Munay & M Comas Circular 90 STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION # Mineral Content of Public Ground-Water Supplies in Illinois by T. E. LARSON #### STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION WILLIAM SYLVESTER WHITE, DIRECTOR, SPRINGFIELD BOARD OF BOARD OF NATURAL RESOURCES AND CONSERVATION WILLIAM SYLVESTER WHITE, CHAIRMAN BIOLOGY. THOMAS PARK CHEMISTRY. ROGER ADAMS ENGINEERING - ROBERT H. ANDERSON FORESTRY - - - CHARLES E. OLMSTED GEOLOGY - - LAURENCE L. SLOSS SOUTHERN ILLINOIS UNIVERSITY - PRESIDENT DELYTE W. MORRIS UNIVERSITY OF ILLINOIS. DEAN WILLIAM L. EVERITT # Illinois State Water Survey WATER RESOURCES BUILDING 60S E. SPRINGFIELD, CHAMPAIGN MAIL: BOX 232, URBANA, ILLINOIS 61802 • AREA CODE 217 PHONE 333-2210 WILLIAM C. ACKERMANN. CHIEF NOTE OF CORRECTION: Circular 90 Mineral Content of Public Ground-Water Supplies in Illinois By T. E. Larson Because of an IBM printout error (pages 10,11,12) for cities from Allerton to Buffalo Rock State Park, inclusive, all letters and numbers under the 10 columns headed <u>Source</u> to <u>Boron</u>, inclusive, should be moved down opposite the next analysis number below. The data in these 10 columns for Buffalo Rock State Park should be inserted in the corresponding place for Allerton, to the right of Analysis Number 144820. Other significant errors have been noted for isolated data: Ambpy, chloride 8. instead of 80 Arcola, calcium 88.0 instead of 8.8 Chrisman, calcium 67.0 instead of 6.7 El Paso, iron 1.0 instead of 0.1 # Mineral Content of Public Ground-Water Supplies in Illinois #### BY T. E. LARSON #### INTRODUCTION This circular provides a ready tabulation of mineral constituents in public ground-water supplies in Illinois. Analyses of 770 ground-water supplies, serving 2,486,200 people, are included in this report. The tabulations are presented alphabetically according to the municipality or public institution at which the sample was collected. Brief discussions of sampling procedure, analytical methods, and the interpretation and significance of the minerals precede the tabulated data. With few exceptions, the samples were collected during the time that physical and engineering data were obtained for Water Survey Bulletin 40, "Public Ground-Water Supplies in Illinois" (1950), and its Supplement 1 (1958) and Supplement 2 (1961), and most of the analyses are duplicated in those publications. Analyses for surface water supplies have not been included since, with the exception of Lake Michigan, the quality of streams and reservoirs varies seasonally and in some cases from year to year. Public surface supplies in Illinois are clarified and chlorinated, and most sources come within a range from 50 to 450 ppm hardness. Acknowledgments. This report was prepared by Dr. T. E. Larson, Assistant Chief and Head of the Chemistry Section of the State Water Survey. Data were developed by the staff of the analytical laboratory of the Chemistry Section. The number of individuals concerned during the years is too great to permit personal acknowledgment; however, the major portion of the analyses were made under the direct supervision of Laurel Henley. Appreciation also is extended for the administrative support of William C. Ackermann, Chief, Illinois State Water Survey. #### **PROCEDURES** #### Sampling Wherever possible, samples were collected from a tap at the pump discharge, and the temperature and pH were determined at that time. Each analysis reported herein has been selected as representative of the general quality of the water for the particular municipality. At certain locations the supply is derived from alluvial or outwash deposits adjacent to streams, so that a certain amount of variation in the quality may be expected throughout the year. At places where the supply is derived from rock wells that penetrate more than one exposed aquifer the quality may vary throughout any particular pumping period since the quality from each aquifer is generally distinctive. The quality at any time may therefore depend upon the duration of the previous idle period, the relative nonpumping pressures of the water in the aquifer, and the capacities of the aquifers to yield water. In many cases the indicated source of the water is not necessarily definite. For example, in one instance a well penetrating the St. Peter Sandstone actually derives drift water by way of crevices in the intervening limestone between the bottom of the casing (which was pressure grouted through the drift) and the top of this sandstone. Unless the origin of the water in the well has been definitely determined, the source is generally indicated to be the formation at the bottom of the well. #### **Analytical Methods** Data on color, odor, and turbidity are not reported. As a general rule (in the absence of iron) the turbidity of ground-water supplies is negligible; odor, when present, is normally caused by hydrogen sulfide, which has been indicated; and only a very few supplies have any appreciable color. Nevertheless, taste, odor, and color are each significant in that, if objectionable in a bacteriologically safe supply, any one of the three may cause the consumer to turn to a more palatable but unsafe supply. All analyses were made according to Standard Methods of Water Analysis, 9th and 10th editions. All samples were carbonated with dry ice prior to filtration and analysis. In general, the following procedures were used. Where two procedures are named, the second (shown in parentheses) was used on laboratory numbers above 148000. | Determination | Symbol | Procedure | |--------------------------|-------------------------|-----------------------| | Iron | Fe | Ortho phenathroline | | Manganese | Mn | Periodate | | Ammonium | NH_4 | Distillation and | | | | Nesslerization | | Sodium | Na | Difference | | Calcium | Ca | Permanganate | | | | titration (or EDTA) | | Magnesium | Mg | Pyrophosphate | | | | (or difference) | | Silica | SiO_2 | Molybdate | | Boron | В | Carmine (or curcumin) | | Fluoride | F | Scott-Sanchis | | Nitrate | NO_3 | Reduction | | Chloride | Cl | Mohr | | Sulfate | SO_4 | Gravimetric | | Alkalinity | (as CaCO ₃) | Methyl orange | | Hardness | (as CaCO ₃) | Calculation (or EDTA) | | Total dissolved minerals | TDM | Evaporation | | Carbon dioxide | CO_2 | Calculation | The results are expressed in parts per million (ppm). Parts per million refers to pounds per million pounds of water or milligrams per liter (mg/1) of water. Such results can be converted to grains per gallon (gpg) by dividing by the factor 17.2. The parts per million results can be converted to equivalents per million by dividing by the equivalent weight of the particular ion. The results for hardness and alkalinity are expressed in equivalent terms of calcium carbonate. Since the pH of nearly all samples was less than 8, no carbonate alkalinity existed and the alkalinity exists actually as bicarbonate. Bicarbonate as (HCO₃) may be calculated from alkalinity (as CaCO₃) by multiplying alkalinity by 1.22. #### INTERPRETATION AND SIGNIFICANCE The interpretation of any water analysis must of necessity depend on the intended use of this water. In general the following discussions pertain largely to the use of water for general household purposes. It is assumed that the water is of unimpeachable sanitary quality, as judged by a sanitary survey indicating the absence of any possible source of entrance of contamination, and as established by bacteriological tests for purity. Such considerations are the function of the Illinois State Department of Public Health, located at Springfield, Illinois, and any questions concerning this primary factor must be directed to that office. #### **Total Dissolved Minerals** The total mineral content includes all the mineral ingredients in the water. These ingredients originated by the solution of the chloride, nitrate, sulfate, and carbonate salts of calcium, magnesium, ammonium, and sodium. On solution of each or any of these ingredients, however, the component parts of each salt exist in the water as separate entities and bear no relation to the original combination. Water with a high mineral content may have a salty or brackish taste, of an intensity that depends on the concentration and kind of minerals in solution. The Public Health Service Drinking Water Standards for Interstate Carriers (1961) states that water should not contain more than 500 ppm total dissolved minerals. This is a recommended limit, suggesting a quality guide which does not cause undue discomfort to the user. Mineralization of more than 500 ppm can be faintly tasted. Several municipalities in Illinois use waters of 1500 to 2000 ppm mineral content. Waters of 3000 and 4000 ppm can hardly be called palatable, and at 5000 or 6000 ppm even livestock do not do very well, although they can get used to it and live. At about 15,000 ppm, or 1.5 per cent, the water is injurious and would cause death if used continuously. Sea water contains 3.4 per cent dissolved minerals. In the range of 500 to 2000 ppm the taste factor is one to which the public may become accustomed; in fact, if a change from 1500 to 500 ppm water is experienced, it is again necessary to become accustomed to the 500 ppm water. Equipment is available to demineralize limited quantities of mineralized water. These units are relatively costly when compared with ordinary zeolite softeners, and the cost of chemicals for regeneration seriously limits the extensive use of such equipment. However, for small quantities of water as for drinking or cooking purposes, there is a field of application. The cost of the original installation will depend on the quality of the raw. water and the quantity of demineralized water required. The cost of regenerating chemicals is from \$1 to \$2 for each 1000 ppm of mineral content per 1000 gallons. The cost of chemicals to demineralize 100 gallons of water containing 5000 ppm
total dissolved minerals would be about \$1. This, of course, would be expensive water for sprinkling purposes, but water for 16 cups of coffee would cost 1 cent. Statistical data on mineralization and population served for the 770 public supplies are given in table 1. #### 1. TOTAL DISSOLVED MINERALS | Concentration | | Per cent | | |-----------------------|-----------------------|----------------------|----------------------| | (ppm)
greater than | Number of
supplies | of total
supplies | Population
