21, and 22, and the points are the sample
estimates of [. Although there is considerable scatter about the line, the line
appears to be a reasonably good estimate of the trend in B with x. Again, it should
be noted that regression techniques could have been used to obtain the relationship
between x and B but such techniques would have involved empirical constants.

Manipulation of equation 20 yields
in x = In x - A 23)

and from this equation an estimate of the location parameter 1n x of the log-
normal distribution is obtained. Figure 16c shows the relation of In x with X
as estimated from equation 23 (curved line) and the actual sample points for

the cold frontal case, 1964. Estimates of ¢ were obtained from equation 19, and
the relationship of o with x is shown in Figure 17a. This figure is an excellent
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illustration of the dependence of ¢ on x when the distribution of rainfall

values are positively skewed.

Goodness of Fit of the Areal Frequency Distributions

In addition to determining the precision of distributional parameters,
the log-normal and gamma distributions were also tested for goodness of fit.
For sample sizes <40 the Kolmogorov-Smirnov goodness of fit test was applied.
The chi-square test was used for sample sizes =40. The chi-square test was
based on the method described by Hahn and Shapiro (1967) with one exception:
the number of class intervals was chosen on the basis of the relation 5 log
N, where N is the number in the sample. This method insures that the choicé
of class interval boundaries will depend on the theoretical values and not on
the sample values. It also insures that, except for modification of class
intervals due to rounding and measurement errors, equal numbers of expected
values will result in each interval. The above rule also insures that there
will be at least five expected values in each interval as long as the sample is
40 or more. This chi-square procedure makes comparisons between different
distributional fits more objective.

The areal log-normal and gamma distributions for each day were tested
for goodness of fit and the results are shown in Table 5. The tabled values
represent the percentage of distributions which has goodness of fit probabilities
>0.05 and =0.20. A goodness of fit probability of less than 0.05 implies that
observed differences between the data sample and the given distribution could
have occurred by random chance in less than 5% of the time. This implies that
the distribution does not fit the data sample. A goodness of fit probability
of =0.20 indicates a better fit than a probability of =0.05.

The log-normal distribution provides a better fit to the data than the
gamma distribution does. For the all-hour averages DHA and CHA, there are almost
as many gamma distributions which fit the data (65 and 58%) over the 12-year
period as there are log-normal (68 and 62%). However, for the rainy hour averages

DRHA and CHA, the log-normal is clearly superior.



-QS-

16 T T T T I 1 1 I e | T T 1

122 -

in x .

o
™
|
|

]
—
o O
=
—
—
—
—
—
—
—

IV Y U A U S T SN AU R N S NI R SR R
0 .04 .08 12 .16 .20 .24 .28

x  (INCHES)

Figure 16. The relationships of the average rainfall on rainy hours (x) with
the gamma shape parameter (y), the log-normal shape parameter (o ), and the
log-normal scale parameter {(In x). X



-46-

0.20 T T T T T T ] T
a.
0.10 ] *

0.08
0.06 —

7 :
U 0.04 //,r 1

0.02 0.10
. / 0.08
. == 0.06
0.01-— . =
.008 u . . 0.04
.006 o
.004 0.02
. 8
2 0.01
.08
.006
.004
o . .002
b.
i L L ] l 1 1 001
0 .04 .08 2 .16 .20 .24 .28

% {INCHES/HOUR)

Figure 17. The relationships of the average rainfall on rainy hours {(x) with
the standard deviation (o}, and the gamma scale parameter (8).



-47-

Table 5. Comparison of the goodness of fit probabilities?® for areal
distributions during the period 1956-1967 (400 mi ).

Percentage of distribution with specific probability

Time DRHA DHA CRHA CHA
period Distribution 2.20 2.05 2,20 2.05 >,20 >,05 >.20 2.05
1956 log-normal 57 76 49 63 53 67 47 63
gamma 46 66 46 66 43 57 47 63
1957 log-normal 51 70 51 68 40 48 51 63
gamma 44 65 44 67 26 49 40 48
1958 log-normal 56 75 47 76 56 71 44 71
gamma 43 68 46 62 37 63 37 56
1959 log-normal 42 58 36 51 37 46 41 56
gamma 36 49 25 51 27 41 24 44
1960 log-normal 41 62 39 59 41 4 29 44
gamma 37 60 34 54 42 50 39 46
1961 log-normal 47 65 42 62 35 45 26 39
gamma 43 65 44 65 40 50 29 45
1962 log-normal 57 88 65 90 77 92 62 85
gamma 51 71 61 78 69 81 62 81
1963 log-normal 59 83 51 71 41 63 41 59
gamma 41 74 36 64 22 52 33 52
1964 log-normal 66 84 52 75 46 75 58 79
gamma 59 70 49 79 50 71 50 88
1965 log-normal 69 82 47 67 61 89 56 78
gamma 72 87 40 66 64 78 47 78
1966 log-normal 58 81 54 85 59 82 32 64
gamma 41 74 43 76 41 73 41 64
1967 log-normal 39 58 42 58 36 44 42 50
gamma 37 56 42 58 31 46 36 47
1956-67 log-normal 53 73 47 68 48 64 44 62
gamma 45 66 42 65 40 58 39 58

* Probability that the observed difference between the data sample and the
given distribution could have occurred by random chance.
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Both the gamma and log-normal distributions fit the total-day amounts
better than the convective amounts. For example, 73 and 68% of the log-normal
distributions fit the data for the total-day amounts compared with 64 and 62%
for the convective averages.

There is some variability in the goodness of fit probabilities between
years. The percentage of log-normal distributions that fit ranges from 58
to 88 for DRHA, 51 to 90 for DHA, 44 to 92 for CRHA, and 39 to 85 for CHA.

Table 6 shows a comparison of the goodness of fit probabilities for
areal distribution according to variation in density. As the density decreases,
the percentage of distributions that fit the data increases. It is felt that
this is a fictitious trend for there is no apparent reason for the fit to be

Table 6. Comparison of the goodness of fit probabilities”™ for areal
distributions according to variation in density (400 mi?, 1964-

1967).
Percentage of distribution with specific probability
Density DRHA DHA CRHA CHA
(mizlgage) =.20 =_.05 =.20 =>.05 .20 =>.05 =>.20 =>.05
Log—normag
8.2 57 75 49 71 50 71 47 67
16.0 79 92 74 85 75 86 73 86
30.8 88 97 88 97 90 96 89 95
66.7 97 98 98 100 98 100 96 98
Gamma

8.2 52 71 44 69 47 66 43 68
16.0 75 88 71 83 74 87 72 82
30.8 85 94 83 96 89 95 82 94
66.7 94 98 98 100 98 100 98 98

* Probability that the observed difference between the data sample and the
given distribution could have occurred by random chance.

better in the smaller areas. In fact, as indicated earlier, the error iIn the
parameters tends to increase as the density is reduced. On the basis of these

considerations, it is believed that the trend is strictly due to the lack of
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power of the goodness of fit test to reject an inappropriate model. This
illustrates a problem in using the goodness of fit test on small samples.
When the samples are small, one should compute the variance of the parameters
in addition to choosing a higher probability level to make the decision as

to whether distribution does or does not fit.

Table 7 gives a comparison of the goodness of fit probabilities for areal
distributions according to variation in areal size. As the areal size decreases,
the sample size also decreases, thus confounding the "apparent trend.” Thus
the conclusion is drawn that it is impossible to discern trends in the goodness
of Fit according to areal variations in areas less than 400 mi?. It is felt

that in these cases, the variance of the parameters as described earlier yields
a better estimate of the trend.

Table 7. Comparison of the goodness of fit probabilities* for areal

distributions according to variation in areal size (1964-
1967) .

Percentage of distribution with specific probability
DRHA DHA CRHA CHA

Areal size (mi?) >.20 >.05 >.20 >.05 >.20 >.05 >.20 >.05
Log-normal
400 57 75 49 71 50 71 47 67
200 75 91 73 86 76 90 73 87
100 86 93 81 91 86 96 82 91
50 95 99 93 97 94 99 93 97
Gamma
400 52 71 44 69 47 66 43 68
200 66 82 69 83 69 82 70 82
100 78 93 73 88 80 99 77 88
50 93 97 91 97 93 97 90 96

Yo

# Probability that the observed difference between the data sample and the
given distribution could have occurred by random chance.
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Estimation of Temporal Frequency
Distributions from Climatological Data

A treatment of the relative standard error of temporal frequency distri-
butions of daily areal means is included on Figure 15, page 38, and in Table 2,
page 37. It was found that for a density of 282 mi?’/gage the relative error
was less than 20% for the yearly mean, less than 8% for yearly log-normal mean,
less than 20% for y, and less than 23% for R. This illustrates that the dis-
tributional parameters of temporal distributions can be estimated with a relatively
small degree of error. The fact that the error is nearly the same for a clima-
tological network as for a more dense network (Figure 15) indicates that the param-
eter for a temporal distribution at a point can also be estimated with a small
degree of error. We now turn our attention to two more aspects of the problem.
First, we will consider the relationship of distributional parameters with distance
and, second, the goodness of fit of the distributions. To study these two
aspects, the log-normal and gamma distributions were fitted to all daily amounts
within a year at each gage, and for each year of the period 1956-1967.