served | | 2000 | 10 | 1.3 | 7,600 | | 1500 | 31 | 4.0 | 50,600 | | 1000 | 73 | 9.5 | 126,300 | | 750 | 130 | 16.9 | 279,000 | | 500 | 325 | 42.3 | 1,011,100 | | 400 | 497 | 64.7 | 1,521,700 | | 300 | 703 | 91.4 | 2,334,800 | | 200 | 766 | 99.5 | 2,465,300 | | 150 | 770 | 100. | 2,486,200 | | | | | | More than 40 per cent of the Illinois public ground-water supplies, serving over a million people, exceed 500 ppm in total dissolved minerals. No public ground-water supply contains less than 150 ppm minerals. # Hardness Calcium and magnesium in water cause it to be hard, that is, to cause scale deposits on heating and to require special additives for producing clean laundry, and so forth. The distinction between hard and soft water is relative. Municipalities accustomed to water of 250 ppm hardness consider Lake Michigan water (130 ppm) to be soft, whereas those supplied by softened water of 50 to 75 ppm hardness consider Lake Michigan water to be hard. In turn, individuals who are accustomed to home zeolite softened water of 0 to 10 ppm hardness or to rain water consider 50 to 75 ppm to be hard water. The effects of hard water are numerous, and very few of these effects are advantageous. Hard water is responsible for the formation of scale in boilers or hot water heaters. The formation of scale due to hardness results from the fact that the solubility of the calcium carbonate and sulfate salts and magnesium hydroxide is lower at increased temperatures. If an appreciable proportion of the hardness is non-carbonate hardness, the scale will be very hard and difficult to remove. The noncarbonate hardness may be calculated by subtracting the alkalinity from the hardness value. If little or none of the hardness is noncarbonate, that is, if all of the hardness is present as carbonate hardness, the scale may be either soft and sludgy or moderately hard. In either case, the scale formed in furnace coils or in hot water coils is a distinct nuisance, and may reduce the rate of heat transfer to such an extent that the metal can become "burned" by overheating. Chemical treatment of water used in boilers for the production of steam and power is a common practice and is in most cases an economic necessity. The effect of hard water on soap and soap products is well known to everyone. The insoluble calcium and magnesium soaps which are formed with hard water combine with the dirt removed from laundry, and this is redeposited with the eventual result that clothes appear gray rather than white. Rinsed dishes and glassware do not drain clear; hard water leaves an accumulating white deposit on them which can be unsanitary as well as unsightly. Hair washed and rinsed with hard water becomes sticky and stiff. Highly mineralized water of 2000 ppm or more mineral content, which may be soft with respect to calcium and magnesium content, often behaves as hard water with soap as used for detergency purposes. The salt content prevents sufficient solution of soap to provide an . effective cleaning concentration. #### 2. HARDNESS | | | Natural supplies | | | Treated supplies | | |---|--------------------------|----------------------------------|---------------------------|--------------------------|----------------------------------|--------------------------| | Concentration*
(ppm)
greater than | Number
of
supplies | Per cent
of total
supplies | Popula-
tion
served | Number
of
supplies | Per cent
of
classification | Popula-
Hon
served | | 1000 | 3 | 0.4 | 2,900 | 1 | 33 | 2,800 | | 800 | 8 | 1.0 | 22,500 | 3 | 37 | 18,300 | | 600 | 46 | 6.0 | 88,300 | 16 | 35 | 46,000 | | 400 | 201 | 26.2 | 713,000 | 62 | 31 | 202,800 | | 300 | 448 | 58.3 | 1,387,900 | 116 | 26 | 389,900 | | 200 | 681 | 88.5 | 2,326,700 | 151 | 22 | 651,400 | | 100 | 746 | 97.0 | 2,474,100 | 155 | 21 | 663,300 | ^{*} as CaCO₃ In 88.5 per cent of the public ground-water supplies hardness (see table 2) is over 200 ppm; in 58.3 per cent it is greater than 300 ppm; and in 26.2 per cent, greater than 400 ppm. Only 22 per cent of the supplies with more than 200 ppm hardness have a treatment plant to reduce the hardness to 100 ppm or less, and with hardness greater than 400 ppm only 31 per cent provide treatment for reducing the hardness. Of the 770 supplies, 20.2 per cent or 155 supplies have treatment plants that produce water with 100 ppm hardness or less. (Of these, 115 use the zeolite or the base-exchange method and 40 use the lime or lime-soda method.) This is an increase in both number and percentage since 1950 when the percentage of treatment plants for reducing hardness was 14.9 per cent of the 532 total supplies. Twenty-seven per cent of the population (675,400 persons) served with ground water are provided with water of 100 ppm hardness or less. The State Water Survey conducted a survey on the effect of water hardness on the domestic use of detergents in 1958-59 at three municipalities. The results, published in 1961, showed the purchase of detergents to increase by 11.7 cents per 100 ppm of hardness per 1000 gallons of water used for household purposes such as cleaning, laundry, bathing, etc. On the basis of 27 gallons use per person per day for these purposes, or about 10,000 gallons per year, the additional cost of detergents with hard water was about \$1.15 per person per year for each 100 ppm hardness. In general, the cost of municipal treatment for reducing the hardness was found to be favorably competitive to the cost of home treatment using synthetic detergents, or of home-owned or serviced softening. Other economic and convenience benefits that accrue from low hardness water are in cleanliness, fewer maintenance problems with facilities, and extended life of clothes and linens, as well as economic benefits to industries and other establishments that use water for processing, heating, and air conditioning. #### Iron Iron as it exists in natural ground water is in the soluble (ferrous) state and gives the water a faint green tinge. On exposure to air it is converted into the insoluble ferric state and separates from the water to form fine to fluffy reddish-brown particles. This constitutes "red water." If allowed to stand long enough these particles will gather together and settle to the bottom of a container. The presence of red water is responsible for red stains on laundry, and may cause clogging in pipes in distribution systems and in service lines to homes. In some cases the presence of iron supports the growth of "iron bacteria" which accumulate and eventually clog the distribution system pipes and mains. The presence of appreciable quantities of iron is sometimes responsible for clogging in zeolite softeners, although some types of exchange materials are more resistant to this type of clogging than others. Much depends on the quantity and the form of the iron as the water is applied to the zeolite, or exchange bed, and much also depends on the rate and the manner of backwashing and regeneration of these exchange units. The U. S. Public Health Service Drinking Water Standards recommends a limit of 0.3 ppm iron to avoid staining of laundry and porcelain ware. Three of every four public ground-water supplies in Illinois contain more than 0.3 ppm iron. Of these, 38.8 per cent or 227 supplies serving a population of 640,600 treat the water for iron removal, as shown in table 3. In # 3. IRON | | | Natural suppli | es | | Treated supplies | | |--|--------------------------|----------------------------------|---------------------------|--------------------------|----------------------------------|---------------------------| | Concentration
(ppm)
greater than | Number
of
supplies | Per cent
of total
supplies | Popula-
tion
served | Number
of
supplies | Per cent
of
classification | Popula-
tion
served | | 10 | 13 | 1.7 | 24,200 | 12 | 92.4 | 23,900 | | 5 | 47 | 6.1 | 52,300 | 33 | 70.3 | 44,300 | | 3 | 97 | 12.6 | 136,700 | 68 | 70.0 | 123,500 | | 2 | 175 | 22.8 | 402,800 | 106 | 60.6 | 260,100 | | 1 | 356 | 46.3 | 815,400 | 177 | 49.8 | 491,500 | | 0.5 | 458 | 59.6 | 1,145,100 | 218 | 47.6 | 586,400 | | 0.3 | 586 | 76.0 | 1,635,000 | 227 | 38.8 | 640,600 | | | | Per
of to
supplies served | cent
tal | Per cent of population | | | | | | 76.1 nee | ed treatment | 66 | | | | | | 23.9 nee | d no treatment | 34 | | | | | | 29.5 trea | at | 26 | | | | | | 53.4 tota | al iron free | 60 | | | | | | 46.6 stil | l need treatment | 40 | | | #### 4. MANGANESE | | | Natural supplies | | | Treated supplies | | |--|--------------------------|----------------------------------|---------------------------|--------------------------|----------------------------------|---------------------------| | Concentration
(ppm)
greater than | Number
of
supplies | Per cent
of total
supplies | Popula-
tion
served | Number
of
supplies | Per cent
of
classification | Popula-
tion
served | | 1.0 | 8 | 1.1 | 10,200 | 7 | 88 | 9,600 | | 0.3 | 38 | 5.2 | 88,000 | 22 | 58 | 64,000 | | 0.2 | 55 | 7.6 | 153,100 | 34 | 62 | 110,600 | | 0.1 | 101 | 13.9 | 241,400 | 64 | 64 | 152,600 | | Tr | 223 | 30.7 | 843,600 | 123 | 55 | 514,600 | 1950, only 27 per cent of the supplies with more than 0.3 ppm iron received treatment. Combining the 640,600 population
with the 851,200 served by ground-water that required no iron removal treatment provides a total representing 60 per cent of the population that receive iron free water. However, 47 per cent of the ground-water supplies still have an undesirable iron content and serve 40 per cent of the population. #### Manganese Manganese in water can cause brownish or black stains in laundered goods, and in even very low concentrations can eventually cause black deposits that clog water mains and household service lines. To avoid such problems, the U. S. Public Health Service Drinking Water Standards recommends a limit of 0.05 ppm. The available data for 726 public ground-water supplies show 223 supplies or 30.7 per cent to contain 0.1 ppm or more manganese (see table 4). Of these, 55 per cent serving a population of 514,600 are treated. A remaining population of 329,000 are served by 100 supplies that still require treatment to reduce the manganese content to less than 0.1 ppm, of which 37 supplies provide water with 0.2 ppm or more manganese. #### Fluoride The fluoride content of water has been shown to be associated with both the incidence of dental caries and mottled tooth enamel or dental fluorosis. The incidence of dental caries decreases with increasing concentrations of fluoride, and the degree and incidence of fluorosis (darkened, or mottled teeth) increases with fluoride concentrations above 1.0 ppm. The 1961 Public Health Service Drinking Water Standards recommends that the optimum concentration be 1.0 ppm where the annual average of maximum daily air temperatures is 58.4 to 63.8°F and 0.9 ppm where this average temperature is 63.9 to 70.6 F. Concentrations greaterthan twice either of these optimum concentrations are grounds for rejection of the water supply. Nine of the public ground-water supplies serving 24,700 people contain more than 3.5 ppm fluoride, as indicated in table 5. Forty-three supplies, which serve 454,900 people, contain natural fluoride in concentrations ranging from 0.9 to 1.1 ppm. About 75 per cent of the supplies contain 0.5 ppm of fluoride or less. Of these, 23 add fluoride for a population of 279,200. Thus the total population served with 0.9 to 1.1 ppm fluoride is 734,100, and about 1.3 million people are served with water containing 0.0 to 0.5 ppm fluoride. #### **Nitrate** Excessive nitrate concentrations in water may cause "blue babies" when such water is used in the preparation of infant feeding formulas. The Public Health Service Drinking Water Standards recommends that the nitrate content of drinking water not exceed 45 ppm (as NO3). Four of the present public ground-water supplies in Illinois contain more than 45 ppm nitrate, and have been in use for a number of years with no reported difficulty # 5. FLUORIDE | | | Natural supplies | | | Treated supplies | | |--|--------------------------|--------------------------------|---------------------------|--------------------------|----------------------------------|---------------------------| | Concentration
(ppm)
greater than | number
of
supplies | Per cent
of 755
supplies | Popula-
tion
served | Number
of
supplies | Per cent
of
classification | Popula-
tion