Relationships between Temporal Distributional
Parameters and Distance

For the purpose of determining the relationship of the temporal distributional
parameters to distance, a line of gages was selected from northwest to northeast.
The temporal distributional parameter for each gage along the line was correlated
with the distance from the edge of the network. This was done to find whether
there was any predictability of the distributional parameter at one gage from
the distributional parameter at another gage. If a relationship exists, the
magnitude and sign of the correlation should remain approximately the same from
year to year. |If the magnitude and sign of the correlation fluctuate from year
to year, then the relation of these parameters with distance is a random quantity
from year to year.

The results of the correlation study are presented in Table 8 for the period
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1964-1967. In a given year the correlation is occasionally high for a given
distributional parameter (-0.90 for ¢ in 1964, DRHA; -0.97 for 3 In 1964, DRHA;
etc.). However, the magnitude and sign for the correlation for a given parameter
varies considerably from year to year. This implies that even though there is

a relationship between distance and the parameter for a given year, the relation
is entirely unpredictable from year to year indicating a random arrangement of
highs or lows in the areal pattern from one year to the next.

Table 8. Relationship of the distributional parameters with distance.

Correlation coefficient

Standard Log standard
Mean deviation Log mean deviation G )
. o aAmma Beta
Year X ° In x 1ln x Y B
DRHA
1964 -.64 -.90 .46 -.53 .49 -.97
1965 A1 .14 .03 42 -.52 .28
1966 .02 -.31 -.10 -.05 .36 -.19
1967 -.05 .13 .23 13 -.29 .08
DHA
1964 -.81 -.82 53 -.52 .34 -.73
1965 .32 .34 -.14 .38 -.20 27
1966 31 .78 -.11 12 22 .10
1967 -.38 .06 .79 .64 -.68 42
CRHA
1964 -.43 -.69 .28 -.35 37 -.71
1965 -.29 -.31 .23 .26 -.12 -.03
1966 -.33 -.26 .38 .33 -.30 -.09
1967 .40 .33 -.44 .29 -.36 42
CHA
1964 -.10 -.04 14 -.16 12 -.25
1965 -.44 -.10 .48 31 -.21 -.06
1966 .06 .36 .44 .86 -.79 .78
1967 .01 -.21 .05 .02 .02 -.004
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Goodness of Fit of the Temporal Distributions

In this section, two sets of distributions are considered. First the temporal
distributions at a point for each year of the period 1956-1967 are investigated
for goodness of fit. Then the temporal distribution of dailyareal means (rainy gage
average) as well as daily areal means (all gage average) in the area are investi-

gated for goodness of fit.

Goodness of fit of the distributions at a point. The results for the point

distributions are listed in Table 9. The overall results for the 12-yr period
reveal clearly that the temporal distributions fit the data much better than the
areal distributions (Table 5). Again, it is clear that the gamma distribution
provides a better fit than the log-normal distribution. Another striking feature
is the large difference between log-normal and gamma distributions for the per-
centage of distributions having probabilities =0.20. For example, in case of
DRHA, there are more than twice as many log-normal as gamma distributions which
fit the data.

Overall, the log-normal distribution fits the temporal distribution quite
well. In case of DHA, only 87% of the log-normal distributions fit the data,
but for the other average, more than 92% fit the data.

There is some variability from year to year in the goodness of fit. The
range of the percentage of log-normal distributions which fit the data is from
84 to 100 for DRHA, from 61 to 100 for DHA, from 73 to 100 for CRHA, and from
86 to 100 for CHA. The range in the percentage of gamma distributions which fit
the data is from 37 to 86 for DRHA, 63 to 100 for DHA, from 8 to 90 for CRHA, and
from 55 to 92 for CHA. Clearly, the gamma distribution has a greater variation
in the number of distributions fitting from year to year.