served | | 3.5 | 9 | 1.2 | 24,700 | 0 | | | | 1.5 | 49 | 6.5 | 115,300 | 0 | | | | 1.1 | 70 | 9.3 | 179,100 | 0 | | | | 0.8 | 113 | 15.0 | 634,000 | 0 | | | | 0.5 | 190 | 25.2 | 858,300 | 0 | | | | 0.2 | 446 | 59.2 | 1,310,900 | 9 | 2.3 | 29,600 | | 0.0 | 755 | 100. | 2,427,000 | 23 | 3.0 | 279,200 | #### 6. NITRATE | Concentration
(ppm)
greater 'than | Number of supplies | Per cent
of 754
supplies | Population
served | |---|--------------------|--------------------------------|----------------------| | 45 | 4 | .5 | 2,400 | | 10 | 60 | 8.0 | 142,200 | | 2 | 232 | 30.8 | 793,300 | | 1 | 355 | 47.1 | 1,222,700 | from this cause. However, there have been a great number of cases of "blue babies" associated with shallow rural supplies where this concentration has been exceeded. Statistical data concerning nitrate for 754 public ground-water supplies are shown in table 6. Fifty-three per cent of these 754 supplies contain $1.0~\rm ppm~NO_3$ or less. Ten per cent of the supplies obtained from drift or unconsolidated formations contain $10~\rm to~123~\rm ppm$ nitrate, whereas $10~\rm per$ cent of the limestone supplies contain 7 to 44 ppm and $10~\rm per$ cent of the sandstone supplies contain 3 to 34 ppm $\rm NO_3$. #### Chloride and Sulfate High chloride and sulfate concentrations are direct indications of high total mineral content. Chloride and sulfate salts are generally quite soluble in water at normal temperatures, although the solubility of calcium sulfate at temperatures approaching boiling reduces to the point where all of the calcium and sulfate are not compatible in solution. The scale-forming tendency of calcium and sulfate at elevated temperatures is not as great as the scale-forming tendency of calcium and carbonate. The presence of high chloride and sulfate content producing waters of high mineral content is responsible for greater electrical conductivity. This in turn enhances corrosive properties of water, particularly with respect to iron, and greatly accelerates the galvanic corrosive effect on iron when coupled with copper-bearing metals. Chlorides are reported to be detectable by taste when present in concentrations above 250 ppm. The Public Health Service Drinking Water Standards recommends a limit of 250 ppm chloride or sulfate, in conjunction with its recommendation of 500 ppm for total dissolved minerals. However, it is also recognized that a considerable number of supplies in use exceed these limits in one or more respects with no obvious ill effects. More than 5 per cent of the public ground-water supplies, serving 70,800 people, exceed 250 ppm in #### 7. CHLORIDE | Concentration
(ppm)
greater than | Number of supplies | Per cent
of total
supplies | Population
served | |--|--------------------|----------------------------------|----------------------| | 1000 | 2 | 0.3 | 200 | | 500 | 15 | 2.0 | 28,000 | | 250 | 42 | 5.5 | 70,800 | | 100 | 81 | 10.5 | 171,700 | | 50 | 128 | 16.6 | 247,500 | | 25 | 204 | 26.5 | 630,200 | | 10 | 369 | 47.9 | 1,191,100 | | 5 | 522 | 67.8 | 1,611,500 | #### 8. SULFATE | Concentration
(ppm)
greater than | Number of supplies | Per cent
of 725
supplies | Population served | |--|--------------------|--------------------------------|-------------------| | 1000 | 8 | 1.1 | 13,600 | | 500 | 28 | 3.9 | 38,100 | | 250 | 92 | 12.7 | 304,400 | | 100 | 258 | 35.6 | 1,095,200 | | 50 | 376 | 51.9 | 1,397,600 | | 25 | 463 | 64.0 | 1,636,000 | | 10 | 549 | 76.0 | 2,036,700 | | 5 | 579 | 80.0 | 2,079,400 | chloride content (table 7); and more than 12 per cent of 725 supplies that serve 304,400 people exceed 250 ppm in sulfate (table 8). The median chloride content is about 10 ppm and the median sulfate content, 50 ppm. #### Sodium The data for sodium were calculated by difference. Although potassium is included with sodium by this calculation, many specific determinations have shown the potassium content to be only a small fraction of the total, seldom exceeding a few ppm. Interest in sodium results from occasional requirements for "salt-free" diets. Statistical data concerning sodium for 711 public # 9. SODIUM | | | Natural supplies | | | Treated supplies | S | |---|--------------------------|--------------------------------|---------------------------|--------------------------|--------------------------------|---------------------------| | Concentration*
(ppm)
greater than | Number
of
supplies | Per cent
of 711
supplies | Popula-
tion
served | Number
of
supplies | Per cent
of 711
supplies | Popula-
tion
served | | 500 | 15 | 2.1 | 16,000 | 16 | 3.0 | 18,800 | | 200 | 77 | 10.8 | 174,100 | 115 | 16.2 | 259,600 | | 100 | 137 | 19.3 | 274,300 | 220 | 31.0 | 458,700 | | 50 | 260 | 36.6 | 733,000 | 331 | 46.5 | 909,500 | | 25 | 377 | 53.0 | 1,372,600 | 429 | 60.4 | 1,494,100 | includes potassium ground-water supplies serving a population of 2,403,400 are given in table 9. About 37 per cent of the population served by these 711 ground-water supplies receive water with less than 25 ppm sodium, and about 11 per cent receive more than 200 ppm sodium. # **Alkalinity** In most ground waters in Illinois the alkalinity is in the range of 200 to 400 ppm, and in general is associated with 20 to 50 ppm free carbon dioxide. The free carbon dioxide in the water is usually not more than that necessary to maintain the solubility of calcium in these waters. The exact concentration of free carbon dioxide has been calculated from the bicarbonate alkalinity and from the pH* for such analyses where the pH determination was made. Only a few waters contain a free carbon dioxide content greater than 50 ppm. In such cases the waters have a tendency to be excessively corrosive to pumping equipment and to hot water facilities. Alkalinity is normally present almost entirely in the form of bicarbonates. On heating, bicarbonates are converted to carbonates by loss of carbon dioxide. Such loss occurs when free carbon dioxide in the water escapes to the air, even on standing exposed to air; and, when the temperature is elevated, the rate of loss of free carbon dioxide gas to air is accelerated. The carbonates thus formed, being incompatible with calcium, form a precipitate or scale of lime or calcium carbonate. Waters softened by zeolite will produce excessive quantities of carbon dioxide in steam, and the resultant corrosion in condensate return lines can be a major problem. The removal of carbon dioxide by aeration is of limited benefit for Illinois waters since the
removal of some carbon dioxide only causes the formation of an additional quantity of free carbon dioxide as bicarbonates are converted to carbonates. Free carbon dioxide when disproportionate in balance with calcium and bicarbonate alkalinity may cause corrosion or scale formation depending upon whether its concentration is greater or less than that required to maintain calcium carbonate in solution. Almost without exception, CO_2 in ground water is in balance with the solubility of $CaCO_3$ at the ground-water temperature. # Hydrogen Sulfide Hydrogen sulfide when present in water in concentrations greater than 0.2 ppm causes the water to have a mild to strong odor of rotten eggs. Ordinary aeration pro- * pH is a measure of the intensity of acidity and basicity. A pH of 7.0 is considered to be neutral wherein the basicity is equal to the acidity; then, a pH of 6 is 10 times as acidic, and a pH of 8 is one-tenth as acidic, a pH of 9 is one-hundreth as acidic, etc. cedures are usually sufficient to remove this gas from the water. Chlorine also reacts readily with this gas. It has been noted that the waters in which this gas has been found have usually been obtained from one of the bedrock limestone formations. #### Methane Methane gas is present in a number of ground-water supplies and on several occasions has caused severe explosions. This gas is colorless, odorless, and tasteless; it is lighter than air and inflammable. When released from the water and mixed in concentrations of 5 to 15 per cent with air, the resultant mixture is highly explosive on ignition. If water containing this gas is passed through a pressure tank, it is possible for the air cushion to contain a high proportion of methane. In such cases the vent for the release of accumulated gas in the pressure tank should extend outdoors and never inside a building. An inside vent can easily lead to the 5 to 15 per cent explosive mixture with air in the room. Methane gas can readily be removed from water by standard aeration procedures. The occurrence of methane in ground waters appears to be limited to supplies which obtain water from the unconsolidated beds above the bedrock. On a few occasions such gas has been obtained from wells yielding water from limestone where the limestone presumably has been fed from the overlying unconsolidated deposits. # Nitrogen and Oxygen Nearly all ground waters and surface waters in Illinois contain approximately 2½ cubic feet of nitrogen per thousand gallons. The presence of this gas has no particular significance for general household purposes. Illinois ground waters rarely contain dissolved oxygen as originally pumped from the ground. However, in the process of treatment, either for gas removal or for iron removal, 6 to 10 ppm of oxygen may be added to the water. At plants where the water is stored in ground reservoirs or in elevated tanks, oxygen again may be dissolved in the water to a small extent. Oxygen is also added to water at any time that water is withdrawn from a tap. The effects of oxygen are numerous. If iron is present in the water, only 0.14 ppm oxygen is required to convert 1 ppm soluble ferrous iron to the insoluble ferric iron, thereby causing a reddish cast or tinge to the water. The presence of oxygen in water accelerates corrosion and affects the suitability of water for specific purposes. However, aerated water usually tastes better since minor traces of other volatile substances are thereby removed. Oxygen has no taste or odor in itself. #### DISTRIBUTION SYSTEMS It is pertinent to keep in mind that all analyses of treated water quoted herein were made on samples of water as delivered to the particular distribution system. The quality obtained at the consumer's tap, however, is not always identical with that delivered to the system, but this is not surprising in view of the many changes in handling that ensue. In specific cases the water passes upward through an elevated storage tank, through miles of cast iron or asbestos or cement-lined pipe, through valves or constrictions, and around bends and turns. It is subjected to sudden changes in pressure and velocity, which on occasion may result in water hammer. The velocity of flow through the pipes and the service lines varies from zero to the very high velocity required when water is used for fire fighting. Low flow rates promote the deposition of any suspended matter, whereas high flow rates tend to disturb and resuspend these deposits, often in a greater concentration than was originally present. In many cases perfectly good water leaving a treatment plant must come in contact with accumulations or deposits of oxidized iron or corrosion products or slime deposits, particularly in old mains,, and will carry these to the household tap. In the household the water may come in contact with many junctions of dissimilar metals, such as brass and iron, or copper and steel; and the resulting galvanic corrosion causes the solution of some iron. In some cases a deposition of accumulating scale occurs, thereby restricting the opening and reducing the pressure at the tap and the rate of flow of