Goodness of fit of the distributions of the daily areal means. Log-normal

and gamma distributionsof daily areal means (rainy gage average) and daily areal
means (all gage average) were tested for goodness of fit and the results are shown
in Table 10.

In this case, the tabled values are the actual goodness of fit probabilities

rather than the percentage of distributions that fit. For the daily areal means
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Table 9. Comparison of the goodness of fit probabilities* for temporal
distributions at a point during the period 1964-1967.

Percentage of distribution with specific probability

Time DRHA DHA CRHA CHA
period Distribution 2.20 =2.05 2,20 2,05 2,20 z.05 2.20 2.05
1956 log-normal 92 98 73 90 86 98 86 96
gamma 43 76 78 94 63 90 65 86
1957 log-normal 76 90 63 78 84 98 88 100
gamma 49 86 73 92 45 76 63 82
1958 log-normal 73 92 57 A 78 98 92 98
gamma 45 71 78 98 22 61 47 88
1959 log-normal 49 84 57 94 73 96 88 100
gamma 14 37 27 67 16 53 53 82
1960 log-normal 57 86 37 61 47 73 61 90
gamma 16 53 49 86 0 8 22 59
1961 log-normal 65 96 39 73 94 100 78 96
gamma 47 76 80 100 51 88 78 90
1962 log-normal 88 100 49 67 84 96 98 100
gamma 29 63 59 88 33 59 67 90
1963 log-normal 92 100 82 98 92 98 9% 100
gamma 29 61 41 63 35 61 67 90
1964 log-normal 90 96 90 100 92 98 94 100
gamma 45 67 47 69 73 88 53 90
1965 log-normal 80 90 80 96 88 100 88 100
gamma 59 82 41 71 51 73 51 82
1966 log-normal 8 100 82 100 9% 100 98 100
gamma 22 43 53 82 51 84 78 92
1967 log-normal 63 90 67 A 71 92 55 86
gamma 31 69 47 71 10 57 27 55
1956-67 log-normal 80 93 65 87 82 96 85 97
gamma 36 65 56 82 38 67 56 82

* Probability that the observed difference between the data sample and the
given distribution could have occurred by random chance.
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Table 10. A comparison of the goodness of fit probabilities* for temporal
distributions of the daily areal means during the period 1964-1967.

Time
period Distribution DRHA DHA CRHA CHA
Daily areal means (rainy gage average)

1964 log-normal 7 .07 >.20 >.20
gamma 27 .04 >.20 .18

1965 log-normal .43 .50 11 .49
gamma .36 .16 .29 .54

1966 log-normal 27 .22 >.20 >.20
gamma .09 .02 <.01 .03

1967 log-normal .29 <.01 .15 .03
gamma .04 <.01 <.01 <.01

Daily areal means (all gage average)

1964 log-normal <.01 <.01 >.20 >.20
gamma <.01 .01 .06 .05

1965 log-normal <.01 .75 .02 .49
gamma .54 .75 .64 19

1966 log-normal .15 74 >.20 >.20
gamma .86 .37 >.20 .14

1967 log-normal .09 .14 .40 7
gamma .93 .34 .02 <.01

* Probability that the observed difference between the data samples and the given
distribution could have occurred by random chance.

(rainy gage average) there are 16 out of 18 log-normal distributions which fit
the data. For the gamma distributions, 8 out of 16 fit the data. Again, the
log-normal distribution fits the data better than the gamma does. For daily areal
means, there are 12 out of 16 log-normal distributions which fit the data. For
the gamma distribution there are also 12 out of 16 distributions which fit the
data. Thus, the log-normal distributions fit the data better than the gamma

for daily areal means (rainy gage average), while the two distributions fit the

data equally well for daily areal means (all gage averages).
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RESUME

This research had two specific purposes. The first was to present a method
of estimating the required density of a proposed raingage network in order to
insure that various rainfall parameters will be measured with a desired level
of precision. The second purpose was to determine the reliability of measurements
made in an area of limited data coverage compared with the reliability that would
be available from a denser network. The determination of this reliability enables
the user to decide which measurements would or would not be improved if a more
dense network were available. The techniques and methods presented in the report
can be used to fulfill both purposes. In other words, the techniques will aid
in the planning of the density of a network to insure that desired accuracy will
be attained in the measurements; or, faced with a sparse network, the techniques
yield information on the reliability of the measurements and the quality of the
information obtained. In the paragraphs that follow, a summary is made of the

techniques, the analyses, and the implication of the methods.