water. In other cases the water may contain ingredients that promote the growth of bacteria to form a slime on the pipe walls. Such slime-producing organisms are not considered harmful to humans, but prove to be a nuisance when bacteria may be present in the water to convert sulfates to hydrogen sulfide which in turn reacts with soluble iron to form ferrous sulfide, a black substance. Still another change may be temperature. Since the distribution system and mains are only a few feet below the ground surface, the temperature of the water as it passes through the distribution system may change considerably seasonally. It is not unusual for well water with a constant temperature of about 55° to vary from 40° to $70^{\circ}F$ seasonally at home taps. Such temperature changes may cause changes in chemical equilibria in the water, which in turn on occasion may cause a pickup of a few parts per million hardness from old hardness deposits in the mains. These same changes in chemical equilibria also may be responsible for certain increases in iron as the water passes through the distribution system. Since odors are more pronounced at higher temperatures, they are more frequently noticed during warm seasons when the temperature of the water may be high. Often times in home basements the cold water pipes may be adjacent to a furnace pipe, and the cold water thereby becomes heated. On heating, any appreciable gases present in the water become less soluble and can produce a milky water as it is drawn at the tap. The effect of temperature changes on water properties is particularly emphasized at hot water heaters or furnace coils, where scale or corrosion or both may occur depending on the original mineral character of the water. It is therefore evident that the quality of water as delivered to the consumer is dependent not only on the quality of the water as obtained from its source but also on the method of handling and the effects of the various physical changes to which it is subjected in transportation. # TABULATED DATA Tabulated data of mineral content for public groundwater supplies in Illinois are presented on the pages that follow. Symbols used in the tabulations are: #### Source - D unconsolidated materials above the bedrock - L limestone deposits - S sandstone deposits ### Treatment - I iron removal - A aeration - L lime or lime-soda softening - Z zeolite (or ion-exchange) softening - Cl chlorination - F fluoridation Methane and Hydrogen Sulfide $X\, \hbox{-}\, present$ | | Iaboratory
Number | Source | Trestment | Iron | Manganese | Ammonium | Sodium | Calcium | Magnesium | Silica | Boron | Fluoride | Nitrate | Chloride | Sulfate | Alkalinity | Total
Hardness | Total
Dissolved
Minerals | | Carbon
Dioxide | Methane | Rydrogen
Sulfide | Temperature | |---|--|---|----------------------------|--|----------------------------------|--|--|--|--|--|----------------------|--|---|--|--|--|--|---|-------------------|-------------------|---------|---------------------|--| | City | | | | Fe | Mn | nh ^{1†} | Na | Ca | Mg | S10 ₂ | В | F | NO ₃ | C1 | so_4 | (as | CaCO3) | | pН | co2 | СИц | н ₂ s | $^{\circ}\mathbf{F}$ | | Abingdon Adams Hts. Addison Albany Albers Aledo Alexis Algonquin Allendale Allerton | 109796
148256
146504
144659
108244
127954
110959
144605
144820 | S
L
D
D
S
S
D
S
L | c1
c1 | .7
1.6
1.1
3.6
.1
2.3
.9
3.2
2.7 | .0
Tr
Tr
.0
.0
.0 | 1.1
Tr
.1
1.8
1.2
2.2
.8
.6 | 320
13
22
5
41
325
288
1
71
183 | 84.4
98.3
98.0
67.7
79.0
61.5
48.1
68.5
66.5 | 33:4
47.9
44.3
29.8
24.7
17.6
18.9
39.5
29.6
22.9 |
14
13
16
27
19
12
12
26
27
16 | .1
.3
.1
.2 | 3.5
.3
.2
.2
.4
1.6
.3
.3 | .9
.5
.8
8.9
.7
.3
1.5
.9
1.1 | 160
4
10
5
5
176
104
4 | 566
64
112
16
1
401
360
14
1 | 232
400
344
272
380
272
308
316
428
312 | 349
443
427
292
299
227
198
334
288
339 | 1324
489
525
317
394
1158
1034
360
496
374 | 7.1
7.6 | 60
24 | | | 71.5
52.0
51.0
53.5
59.5
62.5
59.8
50.5 | | Alpha
Altona
Amboy
(treated)
Andalusia | 120516
125063
153626
112901
144667 | r
r | I
HC1
HC1F | 2.8
.1
.2
.8 | .0 | .8
Tr
.1
2.6 | 348
6
6
95 | 12.1
85.5
77.0
41.5 | 2.8
37.5
31.8
18.6 | 15
16
20
9 | .0
.0 | 2.8
.2 | 6.5
.7
7.6 | 36
159
1
80
3 | 155
39
10
7 | 432
536
364
34
324 | 251
42
368
50
324 | 754
920
389
123
342 | | | | x | 61.0
53.0
54.0 | | Andover Anna (treated) Anna St. Hosp. Annawan | 144676
113381
114107
113441
110512 | L
L
D | IC1
C1 | .1
.1
.4
.6 | Tr
.0
.0
Tr | Tr
Tr
3.5
Tr | 26
5
35
52 | 103.7
83.8
57.2
39.5 | 7.6
26.4
26.0 | 18
27
17
19 | •3 | .3
.6
.1
.3
.2 | 1.7
21.5
3.9 | 10
27
30
6
1 | 56
37
15
4 | 324
384
256
26
224
332 | 181
293
77
241
252 | 477
389
163
277
351 | 7.2
9.6
7.2 | 40
36 | | x | 57.6
59.5
53.5 | | Antioch
Apple River
Apple River | 146791
108581 | S
L | | .2
.1 | •1 | •1 | 1 | 58.7 | 30.2 | 16 | | .8
.3 | 3.2
1.9 | 4
6 | 64
21 | 244
242 | 206
272 | 351.
292 | 7.2 | 41 | | | 51.4
50.6 | | Canyon St. Pk. Arbury Hills Arcola Arenzville Argenta Arlington Arlington Hts. | 88415
152064
139371
114564
144135
136762
146375 | L
D
D
D
S | IZ
IZC1 | .9
4.1
.2
1.4
1.0
.2 | Tr
.3
.1
.0
Tr
Tr | 15.1
Tr
2.0
.1 | 113
1
97
6
56 | 67.6
8.8
70.5
82.3
71.2 | 29.3
32.5
36.5
37.6
22.7 | 26
23
15
23
11 | .2
.2 | .4
.2
.1
.4
.1 | .0
4.8
35.8
2.4
.5
2.8 | 1
2
21
12
77
9
12 | 1
54
1
45
76 | 344
308
356
252
432
312
270 | 347
1130
232
354
327
348
268 | 381
1581
390
391
572
372
385 | 6.9
7.1 | 159
65 | | | 55.0
57.0
55.0
51.4
58.0 | | Armington Aroma Park Arrowsmith Arthur Ashkum Ashland Ashmore Ashton Assumption (treated) | 144266
143470
130071
153284
110440
114562
153661
113129
154964
115514 | D D D D D D D D D D D D D D D D D D D | ZC1 IZ I IZC1 I IZC1 IZC1F | .2
1.2
1.6
2.0
Tr
1.9
Tr
16.4 | .0 | .1
3.6
1.1
2.2
Tr
Tr
Tr
Tr | 24
92
101
51
23
10
3
9 | 84.3
37.6
59.5
55.0
110.0
93.4
88.9
91.1 | 43.1
18.2
28.6
37.2
47.9
43.8
47.7
29.4 | 8
23
24
12
19
16
19 | .1 | .0 39 34 22 .1 3 | 3.1
.0
1.0
1.1
1.7
3.5
42.9 | 3
27
6
4
50
43
16
18
7 | 1
124
1
1
76
89
70
78
125 | 346
272
372
552
256
368
336
284
162
204 | 296
388
169
421
291
472
414
419
204
74 | 336
483
407
557
444
574
478
470
272
344 | 7.4
7.3 | 48
33
5 | X | x | 56.0
54.2
54.0
55.7
53.5
49.5
52.2
54.0
65.0 | | Athens Atkinson Atlanta Atwood (treated) Aurora Austin Acres Ava Aviston Balmoral Hts. | 118446
108417
115838
152920
115180
149496
150612
113844
144258
146506 | S D D D S L S D S L | C1
IZC1
IZC1
IZC1
IZC1 | 5.0
1.6
.2
.7
2.9
.7
2.8
.4 | .0
.1
.0
Tr
Tr
.2
.1
Tr | 1.7
7-1
2.2
Tr .0
Tr
1.3
Tr | 170
14
22
59
24
35
68
19 | 20.1
85.9
111.8
59.9
118.3
98.1
76.5
82.8
58.1 | 9.9
43.1
34.4
20.4
40.7
48.3
26.2
38.7
41.9 | 14
28
30
9
16
16
18
12
24 | .3
.1
Tr
.2 | .1
.7
.2
.4
.1
1.1
.4
.1 | .1
1.6
1.4
.5
2.6
1.5
.2 | 7
9
1
2
4
4
6
8
7
39
1 | 56
3 ¹ 4
1
3
29
156
137
2
19 | 360
416
440
468
456
264
340
368
392
384 | 394
92
393
379
96
234
463
444
299
366 | 448
512
455
475
475
386
579
580
481
424 | 7.3
7.3
7.7
7.1 | 55
59
22
72 | | • | 54.6
56.0
56.0
59.0
64.4
53.8
57.5
57.5 | |--|--|---------------------------------------|------------------------------------|--|--|---|--|---|---|---|-----------------------|--|--|---|---|---|---|---|--------------------------|----------------------|---|---|--| | Barrington Barrington Woods Subdn. Barry Bartlett Batavia Baylis Beardstown Beaverville Bedford Pk. Dist. Beecher | 106280
133506
141043
106281
132088
148580
152606
119060
107219
107893 | L D L S L D L LS L D | C1
C1 | .7
.3
1.0
1.1
.6
1.0
1.0
.4 | .0
Tr
Tr
.3
.1 | .5
.9
.3
Tr
5.1
.8
Tr | 1
44
136
26
29
83
50 | 83.1
61.7
5.6
97.4
60.9
115.6
162.1
75.1 | 53.0
24.8
1.5
.3
21.4
80.6
49.0
23.1 | 21
10
16
16
16
16
13 | .8
.3 | .4
.7
.1
.3
1.0
1.6
.2
.3
.5 | 1.1
.3
.2
.3
.5
1.9
1.2
.2
1.3 | 2
45
9
4
7
51
39
28
3 | 76
41
47
1
124
4
516
456 | 264
168
340
380
294
242
260
272
224
240 | 318
424
348
426
257
20
388
241
621
607 | 385
659
363
435
380
360
512
302
1007
870 | 7.2 | 39 | | x | 51.3
52.2
55.0
51.0
53.5
59.0
53.9
58.6
52.5 | | Beecher City | 124146 | L | | .2 | .1 | .1 | 4 | 97.6 | 42.2 | 19 | | -3 | 10.6 | 6 | 50 | 252 | 283 | 338 | • | | | | 55.2 | | Belmont Highwood Wtr. Dist. Bellflower Bellmont Bellwood Belvidere Bement Bensenville Benson | 110602
144164
144603
125513
153623
115722
146498
109421 | D
S
L
D
S
D
L | C1
C1
IZC1 | 1.4
Tr
.5
.3
.4
.1
7.1 | .0
Tr
.1
.0
.1
.1 | Tr .2 .4 .4 2.3 Tr .6 | 15
284
188
4
49
38
8
27 | 69.5
2.1
31.9
78.0
69.4
56.6
118.9
94.3 | 35.1
1.5
7.1
36.0
35.9
22.7
55.8
56.2 | 14
9
22
11
23
18
21 | .3
.2
.1 | .2
.4
1.0
4.0
.2
.3 | .5
1.2
1.1
.0
2.4
.1
2.0 | 7
5
63
106
3
22
28
25 | 128
18
1
63
30
2
73
144 | 284
324
539
304
316
400
200
364 | 418
318
12
109
343
321
235
527 | 471
352
696
617
354
444
367
610 | 7.6 | 19 | | | 50.3
54.0
60.5
65.0
53.0
55.2
59.5 | | Berkeley Bethalto Bethany (treated) Biggsville Black Hawk Hts. Blue Crest Subdn. Blue Mound (treated) Bluffs (treated) | 106311
150348
115188
115176
108143
147067
147060
115619
115782
152613
113691 | D D D D D D D D D D D D D D D D D D D | 1Z
1Z
1Z
1Z
1Z
1ZC1 | .6
1.7
.2
.3
2.7
1.3
.7
.1
2.7 | .5
.2
Tr
.1
.1
.2
.2 | Tr 1.8 Tr Tr Tr Tr | 42
454
25
15
6
26 | 77.0
178.8
142.4
106.8
74.4
128.0 | 33.2
69.2
39.4
49.6
33.3
.2 | 26
14
21
11
22
14 | .2 | .4
.3
5.5
.3
.2
.3
.2
.2 | 2.8
1.5
10.1
2.6
.5
.7 | 17
9
12
195
3
18
19
19
16
27 | 164
1
1192
206
187
81
198 | 348
324
400
424
208
352
284
224
232
376
140 | 467
450
329
74
732
518
471
323
85
550
216 | 579
524
432
470
2287
696
565
365
369
474 | 7.2
7.2
7.7 | 59
63
21 | x | x | 50.6
55.0
55.5
57.8
65.0
53.0
51.4
55.0 | | Bourbonnais Bowen Bradford Bradley Braidwood Brickman Manor Subdn. Bridgeview Broadlands Brookhaven Manor | 112688
128639
108719
112689
107909
152022
147975
144123
146606
113289 | D LS
S S L L D L D D | I IC1 | 3.2
.4
.2
.3
.9
1.0
2.4
Tr | .0
.0
Tr
.0
.0
Tr
Tr | 1.0
.7
1.0
Tr
Tr
1.7
Tr |
399
257
267
67
49
68
21
4 | 76.0
116.3
86.7
50.0
127.2
51.0
143.8
66.9
85.7 | 31.0
59.3
44.8
29.7
70.7
18.3
53.1
8.9
33.0 | 11
11
12
13
21
16
15
23 | .4
.4
1.7
.2 | .0
.1
1.4
1.4
1.2
.3
.7
.1 | 2.4
3.9
13.3
.1
1.9
.5
.4 | 3
1
500
270
250
7
23
4
8 | 43
249
446
362
195
401
4
207
22 | 328
416
220
240
256
176
264
344
396
184 | 373
357
318
535
401
247
608
203
578
204 | 401
434
1428
1354
1199
458
879
368
729
238 | 7.3
7.4 | 30
25 | | х | 52.7
54.5
68.5
58.0
58.6
51.3
52.0
54.5
51.2
60.0 | . | | Laboratory
Number | Source | Trestment | Iron | Manganese | Armonium | Sodium | Calctum | Magnesium | Silica | w Boron | Fluoride | Mitrate | G Chloride | Sulfate | Alkalinity | Total
Hardness | Total
Dissolved
Minerals | _8 | Carbon
Dioxide | A. Methane | Hydrogen
Sulfide | 4 Temperature | |--|--|---|------------------------|--|----------------------------------|---|--|--|--|--|----------------|--|--|--|---|--|--|--|---------------------------------|----------------------|------------|---------------------|--| | City | | | | Fe | Mn | NH ₄ | Na. | Ca | Mg | ^{S10} 2 | в. | F | NO ₃ | CI | SO ₄ | 88) | caco ₃) | | pН | co_2 | СН | H ₂ S | T. | | Brownstown Buckingham Buckley (treated) Buda Buffalo Grove Buffalo Rock St. Pk. Bureau Burlington Bushnell | 114770
112780
116414
116648
153663
148334
110855
108163
111400
113769 | L
D
D
D
IS
S
D
L
D
S | IZ
IZ
IZ | .5
1.4
2.4
.3
.2
1.4
.4
3.1 | .1
.2
Tr
Tr
.0
.0 | .4
3.3
1.1
.5
Tr
.2
.4
1.3 | 97
56
34
46
12
783
12
506 | 33.2
188.4
59.1
87.0
75.0
13.5
78.2
100.8 | 18.7
73.2
36.5
21.5
36.9
4.7
34.7
41.2 | 15
26
14
7
15
11
34
14 | .4
•3
•2 | .1
.6
.3
.6
.8
.5
.3
.5 | 2.3
.5
.0
10.8 | 45
22
4
6
1
18
59
770
5
400 | 178
51
531
1
119
78
176
4
649 | 348
288
344
340
372
258
316
488
344
236 | 350
160
772
21
298
306
437
54
338
422 | 678
398
1149
1088
375
449
514
2062
385
1874 | 7.7
7.1
7.5
8.0
7.5 | 15
70
27
27 | | x | 58.0
53.3
54.3
55.0
53.0
57.9
53.2
55.5
51.0 | | Byron Cabery Camargo Cambridge Campbell Hill Camp Point (treated) Campus Capron Carbon Cliff | 112656
152585
154790
108415
108603
152607
113931
110183
108435
126200 | SLDSSDDDLS | C1 IZ IIC1 IZC1 IZ A | 2
14.0
.2
2.1
.1
Tr
1.0 | .0
.0
.1
1.7
.0 | Tr
Tr
3.2
.7
Tr
2.7
.4
2.8 | 1
254
168
18
13
140
1413 | 50.2
150.8
45.2
142.0
146.0
59.1
80.1
101.9 | 33.6
64.0
18.8
41.9
54.7
25.0
37.1
47.4 | 12
10
13
17
24
15
27 | .1 | .1
1.0
.4
.8
.1
.1 | .4
9.0
6.0
1.7
1.0
3.0 | 2
21
13
50
9
12
7
82
2
630 | 16
923
139
167
184
211
5
310 | 244
196
632
348
380
408
408
228
348
216 | 264
640
332
190
525
590
310
251
353
450 | 256
1619
661
640
617
708
882
692
376
1707 | 7.2 | 56 | | X | 55.0
54.0
55.0
59.7
60.1
57.5 | | Carbon Hill Carol Stream Carpentersville Carrollton Carthage Cary Casey (treated) Caterpillar Trails Pub. Wtr. Dist. | 112612
147510
111396
116393
144582
155186
149499
155736 | S L S L D L D D | C1 IIC1 IIC1 IIC1 | .3
.9
.1
.1
.7
1.3
2.3
Tr | Tr .0 .0 .0 .1 | .5
Tr
4.6
.9
5.3 | 40
4
65
8
83 | 51.8
82.7
70.5
73.5
65.2
18.7 | 20.2
25.9
25.4
40.5
29.7
16.3 | 14
20
13
18
16 | .2
.9
.1 | .5
.8
.2
.2
.4
.5 | .3
.6
11.5
1.1
1.1 | 272
3
10
5
10
7
48
49 | 342
14
32
4
73
1 | 244
260
272
272
416
284
412
244 | 421
304
213
314
281
351
285
114 | 1224
366
309
355
437
396
498
320 | 7.3
7.2 | 30
43 | | x
x | 56.6
51.0
55.7
58.0
55.0
52.0
55.0 | | Pub. wtr. Dist. | | ע | 1 | •9 | • 1 | | | | | | | • 1 | •€ | * | | - | JW | •• | | | | | 24.0 | | Catlin Cedar Point Cedarville Cerro Gordo Chadwick Chain O'Lakes St. Pk. Champaign-Urbana Chandlerville (treated) Chapin | 118847
110703
117974
147646
108716
146793
142030
114560
114559
106883 | S LS L D S L D D D S | IZC1
A
ILC1
L | 5,698
2,98
1,62
Tr.18 | .0
.2
Tr .0
Tr .1 | .8
1.1
.2
Tr
.7
.1
.5
Tr | 121
297
12
16
1
31
31
18 | 115.1
53.7
137.3
85.5
89.2
46.0
54.3
115.8 | 48.6
22.1
56.6
35.7
39.5
31.0
28.0
44.1 | 26
15
23
14
17
20
14
18 | .2 | Tr
1.1
.3
.2
.7
.2 | 3.2
1.7
3
1.0
.8
1.7
1.5
57.8 | 74
308
14
21
2
6
5
23
23
6 | 264
183
64
108
2
9
1
176 | 372
248
516
244
384
292
312
248
36
460 | 490
225
576
320
386
243
251
471
137
315 | 892
1023
628
382
377
320
312
592
355
521 | 7.0
7.1
7.1 | 139
62
92 | | x | 50.6
55.0
51.8 | | Chatsworth Chautauqua Chebanse Chenoa (blended) Cherry Chicago Hts. Chillicothe Chrisman Cisco | 119574 D IZ 129053 L C1 152589 L 144494 D IZ 116033 D IZ 111311 D AII 108579 L ICI 119774 D C1 114991 D ICI 123280 D I | 1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 | 1.0 30 96.4
Tr 8 84.0
1.0 60 68.2
Tr 1 72.6
.6 24 105.9
Tr 4 80.5
15.5 109 6.7
24.2 68 100.7 | 40.8 19
16.6 23
31.5 9 .8
28.5 16
53.3 20
30.5 21
25.2 26
43.5 35 | .5 .4 3 162
.1 9.3 5 35
.6 1.0 6 168
490
.5 149
.2 .9 5 69
1.7 3 157
.3 10.8 14 95
.3 Tr 51
.1 .0 2 7 | 304 409 503
244 278 325
248 300 501
340 238 1238
484 142 770
220 299 324
368 484 587
208 327 381
480 271 549
636 432 657 | 7.5 41
7.1 77
7.8 19 | 54.0
54.0
54.0
62.6
60.0
51.5
57.1
55.0
54.8 | |---|--|---|--|---|--|--|--|--| | Ciene
Cissna Park
Citizens Bluett Co. | 115273 S I
152586 p | 1.5 .1
.9 .1 | 1.2 83 90.0
2.1 23 82.8 | 27.0 34
37.2 15 .2 | .1 .2 22 35
.2 .8 3 25 | 432 336 570
384 360 424 | | 57.4
54.5 | | Subdn. Claremont Claredon Hills (treated) Clifton Clinton Coal City | 152021 L
144602 S
110351 L IZE
110888 L
116365 L I
137291 D AIG | .4 .0 Tr Tr F .5 .0 .1 .8 Tr CLZ 3.1 .3 1.2 .0 | Tr 58 55.0
.1 280 46.5
.8 26 145.2
2.5 53 105.2
2.9 83 71.6
1.4 328 112.2 | 33.2 14 .3
22.9 12 .2
46.3 23
44.2 12
35.8 15 .4
51.2 11 | .4 1.7 4 183
.7 2.4 10 200
.3 .7 5 215
.3 5
.5 .4 4 243
.3 .1 56 1
.6 .5 225 517 | 204 274 475
596 210 950
380 554 687
352 36 673
308 445 664
436 326 523
352 491 1470 | 7.0 100
7.7 20
7.1 71
7.3 52 | 59.0
51.5
53.0
53.0
55.5
52.7 | | Coal Valley Cobden Colchester (treeted) Colfax (treated) Collinsville Compton Cornell Country Club Hts. | 112248 L I
113372 S IZ
113831 D IZ
113830 D
115949 D III
116037 D
138478 D L
153621 D
132423 D
150130 L L | C1 2.3 .4
Tr
C1 1.8 .0 .2
.8 .4
1.2 .0 .5 .1 | Tr 95 45.4
Tr 20 69.4
1.1 104 190.1
13.3 104 91.1
Tr 4 87.4
.1 34 48.2
.8 305 54.3 | 19.7 15
6.8 17
64.2 17
36.3 31
35.9
35 .1
21.0 16 .3
27.9 22 | .3 11.8 6 21
.1 2.4 9 44
.1 Tr 10 480
.2 13
.3 .4 59 1
.3 .7 7 47
.6 .9 1 1
.6 .7 230 41
.1 .7 24 | 364 195 428
180 202 295
456 740 1132
468 173 1172
556 377 664
208 76 374
316 366 412
280 207 309
548 251 1038
380 670 847 | 6.0 111 X
7.1 127
10.2 | 53.0
58.0
48.5
53.7
58.0
57.0
52.5
53.5 | | Country Club Highlands Country Club Hills Cowden Creal Springs Crescent City Creston Crete Creve Coeur Crossville | 146383 L Z
149638 L ZC1
115229 D
130823 S A
152591 D
112799 LS
107892 L C1
152390 D | .1 Tr
1.9 Tr
.9 .1
1.8 .0
.3 .0
.1 Tr | Tr 52 89.4
.6 48 117.0
Tr 3 87.3
4.4 67 55.8
Tr 31 85.8
.7 24 43.9
.3 3 99.0
.1 27 121.8
Tr 6 98.8 | 52.3 20 .5
68.0 8 .8
34.5 20
22.4 20
35.6 17 .3
28.0 16
44.0 19
50.2 18 .2
29.7 14 .0 | .5 .9 6 237
.1 .7 6 309
.1 9.5 7 62
.3 .5 8 14
.2 4.8 5 94
.5 .2 2 1
.1 Tr 3 41
.2 2.7 22 175 | 296 439 678 348 572 791 284 361 420 364 232 405 320 361 479 276 225 300 388 429 452 356 511 640 | 7.0 61
6.9 113
7.1 81 | 53.5
59.5
55.0
53.8
51.7
56.0 | | (treated) | 114110 D | .1 | * ** | • | .1 383 | 352 132 614 | 7.6 25 | 55.0 | | Crystal Lake Cuba Cullom Cutler Dakota Dalton City Dalzell Danforth Danvers (treated) | 110907 S L 152615 L AI2 111683 IS AI0 113695 S 15352 S 141404 D AI0 111333 D Z 152828 L C1 115974 D AI0 116041 D | C1 3.6 .1 .7 Tr 1.1 .0 C1 6.0 .3 .0 | .3 11 53.2 1.8 544 169.8 .1 141 187.9 .6 53 49.0 Tr 1 62.1 Tr 11 102.8 .6 329 9.1 11.2 140 65.5 | 26.3 14
68.0 10 .7
69.3 19
15.4 14
33.0 10 .0
45.8 21
4.0 12
30.8 22 | .3 1.0 5 21 2.8 .8 370 1109 .8 8.1 14 888 .1 .5 25 14 .2 .6 1 12 .3 .5 25 .1 4.5 11 117 1.8 .8 290 4 .1 .4 54 1 .0 55 | 236 241 292
216 704 2482
112 755 1438
252 186 313
280 291 292
604 412 661
328 445 535
420 48 969
548 322 656
564 104 672 | 7.4 23
7.4 11 X
7.5 19 X
8.0 12
7.3 81 X
7.7 45 | 53.3
63.2
56.0
55.0
55.5
60.5 | • | | Laboratory
Number | Source | Treatment | Lron | Manganese | Ammon 1 um | Sodium | Calcium | Magnesium | Silica | Boron | Fluoride | Nitrate | Chloride | Sulfate | Alkalinity | Total
Hardness | Total
Dissolved
Minerals | | Carbon
Dioxide | Methane | Hydrogen
Sulfide | Lemerature | |--|--|---|-------------------------|--|----------------------------------|---|--|--|--|--|-------|---|--|---|---|--|--|--|---|----------------------|---------|---------------------|--| | City | | | | Fe | Mn | $NH_{\downarrow\downarrow}$ | Na. | Ca | Mg | 310 ₂ | В | F | NO3 | cr | $so_{i_{\sharp}}$ | ав) | ceco3) | | pН | ¢0 ₂ | СН4 | H ₂ S | °F | | Davis Decatur Deer Creek Dekalb Deland (treated) Delavan Depue Des Plaines (treated) | 144365
138932
109235
153624
152582
115781
109277
111363
132361
106432 | LS
D
D
D
D
D
LS
L | AIC1Z
I
IIC1 | 2.66.24
2.4.32
2.7.4
Tr | .0
.1
Tr
.0
.0 | .1
1.4
.2
.5
17.9
1.5 | 6
38
9
21
80
3
119
76 | 63.7
74.1
73.2
58.2
106.0
77.0
53.2
73.7 | 33.2
33.6
28.2
29.3
51.1
29.6
22.5
32.3 | 11
15
20
8
29
26
14
9 | .3 | .1
.1
.5
.4
.2
.2
.7 | 2.1
.5
1.2
.7
.6 | 2
14
1
17
16
2
88
19
36 | 9
3
4
1
1
64
247 | 296
388
312
308
624
688
320
296
200
50 | 296
324
299
266
475
66
314
226
317
104 | 298
404
323
307
655
738
328
546
614
328 | | | | | 52.0
55.0
56.0
57.0
54.5
65.0
66.0 | | Diamond Dickson Mounds St. Pk. Disterich Dise Subdn. Dixon Dixon St. Hosp. Dongola Donovan Downers Grove Downs | 153729
144394
144608
146084
113127
126882
145897
116417
148181 | S
L
D
L
S
S
L
D
L | AIZ 2 cl cl cl AIC1 | Tr
3.3
2.0
.9
.5
.4
2.86 | .0
.2
.0
Tr .0
Tr .0 | 1.6
1.3
.1
Tr
.1
Tr
.7
Tr
.7 | 267
1282
73
99
4
9
8
64
12
45 | 80.3
32.0
131.5
158.4
66.9
62.9
77.0
40.0
90.7
95.0 | 44.5
15.0
55.7
34.0
34.6
8.0
9.0
35.2
40.0 | 7
9
19
12
14
10
14
17
13
23 | .0 | .8
1.6
•3
.1
•3
.6
.1
•7
•1 | .5
1.2
2.1
1.0
Tr
.3
6.3
.2
1.8 | 245
1480
34
20
2
7
12
30
9 | 349
286
273
326
13
20
16
1 | 260
546
384
380
288
204
236
264
508 | 384
142
558
536
307
300
226
137
372
402 | 1188
3514
863
882
308
314
267
315
432
514 | 7.7 | 12 | | x | 57.1
60.0
59.0
52.0
57.4
57.0
56.5
54.0
51.8
56.0 | | Durand Dwight Earlville East Alton East Dubuque East Dundee E. Moline St. Hosp. Easton East Peoria Eastwood Manor Subdn. | 153357
110626
110626
116786
108575
111398
113406
153764
122549
148179 | LS
D
S
D
S
D
LS
DI
D
L | C1 | Tr
1.4
.5
.2
.3
1.6
.8
2.1 | .0
.0
.3
Tr
.0
Tr | Tr
3.6
Tr
Tr
.1
5.6
1.8
Tr
Tr | 1
154
13
24
2
3
174
3
17 | 68.7
108.5
56.3
108.7
54.3
5.7
88.8
63.1
104.6
60.1 | 36.0
43.1
26.5
30.5
32.2
38.2
38.3
28.2
37.9
33.9 | 14
16
16
34
13
23
17
18
19 | .1 | .26.4.4.2.33.2.1.3 | 10.5
.6
2.5
11.5
1.0
1.2
Tr
1.0
17.9 | 2
50
4
27
3
6
210
1
29
2 | 15
407
4
171
20
42
106
24
129 | 296
300
268
224
248
340
356
252
264
292 | 320
449
250
398
269
372
380
274
418 | 332
995
279
538
272
414
868
284
536
300 | 7.3
7.5
7.3 | 33
28
44 | | | 52.5
61.6
52.6
59.2
55.0
53.0
51.0 | | Edgewood Acres Edinburg Edwardsville Elburn Elgin (treated) Elgin St. Hosp. Elizabeth Elk Grove Elkhart City | 146379
107923
146647
111420
124959
112421
132090
108630
146377
115818 | L
D
D
S
S
L
L
D | Z AIZ IZC1 IA IAIZC1 C1 | 2.2
22.5
2.1
1.8
.1
.0
.7
.7
.1
2.4 | .1
.9
.2
Tr
.0 | Tr
1.7
.5
2.5
.5
Tr
.1
.6 | 148
21
7
35
34
27
2
47
35 | 177.8
63.3
63.8
53.9
65.0
114.5
74.0
39.4
89.8 | 94.2
26.0
18.2
28.8
21.9
56.1
39.9
26.5
38.1 | 16
38
35
23
11
15
12
9 | .1 | .1
.3
1.0
.4
.0
.1 | .7
.4
1.2
1.0
.2
10.9
1.3
.5 | 330
6
6
2
5
7
51
3
21 | 319
3
51
2
12
199
39
124
3 | 356
304
188
332
308
96
288
310
276
432 | 832
266
235
254
253
86
518
351
332
381 | 1331
353
315
350
339
155
673
361
481
462 | 6.69.07.07.1 | 196
1
81
97 | | x | 52.0
53.8
58.5
51.5
57.0
57.5
53.7
52.5 | | Elliott Ellis Grove Elmburst Elmwood El Paso (treated) El Vista Subdn. Elwood Emden Emroy Howard Subdn. | 121726
140960
133385
125277
109423
109424
151182
147722
115827
146389 | D D S IS D D S L D L | AIC1Z | 1.1
5.4
.5
.1
Tr
1.9
.7
4.1 | .0
.0
.0
Tr | .8
Tr
1.6
4.9
Tr
2.8
Tr | 51
57
390
30
40
19
36 | 60.0
76.7
84.9
86.2
69.3
76.2
87.9 | 24.8
26.8
31.0
34.9
34.7
32.8
51.5 | 19
2
15
25
24
15
34
17 | •3
•3 | .7
.1
.9
2.8
.2
.6
.7
.3 | .1
.2
2.7
.2
1.4
1.1
2.6
4.7 | 1
8
21,
215,
6
9
184
5 | 61
109
648
4
4
130 | 300
324
280
216
424
420
272
344
364
368 | 252
332
302
340
359
11
530
316
325
432 | 408
365
474
1513
435
467
1155
410
384
579 | 7.4 | 35 | | | 54.1
58.2
76.8
53.0
54.0
52.2 | |---|--|---------------------------------------|-------------------------------------|---|----------------------------------
--|--|--|--|--|-----------------|---|---|--|--|--|---|--|-------------------|----------------------|---|----|--| | Enfield Equality Erie Eugenia Subdn. Fair Acres Estates Fairbury (treated) Fairmount Fairview Farina | 117248
123085
153619
147068
149558
110259
110260
121864
127314
149873 | SLSLDDSSS | AIC1 | .6
.0
Tr
.2
7.5
.4
.0
1.0 | .0
.4
Tr
Tr
.2
.1 | .8
2.0
Tr
Tr
3.7
3.8
.3
1.5 | 487
196
2
74
66
20
388
61 | 23.5
14.1
45.7
91.9
61.3
86.5
86.8
94.1
72.8 | 14.5
5.4
15.4
42.3
27.4
36.0
37.7
38.5
28.9 | 12
19
22
9
11 | .1 .3 .0 | 3.0
.3
.2
.3
.2
.3
.2
.2
.3
.3
.2
.3
.3
.3
.3
.3
.3
.3
.3
.3
.3
.3
.3
.3 | 1.6
.9
22.9
2.8
10.9
Tr
.2
2.4 | 144
14
2
35
5
6
8
22
210
26 | 161
28
251
39
116
86
670 | 808
468
132
252
372
240
40
296
248
390 | 127
57
178
404
266
365
104
372
394
301 | 1330
529
246
696
434
410
211
471
1584
458 | 8.0 | 20 | ; | ς. | 59.6
59.1
53.5
57.2
52.0
52.0
54.4
71.8
58.5 | | Farmer City Farmersville Farmington Fayetteville Fernway Subdn. Findlay (treated) Fisher (treated) Fithian | 152583
144804
146687
149494
152020
115228
115512
116783
116784
144125 | D D S D L D D D D D | I