Basic Data

This report deals with the following forms of data estimates: 1) daily
areal means (all gage average), 2) daily areal means (rainy gage average),
3) yearly areal means, 4) the period areal means, 5) point estimation in a
daily areal pattern, 6) point estimation in a yearly areal pattern, 7) point
estimation in a period areal pattern, 8) log-normal and gamma distributional
parameters for areal distributions, 9) log-normal and gamma distributions of
the daily areal means (rainy gage average), 10) log-normal and gamma distri—
butions of the daily areal means (all gage average), and 11) the log-normal
and gamma temporal distributions at a point. Terms are defined in the Appendix.
The basic data from which these estimates were derived were based on con-
vective and total-day time periods, and on hours with rain as well as all hours
of the day (DRHA, DHA, CRHA, and CHA).
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Approach

The relative standard error for each of the data estimates was determined
for data from a dense network in East Central I1llinois (see Figure 4) . The
relative standard error for each of these parameters was then determined from
a subset of gages which had a density corresponding to that of a climatological
network. The error was then determined for various raingage densities and for
various areal sizes. The errors as determined from the dense network and the
climatological network were then compared to determine the accuracy of the data
measurements from a climatological network.

In addition to these error determinations, the relationship of the distri-
butional parameters with distance and density, relationships between distribu-
tional parameters, and the goodness of fit of areal and temporal distributions
were investigated.

The equations and techniques necessary to perform the above iInvestigation

are described throughout the report.

Selected Results

Equations and methods for the determination of error in the daily, yearly,
and period areal means (all gage average) are given on pages 4 - 6. The
climatological estimates of the relative standard error of daily areal means
were found to be nearly the same as dense network estimates. For example, the
RSE from the climatological network was 14% for a density of 8.2 mi?/gage and
86% for a density of 282 mi?/gage for DRHA. Comparable estimates for a dense
network were 12 and 80% respectively.

For the yearly and period areal means the error was less, but the differ-
ences between estimates from the climatological and dense networks were greater.
The greater differences were caused by the additional sources of variance con-
tributing to the error. However, the climatological network was found to be adequate
for the estimation of error in the daily, yearly, and period areal means (all

gage average).
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Equations and techniques for the determination of error in the daily,
yearly, and period areal patterns are described on pages 13-14. The error of
point estimation in the daily rainfall pattern was found to be very large
unless the network is very dense. For example, with dense network estimates,
the error was 155% at a density of 282 mi?/gage, 85% at a density of 8.2 mi?/
gage, and 55% for a density of 1 mi?/gage for DRHA. With estimates from the
climatological network, the trend is comparable with values of 140, 70, and
35% respectively. When the pattern is measured over a period of a year or
longer, the error is reduced considerably.

Techniques for estimating the error in larger areas are discussed on
pages 27-29. The results indicated that the best method is to estimate the
error in the larger climatological network at the available density and then
estimate the error for the smaller densities. This approach appears to be
superior to estimating the error in the dense network (small area) at the largest
density and then extrapolating to a large area. This conclusion iIs based on
the fact that the prediction of various densities from the climatological
network was found to be adequate. The results also indicated that the standard

error decreases as the areal size increases.

The estimation of the error at a point in the areal pattern for larger
areas is relatively simple. The technique is never based on a gage separation
of more than that of a climatological network. Thus, once the error is computed
for the subareas of the larger areas, the estimate can be combined to obtain
the estimate for the total area.

In general, it was found that the climatological network could be used to
estimate the error in areal distributional parameters. However, there were
large differences between the estimates of the climatological and dense networks
in the convective rainfall for the gamma shape parameter.

Although the error of the areal gamma distributional parameters could be
estimated from a climatological network in most cases, the magnitude of the
error for the climatological density is so large that the estimates are virtually

useless.
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The areal log-normal scale parameter could be estimated from the climato-
logical network, and the error was small enough that the parameter was of value.
For example, the error was 20% or less for the various raingage amounts DRHA,
DHA, CRHA, and CHA.

For the distributions of daily areal means, the relative error of the dis-
tributional parameters is practically the same for all densities. This is In
direct contrast to the areal distributional parameters, which have a sharp trend
with density. However, similar results were found for the relative error of
the yearly areal and period areal means (see page 10). The distributional param-
eters for the daily areal means had an error of less than 25% if the sampling
period during the year had 50 rain days.