AIC1
Z
IZC1
AIZ | .8
1.1
.5
5.3
5.4
4.8
1.9
.2 | .0
.0
Tr
.2
.0
.0 | 4.6
Tr
Tr
.2
11.3
14.0 | 170
23
634
193
148
8 | 69.3
74.3
43.9
46.0
58.9
92.9
78.0 | 27.1
31.9
18.7
15.3
27.9
34.9 | 16
16
11
20
23
29 | .2
.0
1.0 | .3
.3
2.4
.5
.3
.3
.3
.3
.3
.3
.3
.3
.3
.3
.3
.3
.3 | .7
.8
.2
.3
.4
.3 | 84
7
530
4
2
82
85
2
83
12 | 1
67
462
208
1
91 | 536
288
420
396
380
500
500
336
364
220 | 285
317
187
355
178
263
111
376
84
308 | 712
381
1965
392
695
642
673
461
640
369 | 7.4
7.3
7.6 | 62
48
49
23 | | | 55.0
58.0
74.0
58.5
57.8
59.2
54.5
55.0
56.5 | | Flanagan Flat Rock Flossmoor Forest HomesMaple Pk. Pub. Wtr. Dist. Forest Lake Addn.(treated Forrest Forreston Fox Lake Fox Ridge St. Pk. | 110150
141547
147271
157707
1)151194
110083
153353
107552
149506 | D D L D D S D D | C1
Z
IC1
I | .2
.3
.2
9.2
.1
2.1
.4
.9 | .0 Tr .5 Tr .0 .0 | 2.8
.5
3.0
3.6
Tr
.0
2.7 | 157
51
28
14
1
5 | 25.0
164.3
55.2
72.1
63.2
85.1
14.1 | 14.1
72.7
17.5
35.3
33.2
42.2
7.9 | 18
10
23
22
12
27
11 | .7 .1 | .5
.5
.2
.4
.5
.2
.1
.8 | .2
.3
.5
1.2
1.2
.5
.4 | 15
11
4
2
7
3
1
10
6 | 121
469
2
1
27
31 | 396
244
328
272
116
360
268
352
492 | 121
228
710
210
1
326
295
387
68 | 614
268
994
295
1168
358
286
402
562 | | | | | 54.0
52.7
57.0
50.1
53.0
51.6
58.0 | | Fox River Grove Frankfort Franklin Grove Freeport Fulton Galena Galesburg Galva Gardner | 146280
107859
153618
154515
112156
108526
145738
112718
124726 | L
LS
D
S
S
D
S
S | C1
IC1
AIC1
IA
C1F
A | 2.1
1.6
2.4
.1
.2
.5 | .0 .0 .0 .0 .0 .0 .0 .0 | .1
.5
Tr
.5
Tr
.1
1.2
1.1 | 9
6
3
17
2
3
298
281
323 | 78.8
101.2
68.4
107.0
59.6
49.0
55.7
29.2
27.2 | 43.2
49.4
32.6
44.4
31.0
31.6
21.3
13.0
12.1 | 17
22
11
14
12
12
13
12
15 | .1
.1 | .3
.4
.2
.4
.1
.2
.3
.5 | .3
.0
.4
.5
2.2
3.9
.1 | 9
7
25
5
1
3
148
245 | 75
90
13
113
22
19
364
220
142 | 304
368
296
336
248
236
272
304
328 | 375
456
305
450
277
253
184
127
118 | 433
495
377
530
308
265
210
898
975 | 7•1
6.9 | 77
82 | | | 51.5
51.4
51.5
58.0
57.6
53.5
65.0
59.3 | | | Leboratory
Number | Source | Trestment | Iron
Manganese | Ammonitum | Sodium | Calcium | Magnestum | Silica | Boron | Fluoride | Nitrate | Chloride | Sulfate | Alkaliníty | Total
Earchess | Total
Dissolved
Minerals | | Carbon
Dioxide | Methane | Eydrogen
Sulfide | Temerature | |---|--|--------------------------------------|-----------------------------|---|--|---|--|--|--|-----------------------------|--|---|--|--|--|--|---|-------------------|-------------------|-----------------------|---------------------|--| | City | | | | Fe Min | ин [†] | Na | Ca | Mg | s10 ₂ | В | F | NO3 | Çl | $so_{l_{\sharp}}$ | (as | caco ₃) | | рH | co2 | $\mathtt{CH}_{l_{4}}$ | H ₂ S | °F | | Gary Ave. Gardens Geneseo Geneva Genoa Germantown Giant City St. Pk. | 148125
111087
146774
153622
145463
152304 | L
D
S
D
S | ICT
ICT | .2
1.5 .2
.7 Tr
1.0 .0
Tr .0
5.9 .1 | Tr
Tr
Tr
.0 | 25
40
19
42
18 | 154.4
55.6
65.6
75.3
82.4 | 66.5
21.6
34.0
28.7
16.9 | 22
9
14
16
16 | .1
.3
.1
.1 | .5
Tr
1.1
.4
.4 | .7
2.7
2.5
15.4
1.5 | 1
49
25
3
17 | 272
27
11
103
50 | 264
360
248
328
254
244 | 292
660
224
304
307
276 | 340
840
335
407
465
355 | 7.0 | 95 | | | 51.5
52.0
60.3
52.0
58.0
62.0 | | Gibson City
Gilman
(treated)
Glasford | 119440
129689
116353
109096 | D
D
D
S | 12
A | 1.0 .0
2.4 Tr
.2
1.0 .0 | 2.1
2.1
1.6 | 6
79
359
586 | 64.7
143.0
3.8
57.5 | 33.9
59.2
6.8
18.9 | 18
19
14 | | .2
.4
4.0 | 3.5
.2 | 2
24
23
450 | 27
411
436
565 | 280
316
332
276 | 301
601
38
222 | 341
964
1036
1866 | 7•2
7•7
8•0 | 45
8 | | x | 54.2
55.0
70.0 | | Glen Carbon Glendale Addn. Glen Ellyn Glen Ellyn Hts. Subdn. Glen Ridge Subdn. Glenview Countryside Golden Golf-Greenwood Subdn. Goodfield Gorham | 146493
149637
146388
153024
154744
147069
118658
149544
148061
152730 | D S L L LS D S D D | Z c1 ZC1 AIC1 | .4 .2 1.1 Tr .5 .3 .0 1.0 Tr .7 .4 1.2 Tr 1.4 28.0 .9 | Tr
Tr
.1
.4
Tr
.2 | 23
86
52
211
91
51
187 | 119.2
55.8
54.5
31.2
96.0
84.3
84.3 | 52.7
25.7
35.3
12.6
33.0
26.5
37.5 | 20
11
16
10
9
36
10 | .2
.3
.6
.3
.8 | .3
.7
4.0
.3
.7
.4
.1 | 1.9
11.8
1.4
.8
.4
1.8
.1 | 17
8
5
10
5
37
1
130
1 | 252
34
118
180
254
60
334 | 276
376
264
388
356
256
368
240
312
288 | 515
245
282
130
650
376
320
365
218
285 | 666
452
456
697
822
693
487
949
311
301 | 6.8 | 147 | | x | 57.5
55.5
51.5
53.6
52.0
56.5
54.8
60.5
54.5 | | Grand Ridge Grand Tower Grant Park Granville Grays Lake Grayville Greenfield Greenup Green Valley Greenview | 110769
126019
117118
109928
151192
118846
150645
149508
124958
121406 | D
D
L
S
L
D
D
D | Z
C1
C1
C1
IZC1 | .4 Tr
.1 Tr
4.1 .1
Tr .0
.5 .3
4.9 .4
.4 .1
1.9 .1
2.9 .1 | 1.7
.0
.4
Tr
Tr
.1
Tr | 102
25
18
316
92
24
11
4 | 21.4
103.9
116.9
61.8
25.2
93.1
86.3
68.1
76.1 |
11.6
10.7
45.8
23.2
16.1
21.6
40.9
28.8
32.1
30.9 | 12
21
25
14
10
18
17
15
22 | .2
.5
.0 | 1.3
.0
.1
1.1
.9
.0
.2
.1 | 6.0
7.8
2.2
4.8
.9
.9
2.2
9.3 | 8
8
21
375
6
10
18
5
7 | 1
46
98
150
212
48
125
60
51 | 312
292
388
248
100
256
280
236
268
244 | 101,
304,
481,
250,
129,
322,
384,
289,
323,
312, | 358
408
567
1091
424
354
485
345
365
351 | 7.5 | | | x | 53.0
58.0
67.0
52.2
55.5
54.0
54.0 | | Greenville Gridley Griggsville Hammond (treated) Hampshire Hampton Park Hamel Hanna City Hanover | 116363
132431
114728
150542
115786
148811
149965
144528
127945
108631 | D
D
L
L
S
D
S
S | clf
cl
rzcl | .1 Tr
.9 .1
.0 .0
9.4 Tr
.5 .1
.4 Tr
2.8 .0
2.0 .0 | Tr
Tr
8.9
1.2
.9
5.9
1.8 | 181
146
29
115
138
420 | 139.9
42.9
92.7
82.9
54.6
47.2
55.0
68.9
47.4 | 47.9
24.0
31.3
38.2
27.7
13.9
26.9
27.8
32.9 | 27
17
20
19
17
8
14
14
16 | .3
.1
.3
.4
1.0 | .1
.5
.1
.4
.2
.3
1.1
.9 | 4.5
11.4
11.9
.6
.6
1.2
1.1
.7 | 42
16
6
32
31
5
47
60
233
2 | 201
238
26
1
81
619
22 | 372
320
316
444
432
310
274
476
232
228 | 547
207
361
364
142
250
175
248
287
254 | 776
726
369
500
505
315
478
594
1543
263 | 6.9
7-5 | 18 | | | 58.0
56.0
53.0
64.0
51.3
59.0
56.0
76.0
58.6 | | Hardin Harmon Hartford (treated) Hartsburg (treated) Harvard Harvet HomesWaukegan Countryside | 146385
112899
116680
126791
118251
118391
111090
144805 | | IIC1
ZC1
IA | Tr
2.5
10.3
.1
.1
Tr
.1
4.2 | .1
.6
.0 | .2
.3
.3
Tr
Tr | 15
16
12
22
4
28 | 102.0
120.2
131.6
51.8
126.2
119.0
92.1 | 41.9
55.8
32.9
31.1
55.8
52.3
25.1 | 21
20
36
32
20
20 | .2 | ·3
·1
·2
·2
·1
·2
·0
·2 | 1.1
.5
123.0
75.8
10.6
1.0 | 23
36
13
17
32
33
38
18 | 68
218
115
131
1415
57
231 | 356
288
352
136
312
320
312
308 | 428
530
464
259
545
58
513
334 | 501
682
566
309
694
640
589
417 | 7.2 | 52 | | 58.0
53.0
57.0
58.0
51.3
57.0 | |--|--|-------------------|-----------------------------------|---|--|---|---|---|---|---|-----------------------------|--|---|---|---|--|---|---|--------------------------|---------------------|---|--| | Hatlen Hts. Havana Hebron Hecker Hennepin Henry Herscher Heyworth Highland Hills Subdn. Highland Shores Subdn. | 151697
130814
146784
144699
153589
108854
152587
115894
146025
146790 | S D D S D L D | IZ
IA | .9
1.2
.1
Tr
.3.3
4.6 | .0
.1
.1
Tr
.1
.0
.0 | Tr
.6
.1
Tr
Tr
1.0
5.2
Tr | 48
2
12
247
10
13
358
107
13
6 | 80.0
44.9
53.2
5.5
81.6
82.3
87.7
71.6
124.5 | 22.7
15.6
34.3
9.0
34.3
35.6
44.0
29.3
49.4
35.1 | 10
19
14
10
16
22
8
21
17
20 | .3
.1
2.7
.2
.4 | 1.0
.1
.3
4.8
.2
.2
1.6 | 1.9
.2
.4
2.7
14.8
36.2
.9
.4
1.4 | 15
3
20
5
16
365
96
8 | 100
25
1
42
61
58
399
3
167
26 | 272
152
296
480
284
268
252
408
356
296 | 293
177
274
18
345
353
400
300
514
318 | 441
197
297
640
425
436
1442
590
622
332 | 7.4 | 42 | | 59.3
51.1
59.0
53.1
55.0
57.0
53.5 | | Hillside Hinckley Hindsboro Hinsdale (treated) Hoffman Estates Homer Homewood (treated) Hoopeston | 106442
112097
144126
110514
110885
146381
152174
125331
107221
116551 | S D L L S D L L D | I
IL
IL | 1.0
1.6
1.6
1.1
1.1
2.1 | .0
Tr
.0
.0
Tr | Tr
.7
.1
.6
2.3
.6 | 24
13
131
21
42
80
43 | 109.1
55.8
48.0
136.9
70.7
64.7
100.9
11.0
66.5 | 59.2
36.0
20.4
39.7
22.8
25.2
47.2
3.5
34.9 | 25
20
24
10
18
23 | .4
.4
.5 | .3
.5
.1
.2
1.0
.5
.5 | 3.3
.1
3.3
.5
.1
.2 | 9366528742 | 196
6
1
181
33
6
161
305
6 | 352
304
440
352
40
312
400
364
352
356 | 520
288
204
506
107
271
265
447
42
310 | 604
325
523
631
293
392
478
605
884
361 | 7.1
7.7
7.1
9.5 | 83
16
69
1 | , | 52.5
51.5
56.0
53.5
57.5
51.5
54.8
54.5 | | Hopedale Rudson Hull Hume Huntley Rutsonville Illinois Beach St. Pk. Ill. Indus. SchBoys IllMich. Canal St. Pk Ill. SoldiersSailors Childrens Home | 152388
153665
114127
144129
148164
114507
144672
144672
144673 | D D D D S S L D | IC1
IZ
IA
IA
C1
C1 | 2.9
2.3
5.5
1.7
1.4
.1
.6
.6
.9 | .0
2.7
.1
Tr
.0
.0 | 1.6
8.2
.1
.1
Tr
Tr
.7
1.5 | 118
86
21
10
6
10
123
21
29 | 70.4
91.7
69.7
73.5
86.8
100.6
23.8
64.7
61.1 | 35.0
46.8
17.6
28.1
43.2
19.4
12.4
25.0
29.4 | 18
18
41
13
24
19
48
7
7 | .0 .0 .0 | .2
.5
.8
.1
.3
.1
.8 | .8
.9
.2
1.2
1.9
33.6
.4
.2 | 155
5
24
11
12
10
27
5
14 | 3
1
83
74
68
63
223
5
30 | 360
624
172
228
346
248
120
300
290 | 320
428
247
300
440
332
123
265
274 | 627
644
358
355
437
394
525
319
358 | 7.4
7.5
7.1 | 34
21
43 | x | 56.0
54.2
56.0
56.0
52.0
51.5
52.7
57.0
53.3 | | Ill. St. Game Refuge
Ill. St. Pk.
Ill. St. Pen., Joliet
Ill. St. Pen., | 142388
153218
115477
147723 | D
S
S | C1 | 5.8
1.9
1.9 | .2
.0
.1 | .1
.5
.9 | 8
76
8 | 86.1
77.5
61.3 | 23.8
37.0
20.7 | 26
7
12
10 | .0
.4 | .2
.6
1.4 | .7
1.2
.2 | 4
93
52
24 | 10
82
100 | 316
296
276
260 | 314
346
239
216 | 354
555
520
417 | 7.2 | 43 | | 55.0
59.6
61.8 | | Stateville Ill. St. Training SchGirls Illiopolis (treated) Indianhead Pk. Subdn. | 145323
147417
115783
151557 | L
D
D
L | ncı | .3
15.0
.1 | .0 | .8
.2 | 31
6 | 117.8
98.5 | 53.4
38.4 | 13
22 | •0 | .3
.1
.1 | .1
4.4
4.3 | 76
14
8
68 | 147
94
300 | 324
460
24
404 | 514
408
123
700 | 675
479
161
956 | 7.0
9.6 | 73 | | 52.0
59.0
64.5 | | | Laboratory
Number | Source | Treatment | Iron | Manganese | Ammonium | Sodium | Calcium | Magnesium | Silice | Boron | Fluoride | Nitrate | Chloride | Sulfate | Alkalinity | Total
Eardness | Total
Dissolved
Minerals | | Carbon
Dioxide | Methane | Kydrogen
Sulfide | Temerature | |--|--|-----------------------|----------------------|---|----------------------------|--------------------------------|---|---|---|--|----------------|------------------------------------|-------------------------------------|---|--|---|---|---|-------------------|-------------------|-----------------|---------------------|--| | City | | | | Fe | Mn | $\mathrm{NH}_{\mathrm{l}_{4}}$ | Na. | Ca | Mg | S10 ₂ | В | f | ^{NО} 3 | ĊŢ | so ₄ | (as | caco3) | | рĦ | co2 | CH ₄ | H ² S | $c_{\overline{\mathbf{F}}}$ | | Indianaola Industry Ipava Island Lake
Itasca Jacksonville (treated) Jerseyville Joliet Jonesboro | 144127
125205
113373
150133
110328
136877
142805
152184
122795
113348 | D L S S L D D D D L | A C1 LC1F AIC1 AIC1Z | 4.0
.1
.3
.6
3.6
Tr
.5
1.7 | .7
.0
.0
.1
.0 | Tr
-7
1.9
.4
.6 | 19
262
771
32
28
8
21
28 | 177.0
14.6
158.4
63.9
79.9
88.0
20.0
70.9
138.0
98.3 | 48.2
7.1
60.8
20.6
41.2
19.0
12.2
22.4
57.9
19.4 | 13
20
13
10
21
3
9
23
25 | .0 | .2
.6
.4.0
.6
.4
Tr | 4.2
Tr
1.2
.8
.5
1.2 | 16
100
780
8
2
7
10
7
3
67 | 293
1
968
3
211
63
42
277
18 | 350
496
220
300
208
280
33
232
336
264 | 641
61
646
244
370
300
100
269
583
326 | 773
693
2953
335
527
314
153
295
736
432 | 7.1
8.6
6.5 | 43
205 | | x
x | 56.2
69.5
56.1
52.0
57.0
58.0
51.8
58.0 | | Joppa
Joy
Justice
Kampsville | 128488
113403
146026
150648
148369 | L
L
D
S | ZC1
I | 1.6
.8
2.6
1.9 | 1.3
Tr
.1 | .5
1.3
.7 | 180
41
9 | 70.4
39.2
28.3
94.6 | 16.7
17.4
201.6
40.2 | 17
13
25
21 | .3 | .8
.2
.2 | 1.0
Tr
.4
1.0 | 48
10
6 | 2
92
1079
42 | 256
400
488
368
196 | 245
169
1536
402
324 | 283
664
2025
430
1401 | 7.1 | 20 | | x | 59.0
55.7
52.0
55.5 | | Kangley
Kankakee River St. Pk.
Kansas
Karnak
Keensburg
Keithsburg | 153486
115045
132201
149509
119408 | DDD | AIZ
I
AIC1 | 3.1
2.6
1.8 | .0
Tr
.2
.2 | Tr
8.1
Tr
Tr
.2 | 1
21
15
12
2 | 99.0
93.1
22.7
81.3
47.7 | 60.4
34.9
8.4
24.2
16.3 | 11
28
27
17
28 | .0
.4
.0 | .1 | 26.2
Tr
3.0
.4
6.0 | 13
6
10
42
4 | 148
9
75
55
34 | 304
428
28
212
144 | 327
377
91
303
187 | 573
423
170
376
234 | 7,2 | 68 | x | | 55.8
55.0
58.0
56.0
54.4 | | Kempton
Kenney
Kewanee
Kinderhook
Kingston | 116251
141754
108625
152745
153625 | D
D
S
D
L | AIC1
C1 | 2.1
1.5
.3
.1
1.3 | .0 | 1.6
2.1
.1
Tr | 241
474
17
7 | 162.4
96.9
68.0
85.6 | 79.6
35.5
20.7
47.5 | 12
14
20
18 | .0 | 94824 | .5
.2
.9
18.1
2.2 | 21
52
640
24
12 | 1049
278
54
75
162 | 140
424
232
188
328 | 734
316
389
255
410 | 1688
522
1700
355
487 | 7.6 | 9 | | | 54.6
55.0
70.0 | | Kinsman
Kirkland
Kirkwood
Knoxville
Lacon | 112586
112033
115995
109760
108928 | s
L
S
D | A
1201 | .7
.6
1.7
.7 | .1
.0
Tr
.0 | .9
.1
1.9
1.2
Tr | 215
666
307
15 | 55.3
84.3
70.7
49.0
86.7 | 32.1
39.0
30.0
23.0
36.4 | 20
21
12
14
24 | | .6
2.5
2.6
2.6 | 1.8
.2
.9
24.8 | 184
3
285
190
21 | 13
876
375
51 | 312
356
440
228
296 | 271
372
300
217
367 | 854
381
2201
1101
457 | 7.1 | 74 | | х | 53.0
51.1
68.5
55.7 | | Ladd
IA Grange
(trested)
Iake Bluff
Iake Co. Pub. Wtr. Dist | 120668
106408
106441
148037
150131 | S
L
L
S | ILZClF | 2.0
Tr
2.8
.6 | .0
.1
.0 | 1.1
•3
•3 | 41
10
31 | 74.4
206.2
110.5 | 29.6
83.9
19.9 | 24
18
9 | ,2 | .4
.2
.9 | .0
Tr
.2
1.0 | 36
16
18
10
8 | 17
458
157
25 | 332
384
64
248
124 | 308
861
87
358
152 | 414
1038
734
510
182 | 6.8 | 174 | | | 56.3
56.5
63.5 | | Lake In The Hills Lakeland Park Subdn. Lake Villa Lakewood Shores Subdn. Lake Zurich | 144251
146785
107531
152393
125969 | D
D
S
L | | 1.1
1.3
.4
.2
1.1 | .0 | 2.4
Tr
.1
Tr | 20
6
51
11
119 | 61.5
89.5
29.5
76.0
176.0 | 30.9
44.6
21.9
36.0
104.3 | 21
20
21
16
25 | .1 | .6
.1
1.0
.3
.8 | 6.3
.5
.0
.4 | 9
6
5
12
6 | 21
76
91
70
1003 | 292
332
172
272
76 | 281
407
164
338
869 | 337
469
324
385
1514 | 7.4 | 28 | | | 58.0
50.3
51.5
53.9 | | La Moille Lanark La Salle Latham Lawrenceville Leaf River Lebanon (treated) Lee Leland | 111801
153354
110982
152621
114409
112651
130205
116487
112126
118247 | D S D D D D D L | I
F
C1F
IA
C1F | 1.9
.5
.1
1.2
.3
Tr
5.6
.1 | .0
.4
.0
Tr
Tr
1.0 | Tr
Tr
2.2
Tr
Tr
Tr
.4 | 23
1
25
77
1
13
29
39
3 | 50.8
68.1
140.1
58.2
61.3
58.8
114.9 | 22.8
33.2
51.9
32.7
11.6
25.2
33.1
18.1
30.0 | 25
11
21
14
16
22
20
15 | .0
.2 | .6 | 4.7
.6
11.0
3.3
11.6
9.4
.4 | 1
24
64
7
2
36
12
2 | 28
263
3
27
5
127 | 264
276
308
352
156
264
304
76
228
308 | 221
307
564
280
201
251
424
132
149
312 | 291
323
751
473
227
291
553
193
240
328 | 7.1
7.8 | 35
10 | | 53.0
55.5
56.0
51.0
55.0
52.0
54.5 | |---|--|--|-------------------------------|--|--|---|--|--|--|--|-----------------------------------|--|--|---|---|--|---|---|--------------------------|----------------|--------|--| | Lemont Lena Leonore LeRoy (treated) Lewistown Lexington (treated) Liberty Pk. Subdn. Libertyville | 146786
112579
110702
115895
116035
156020
116038
141147
124509 | L IS
D D D
D D L L | 12F
C1
L | .5
.0
.7
6.0
.1
1.2
1.2
.7 | Tr
.0
.0
.0 | .2
Tr
1.4
9.5
Tr
Tr | 21
5
26
14
5
41 | 135.0
103.7
74.9
101.0
84.3
76.4 | 77.6
49.9
42.7
42.2
36.7
26.8 | 22
17
20
34
14
25 | .0 | 31.53325548 | 7.1
1.8
1.2
7.5
10.8 | 6
18
6
5
3
12
1
2
7 | 233
82
80
3
97
41 | 452
364
392
472
468
248
340
152
364
108 | 657
465
363
426
66
362
301
113
512
301 | 788
528
433
473
491
424
416
228
539
736 | 7.0
8.1
7.3
9.1 | 136
9
50 | | 51.7
51.8
53.5
54.5
55.0
54.0
57.0 | | Lidice Lincoln Lincolnshire Lisle Little York Livingston Lockport Lockport Hts. Subdn. Loda Log Cabin Arbor | 104564
118252
145347
151315
108056
132274
141338
146279
152588
112386 | S D S L D S L D S | C1
IZC1
IC1
C1
IZ | .9
1.0
1.4
1.1
3.1
15.8
.1
1.3
1.4 | .0
.3
Tr
Tr
.0
.1 | 1.0
Tr
Tr
4.1
.5
Tr
1.2 | 60
1
12
77
72
19
56
1 | 62.0
76.4
97.7
96.2
62.3
201.5
123.2
82.4 | 19.0
29.4
47.1
31.7
20.2
95.1
68.6
40.6 | 12
9
15
15
17
18
23 | .1 | 1.4
•3
•1
1.1
•4
•2 | 1.5
1.3
.1
.9
Tr
1.9
.5
.9 | 24
9
33
8
16
26
29
7
7 | 77
62
112
26
79
487
338
25 | 252
236
280
336
500
168
272
420
356
324 | 233
312
328
438
438
371
596
239
895
590
373 | 413
323
539
491
580
740
458
1119
866
386 | | | | 53.8
55.0
59.7
52.3
55.0
53.0 | | Lombard Lombard Hts. London Mills Lone Tree Subdn. Longview Loraine Lostant Loves Park Lovington Lowpoint | 110414
148200
155053
147973
144124
144581
133654
144366
137649
109511 | S
L
D
S
D
L
S
D
D
D | L
AIZ | .3
1.6
.1
.5
1.4
.7
3.6
1.2
1.3 | Tr .0 .0 .0 .0 .0 .0 | .6
.1
.4
2.4
.1
1.9
.1
8.7 | 71
6
81
51
243
428
6
59
23 | 61.3
81.5
106.5
62.5
31.0
80.1
73.4
101.3
75.3 | 27.0
27.3
26.9
17.4
42.2
32.3
46.1
38.1 | 18
7
18
9
9
15
24
20 | .1
.2
1.5
.3
.5
.2 | 1.8
·3
·1
1.3
·5
1.1
1.4
·2
·0
·3 | 1.2
19.1
1.3
.3
12.5
.2
2.6
.8
7.5 | 24
14
8
37
11
164
570
3
28
8 | 79
229
1
1
225
12
14 | 272
326
224
264
368
436
252
312
556
332 | 224
480
315
378
267
149
374
343
345 | 439
574
385
670
404
778
1539
326
590
417 | 7.3 | 33
| | 61.0
51.7
51.2
56.8
55.0
55.0
53.0
55.0 | | Ludlow Lyons McHenry McLean McNabb Mackinaw Macon (treated) Magnolia Mahomet | 151840
84547
110958
152267
109927
152313
144786
115787
153590
116781 | D
S
D
D
D
D
D
D | 2
12
IA | 1.0
Tr
.1
2.4
1.6
Tr
10.0
.1 | Tr
.0
.0
.0
.0
.1
Tr | Tr
Tr
4.5
6.5
Tr
10.2 | 157
1
105
59
66
66
66 | 68.5
76.8
67.3
81.6
145.6
116.5 | 31.0
36.8
30.5
31.3
64.4
45.7
31.7
51.2 | 11
20
16
30
17
30
23
20 | .1 .9 .2 | .5 | 1.9
9.5
.4
.5
18.3
38.9 | 1
141
8
84
7
215
19
23
12
21 | 149
77
1
108
43
1 | 352
286
244
416
468
344
548
684
500
388 | 248
299
344
293
333
629
480
9
324
502 | 358
753
373
550
494
842
715
752
522
545 | 7.1 | 97 | х
х | 51.9
53.5
53.0
55.5
57.5
54.5
53.5 | | Laboratory
Number | Source | Trestment | Iron | Manganese | Armon1um | Sodium | Calcium | Magnesium | Silica | Boron | Fluoride | Nitrate | Chloride | Sulfate | Alkalinity | Total
Hardness | Potal
Dissolved
Minerals | | Carbon
Dioxide | Methane | Hydrogen
Sulfide | Temerature | |--|--|---|---|--|--|---|--|--|--|-----------------------------------|---|---|---|--|--|--
--|--|-------------------|--|---|--| | | | | Fe | Mn | NH ₄ | Na. | Ĉa. | Mg | \$10 ₂ | В | F | NO ₃ | Cl | SO ₁₄ | aa) | caco3) | | рН | co ₂ | CH ₄ | H ^S S | o _F | | 130237
107912
152611
83303 | D
D | z | .3
.4
1.1
.0 | Tr
Tr
•2
•0 | .3
.0
Tr
Tr | 27
12
5
82 | 36.8
93.0
64.4
23.2 | 21:0
45.4
22.9
9.4 | 9
21
13
15 | .0 | •5
•3
•2 | .6
.1
3.4
8.8 | 1
4
4
5 | 3
58
63
73 | 232
380
192
184 | 178
420
255
97 | 245
469
320
339 | 7.1 | 89 | | | 53.0
52.0
59.0 | | 153662
133136
112 7 79 | r
D
D | CJ
I | 1.9 | .3
.0
.1 | 1.0
1.0
Tr | 7
53
16 | 96.1
72.0
106.6 | 33.9
28.6
50.8 | 25
21
13 | .1 | .2
.3
.1 | .7
8.7 | .1
12
14 | 1
2
165 | 396
396
312 | 380
298
476 | 411
426
392 | 7. 2 | 52 | | | 54.2
54.0
52.5 | | 153759
11 14 19 | L
D | Cl | 7.4
2.4 | .0 | .l
Tr | 21
11 | 101.0
68.0 | 48.0
38.2 | 10
28 | .1 | •1
•4 | 9.1
4.3 | 30
2 | 148
1 | 344
2 9 2 | 450
327 | 574
351 | | | | | 51.0
51.3 | | 130138
127064
144262
115662
115785
114771
110856
114961
120394 | L S D D D D S D D L | I
AIL
Z
C1
C1
AIC1Z | .7
3.9
.8
Tr
Tr
.1
.1 | Tr .0 | .9
.5
4.8
2.9
Tr
Tr | 694
8
71
74
21
56
2
70 |
9.5
70.3
65.0
63.7
139.1
70.3
80.7
61.5 | 4.5
33.1
29.5
40.4
55.5
31.8
22.5
30.6 | 11
11
17
16
22
12
13 | .4 | 3.5
.3
.5
.3
.1
.1
.1 | .2
.4
4.7
.5
7.0
2.5
6.0 | 490
1
46
60
61
7
57
8
37
35 | 213
1
1
5
321
59
40
1 | 640
328
500
404
144
272
284
240
380
324 | 43
312
284
326
58
576
307
295
281
256 | 1822
320
571
522
371
734
449
338
472
387 | 7.4 | 24 | х | | 54.5
56.0
55.5
58.5
56.2
54.8 | | 113474
125377
146780
115070
147932
112585
146387
154071
107984
116241 | DLLDDLDLD | CIE
IIC1 | .7
1.4
.5
3.8
1.9
.2
1.8
1.9 | .8
.0
Tr
Tr
.3
.2
.1 | Tr
1.7
Tr
5.9
Tr
Tr
Tr
Tr | 12
343
37
2
7
2
6 | 81.2
49.8
108.6
93.6
156.0
64.1
87.4
61.9 | 32.8
26.4
47.3
37.0
99.7
27.7
44.8
24.5
34.3 | 16
13
13
22
18
16
19
18
24 | .0 | .3
1.5
.5
.2
.1
.2
.3
.2
.3 | 10.0
.0
2.2
1.6
1.4
8.0
.7