An investigation of the relationships of the distributional parameters
with distance revealed that the log-normal scale parameter increases and the
shape parameter remains relatively constant as the density of raingages decreases.
The log-normal scale parameter was found to increase more for convective amounts
than for total-day amounts. The gamma shape and scale parameters increase as
the density of raingages decreases.

In regard to areal size, the log-normal scale and shape parameter decrease
as the areal size decreases. The gamma scale parameter decreases with decreasing
areal size, while the gamma shape parameter increases with decreasing areal size.

In regard to relationships between parameters, it was found that the other
distributional parameters could be obtained from a knowledge of In x and Uzln <
However, the relationships between distributional parameters were adequate only
when the data were stratified into more homogeneous subsamples.

The log-normal and gamma distributions were also tested for goodness of fit.
The areal distributions, temporal distributions on individual gages, distributions
of daily areal means (rainy gage averages), and distributions of daily areal
means (all gage averages) were tested for goodness of fit. The goodness of fit
tests indicated that the log-normal distributions fit the data samples used in
this study better than the gamma distribution. The temporal distributions were
found to fit the data better than the areal distributions. For the log-normal

distributions, the percentage of temporal distributions fitting the data were
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93, 87, 96, and 97; this compares with 73, 68, 64, and 62 for the areal
distributions for the various raingage amounts DRHA, DHA, CRHA, and CHA. For
the gamma distributions, the percentage of temporal distributions fitting the
data was 65, 82, 67, and 82; this compares with 66, 65, 58, and 5 8 for the areal
distributions for the various raingage amounts DRHA, CHA, CRHA, and CHA.

For the temporal distributions of daily areal means (rainy gage average)
there were 16 out of 18 log-normal distributions and 8 out of 16 gamma dis-
tributions which fitted the data for the period 1964-1967. For the temporal
distributions of daily areal means (all gage averages) there were 12 out of
16 log-normal distributions and 12 out of 16 gamma distributions which fitted
the data.

Thus, it is illustrated clearly that the temporal distributions fit the
data better than the areal distributions which agrees with the results found
for the relative error of the parameters.

Implications

Implications to weather modification. The results of this research have

implications in the area of weather modification. Although much research effort
has been directed to the problem of planning and verification of weather modifica-
tion experiments according to experimental design, storm types, weather types,
and duration of the experiment (Neyman and Scott, 1967; Schickedanz and Changnon,
1970; Schickedanz and Huff, 1971), little attention has been directed to the
problem of density of the raingage network in relation to duration of the experi-
ment. An iInvestigation of the sampling error according to density in areal mean
storm rainfall was made by Huff and Schickedanz (1970). However, the important
contribution of the present research is to show that the estimate can be made
for several rainfall units from the existing climatological network of raingages.
As an example, the researcher must often make a decision as to whether the
network should be made more dense in order to measure the individual points in
the daily rainfall pattern with a higher degree of precision. If higher precision
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is desired, the network would need to be very dense. Because of the cost of
installing and maintaining a very dense network, the dense network may of neces-
sity be limited to a small area. In the small area, other expensive instrumenta-
tion would likely be installed and would eventually be correlated with radar
data.

However, the rainfall over a larger area would also be of interest. In
the larger area, the interest might be limited to differences between areal
means on seeded and non-seeded days. In this case the additional gages would
contribute very little to the end result and a greater reduction in experimental
error might be obtained by increasing the duration. With the techniques pre-
sented in this report the network could be designed to serve both purposes.
Also, through the use of these techniques information could be gleaned from the
climatological network which would help estimate the cost of the experiment.

Implications  for climatological applications. For many climatological

studies, the only data which are available will be that obtained from the Wea-

ther Bureau networks which have a density in the midwest of approximately

250 mi?/gage. Often the smallest unit of measurement will be 24 hour amounts.

In this case, one needs to know the reliability of the various estimates that

can be made. Had there been more sampling points in the area, would the results
have been different? The techniques and figures presented in this report allow
one to make the decision in an orderly and systematic way. By the use of these
techniques, figures and tables similar to those presented here can be constructed

for any area.

STUDENT PERSONNEL AND SCIENTIFIC PAPERS

Several undergraduate students from the University of Illinois were employed
during the course of this investigation. The students were Susan Lewandowski,
Cecelia Semonin, Patricia Coughlin, Barbara Binch, and Nancy Thun.

A paper summarizing initial results from the frequency distributions was

presented at the International Symposium on Probability and Statistics in the
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Atmospheric Sciences at Honolulu, Hawaii, in June 1971. |In addition, a paper
which summarizes the pertinent results from this project will be submitted to
the Journal of Applied Meteorology.
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APPENDIX

The purpose of this appendix is to describe in one place the basic data

and some basic data definitions that are used throughout the report.

Source of Data

The East-Central Network (ECI) of the Illinois State Water Survey supplied
the basic data used iIn this study (see Figure 4). It consisted of 49 raingages
arranged in a nearly uniform grid pattern in a 400-mi? rural area of relatively
flat terrain in which elevations ranged from 650 to 910 ft MSL. The network was

operated from 1956 to 1967 with no significant changes in gage locations.

Basic Data

In some cases, data from the entire 12-yr period (1956-1967) were used
while in other cases only data from the 4-yr period (1964-1967) were used. A
4-yr data sample was used whenever it was deemed that the analysis of a 12-yr
data sample would not contribute enough additional information to warrant
the effort, or when a particular phase of the analysis involved lengthy and
costly analyses which could not be justified for a longer period from the amount
of iInformation gained.

Early iIn the analyses, it was decided to work with four basic units of data.
These were chosen to approximate measurements often used in weather modification
experiments. These units were chosen to distinguish between measurements based
only on hours with rain and between measurements made for all hours. The units
were also chosen to distinguish between rainfall measured during the convective
period and rainfall measured for the entire day. For purposes of analysis,
it was found convenient to divide the total gage amounts by the number of hours

so that the values would be more readily comparable. Thus, the four basic data
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units used were: 1) Daily Rainy Hour Average (DRHA) which is the average of the

gage rainfall amounts on hours with rain during the 24-hr period, from midnight
to midnight; 2) Daily Hourly Average (DHA) which is the average of gage rainfall

amounts over all hours during the period from midnight to midnight; 3) Convective

Rainy Hour Average (CRHA) which is the average of gage rainfall amounts on hours
with rain during the period 1100-1900; and 4) Convective Hourly Average (CHA) which

is the average of gage rainfall amounts over all hours during the period 1100-1900.

For purposes of clarity in the writing and reading of the report, the symbols
DRHA, DHA, CRHA, and CHA are often referred to as raingage amounts rather than

averages, for they iIn fact represent normalized amounts.

Definitions

The data were often summarized according to various averages and data
units which are repeated many times throughout the text. The following is a
list of definitions frequently used.

Convective amounts. CRHA and CHA, or the amounts based on convective

hours only.
Total-day amounts. DRHA and DHA, or the amounts based on the total 24- hour

period of the day.
Rainy-hour amounts. DRHA and CRHA, or the amounts based on only the hours

with rain.
All-hour amounts. DHA and CHA, or the amounts based on all hours.

Warm season. The months of May through September. Only data from this
period were used in the analyses.
Daily areal mean (all gage average). A mean computed by dividing the sum-

mation of the averages DRHA, CHA, CRHA, and CHA over the area of

interest by the total number of gages in the area.
Daily areal mean (rainy gage average). A mean computed by dividing the sum-
mation of the averages DRHA, DHA, CRHA, and CHA over the area of interest

by the number of gages with rain.



-67-

Yearly areal mean. A mean computed as the average of all the non-zero

areal means over the year (warm season). Sometimes it is referred
to as the average of the daily areal means over a period of a year.
Period areal mean. A mean computed as the average of all the yearly

areal means over several years. It is sometimes referred to as the
average of the daily areal means over a period of several years.
Areal Distribution. The distribution of non-zero gage amounts (DRHA, DHA,

CRHA, and CHA) over the area on a particular day. Thus, there is an
areal distribution for every day with rain.

Temporal distribution of individual gages. The distribution of the gage
amounts (DRHA, DHA, CRHA, and CHA) over a period of time at a particular
gage. Thus, there is temporal distribution for every gage.

Temporal distribution of the daily areal means (rainy gage average). The

distribution of the daily areal means (rainy gage averages) over a
period of time.
Temporal distribution of the daily areal means (all gage average). The

distribution of the daily areal means (all gage average) over a period
of time.
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