.9
9.5 | 13
320
14
5
26
6
5
2 | 44
266
264
58
426
110
61
49
21 | 292
256
268
340
364
156
344
288
200
388 | 338
233
466
386
800
275
403
330
256
335 | 381
1174
661
440
991
324
448
341
290
427 | 7.4 | 3 ¹ 4 | x | | 55.2
57.2
51.5
55.6
54.5
50.9
56.0 | | 144579
110767
144578
151554
144128
145940
115828
149562
116471 | D
S
D
D
D
D
D
L | AIC1
IA
IZ
I
IA
IC1 | .3
1.7
1.6
3.7
1.9
.3
1.6 | .0
Tr
.2
.1
.1
Tr
.0
Tr | Tr
1.3
Tr
.8 | 2
12
15
23 | 45.0
69.2
75.0
89.7
76.0
67.0
62.9
81.1
99.1 | 8.7
22.1
35.2
37.2
23.5
10.9
24.8
33.7
47.6 | 17
24
14
22
24
11
31
17
20 | .0
.2
.0 | 24.420.12 | 5.8
3.1
.9
1.1
1.0
.4
3.4 | 94
4
12
97
8
8
5
7 | 6
24
10
4
17
1
4
165 | 136
312
304
484
400
188
276
360
316 | 149
264
332
350
286
213
260
341
444 | 181
325
349
503
589
233
294
385
575 | 7.4
7.2 | 28
56 | | x | 58.0
52.5
57.5
53.4
59.0
55.6
54.5
55.0
53.0 | | | 130237
107912
152611
83303
153622
133136
112779
153759
111419
130138
127064
114262
115785
114771
110856
114961
114961
114961
115070
147932
112585
146387
15474
12585
146387
15474
110767
114778
151554
144578
151554
144128
145940
115628
149562 | 130237 8 107912 L 152611 D 83303 D 153662 D 133136 D 132779 L 112779 L 153759 L 113419 D 130138 L 127064 S 144262 D 115662 D 115785 D 145785 D 145785 L 11577 L 146780 L 115070 D 147932 L 1156780 L 115070 D 147932 L 112585 D 146387 D 147932 L 112585 D 146387 D 151554 D 116241 D 144579 D 115767 B 144579 D 115754 D 115828 D 145828 D 115828 D 115828 D 115828 D 116471 D | 130237 S 107912 L 152611 D Z 83303 D 153662 D I 133136 D I 12779 L Cl 153759 L Cl 153759 L Cl 111419 D 130138 L 127064 S 144262 D I 115662 D AIL 115785 D I 114771 D Z 110856 S Cl 114961 D Cl 120394 D AICIZ 149533 L 113474 D 125377 L 146780 L CIF 115070 D IIC1 147932 L 112585 D 146387 D 154579 D AIC1 110767 S IA 144579 D AIC1 110767 S IA 144578 D 151554 D IZ 144128 D I 145940 D 115828 D IA 149562 L 116471 D IC1 | Fe | Fe Mm 130237 S | Fe Mn NH4 130237 S | Fe Mn NH ₄ Na 130237 S 3 Tr 3 27 107912 L 4 Tr 0 12 152611 D Z 1.1 2 Tr 5 83303 D 0 0 Tr 82 153662 D I 1.9 3 1.0 7 133136 D 1.1 1.0 5.3 112779 L Cl 2 1 Tr 16 153759 L Cl 7.4 0 21 111419 D 2.4 Tr 11 130138 L 5 0 9 694 127064 S 7 2 5 8 144262 D I 3.9 Tr 4.8 71 115662 D AIL 8 2.9 74 115785 D 11 110856 S Cl 1 0 Tr 21 110856 S Cl 1 0 Tr 56 114961 D Cl 1 Tr 70 149533 L 7 8 Tr 70 149533 L 7 8 Tr 70 149533 L 1.4 Tr 113474 D 7 8 Tr 70 149533 L 1.4 Tr 113474 D 7 8 Tr 70 149533 L 1.4 Tr 113474 D 7 8 Tr 70 149533 L 1.4 Tr 113474 D 7 8 Tr 70 149533 L 1.4 Tr 113474 D 7 8 Tr 70 149533 L 1.5 Tr 37 115070 D ILC1 3.8 Tr 70 149573 L 1.9 3 Tr 70 112585 D 2 2 Tr 2 146387 D 1.8 1 Tr 6 154571 D 1.3 1.3 1 Tr 6 154579 D AIC1 3 0 Tr 3 144579 Tr Tr 1.3 24 145940 D 3 Tr Tr 1.3 24 145940 D 3 Tr Tr 1.5 116471 D IC1 2.5 Tr 8 23 | Fe Mn NH ₄ Na Ca 130237 S | Fe Mn NH ₄ Ne Ca Mg 130237 S | Fe Mn NH4 Na Ca Mg S102 130237 S | Fe Mn NH4 Na Ca Mg S102 B 130237 S | Fe Mn NHu Na Ca Mg SiO ₂ B F | Fe Mn NH ₄ Na Ca Mg S10 ₂ B F NO ₃ | Fe Mn NH ₄ Na Ca Ng S10 ₂ B F NO ₃ Cl | Fe Mn NHW, Na Ca Mg SiO ₂ B F NO ₃ Cl SO ₄ 130237 S .3 Tr .3 27 36.8 21.10 9 .5 .6 1 3 107912 L .4 Tr .0 12 93.0 45.4 21 .3 .1 4 58 132611 D Z 1.1 .2 Tr 5 64.4 22.9 13 .0 .2 3.4 4 63 83303 D .0 .0 .0 Tr 82 23.2 9.4 15 6.8 5 73 153662 D I 1.9 .3 1.0 7 96.1 33.9 25 .1 .2 .7 1 1 133136 D .1 1.1 .0 1.0 53 72.0 28.6 21 .3 .2 12 2 112779 L Cl .2 .1 Tr 16 106.6 50.8 13 .1 1 8.7 14 165 153759 L Cl 7.4 .0 .1 21 101.0 48.0 10 .1 1.1 9.1 30 14.8 111419 D .2 4 .0 Tr 11 68.0 38.2 28 .4 4 3.3 2 1 130138 L .5 .0 .9 694 9.5 4.5 11 33.5 .2 490 213 12764 S .77 .2 5 8 70.3 33.1 11 .3 4. 1 1 115662 D AIL .8 .0 2.9 74 63.7 40.4 16 .3 5.5 60 5 115775 D Tr 114771 D Z Tr .0 Tr 21 139.1 55.5 22 .1 7.4 5 4.7 46 1 114656 T .1 1.5 Tr Tr 2 80.7 22.5 13 .1 6.0 37 1 114961 D Cl .1 Tr Tr 2 80.7 22.5 13 .1 6.0 37 1 114961 D Cl .1 Tr Tr 2 80.7 22.5 13 .1 6.0 37 1 11474 D .7 .8 Tr .0 Tr 2 80.7 22.5 13 .1 6.0 37 1 114973 L .1 1.4 .0 1.7 343 49.8 26.4 13 1.5 0.0 30 20 26 1 114963 D AICLZ 1.5 Tr Tr 37 108.6 47.3 13 .5 5 2.2 1 264 115070 D ILC1 3.8 Tr 5.9 2 93.6 37.0 22 .2 2 1.6 6 4 58 117877 D .2 Tr Tr .0 Tr 2 60.5 99.7 18 .0 .1 1.4 5 42.7 46 1 114578 D .3 Tr Tr 1.5 61.9 24.5 18 .3 .5 .0 2.9 96 1144579 D AICL 3.8 Tr 5.9 2 93.6 37.0 22 .2 2.6 .0 .0 37 2 .2 16 1144579 D AICL 3.8 Tr 5.9 2 93.6 37.0 22 .2 2.6 1.6 4 58 1144579 D AICL 3.3 .0 Tr 5 6 6.9 24.5 18 .3 .5 .0 .2 10 144579 D AICL 3.3 .0 Tr 5 6 6.9 24.5 18 .3 .3 .5 .5 .5 2.2 1 144579 D AICL 3.3 .0 Tr 5 6 6.9 24.5 18 .3 .3 .5 .5 .5 2.9 40 115080 D IA 1.6 .2 Tr 1.7 1.7 1.7 1.7 1.0 .2 2 .7 2 64.1 27.7 1.6 .2 2 .0 2 .9 6 1107964 L .0 .0 .0 Tr 5 6 6.9 24.8 31 .0 .0 .1 1.4 5 42.6 144579 D AICL 3.3 .0 Tr 5 5 6.9 24.8 31 .0 .0 .2 2 5.8 9 6 144579 D AICL 3.3 .0 Tr 5 5 6.9 24.8 31 .0 .0 .1 1.4 5 44.6 145580 D IA 1.6 .0 1.3 Tr 15 6.0 1.3 3.7 7 1.5 6.0 2.1 1.0 0.7 1.1 12 10 144578 D I A 1.6 .2 Tr 1.7 1.3 24 65.2 22.1 24 .0 .2 2 4.1 1.0 97 4 145580 D IA 1.6 .0 1.3 Tr 15 6.0 1.3 3.7 17 1.1 1.3 3.4 5 4 145580 D IA 1.6 .0 1.3 Tr 15 6.0 1.3 3.7 17 1.1 1.3 3.4 5 4 145580 D | Fe Mn NH _k Na Ca Mg SiO ₂ B F NO ₃ Cl SO _k (as 130237 8 .3 Tr .3 27 36.8 21.0 9 .5 .6 1 3 238 107912 L .4 Tr .0 12 93.0 45.4 21 .3 .1 4 58 380 152611 D Z 1.1 .2 Tr 5 64.4 22.9 13 .0 .2 3.4 4 63 152 63303 D .0 .0 Tr 82 23.2 9.4 15 .8 8 5 73 164 155662 D I 1.9 .3 1.0 7 96.1 33.9 25 1 .2 .7 .1 1 396 133136 D 1.1 .0 1.0 53 72.0 28.6 21 .3 .2 12 2 396 122779 L Cl .2 .1 Tr 16 106.6 50.8 13 .1 8.7 14 165 312 153759 L Cl 7.4 .0 .1 21 101.0 48.0 10 .1 .1 9.1 30 148 292 111419 D 2.4 .0 Tr 11 68.0 38.2 28 .4 4.3 2 1 344 130138 L .5 .0 .9 694 9.5 4.5 11 3.5 .2 490 213 640 127664 S .7 .2 .5 8 70.3 33.1 11 .3 .4 1 1 328 144662 D I 3.9 Tr 4.8 71 65.0 29.5 17 4 .5 4.7 46 1 590 115662 D AIL .8 .0 2.9 74 63.7 40.4 16 .1 17 16 10.0 12 10.0 12.0 10.0 1 | Tebus New New Side B F No Cl So Caco | Fe Mn NH ₄ Na Ca Mg SiO ₂ B F NO ₃ Cl SO ₄ (as CaCO ₃) | Fe Mn | Fe Mh NH4, Na Ca Ne S1O ₂ B F NO ₃ Cl SO ₄ (as cacO ₃) pH CO ₂ | The box | Fe Mh NHL, Ne Ca Me Slo ₂ B F NO ₃ Cl SO ₄ (as CeCO ₃) pH CO ₂ CH ₈ H _S Slo ₂ Pl Slo ₇ Pl Slo ₂ CH ₈ H _S Slo ₂ Pl Slo ₇ Pl Slo ₂ CH ₈ H _S Slo ₂ Pl Slo ₇ Pl Slo ₂ CH ₈ H _S Slo ₇ Pl Slo ₇ Pl Slo ₇ CH ₈ Pl Slo ₇ | | Millstadt Mineral Minier Minonk Minooka Miss. Palisades St. Pk. Modesto Mokena Moline Sch. Dist. No. 40 Momence | 116488
144669
109155
109530
112587
126751
134671
107915
135892
112720 | S L LS L L | A I I AIC1 C1 | .4
.1
4.1
.2
.6
.5
4.7
1.5 | .1
.0
.0
.0
.0
.0
.3
.0 | 2.0
.1
2.5
1.7
.8
.1
.5
.5 | 20
246
8
560
167
7
139
19
16 | 72.0
11.0
75.4
59.5
44.8
54.9
74.4
107.7
70.4
63.5 | 25.6
3.3
35.1
21.9
19.5
34.3
23.8
54.2
30.0
34.2 | 14
13
25
15
17
12
20
23
11 | .8 | .4
.7
.2
.4
.8
.3
.2
.3
.2 | .3
3.5
.9
.3
Tr
Tr
.4
1.2
.7 | 4
11
5
685
186
3
58
2
2 | 5
65
1
202
41
2
11
117
11
85 | 324
488
348
284
252
288
496
408
320
228 | 285
41
333
239
193
279
264
492
300
300 | 343
665
372
1703
643
287
670
567
327
362 | 7.6 | 18
42 | | 58.5
54.6
54.5
71.5
54.7
56.0
51.5
53.0
54.2 | |---
--|--|------------------------------------|--|--|---|--|---|---|--|----------------------|---|--|--|---|---|--|--|--------------------------|----------------------|---|--| | Monee (treated) Monmouth Montgomery Monticello (treated) Mooseheart Morris Morrison | 107911
108816
144206
147410
153660
115784
144685
112558
112154
115383 | L
L
S
S
D
D
L
S
S
D | z
C1
C1
IZ
A | .5
.4
Tr
1.6
.1
1.0
1.3 | Tr .0 .0 .1 .0 .1 .0 .1 | .8
.1
.9
.5
Tr
.7
Tr | 24
274
64
34
42
50
2 | 167.3
80.0
66.6
58.0
74.0
64.5
64.6
65.0 | 32.3
25.0
29.2
34.1
25.4
32.7
20.5 | 19
10
8
12
22
13
14
21 | •7
•4
•4 | .3
2.0
.7
.2
.1
.8
.4
.1 | 1.5
4.7
.5
1.3
1.2
Tr
.8
1.9 | 2
13
143
23
5
62
38
8 | 311
477
111
1
53
35
23
41 | 340
388
228
264
332
304
272
288
264
236 | 614
40
333
270
265
66
325
266
296
247 | 776
852
1167
466
356
322
466
411
292
336 | 7.1
7.4
7.4
7.2 | 31
42 | Х | 52.0
52.7
68.0
57.0
55.5
57.3
59.7
61.0
65.0
54.5 | | Morton
(treated)
Mound City
Mounds Pub. Wtr. Dist.
Mounds
Mt. Auburn
Mt. Carroll
Mt. Morris
Mt. Prospect
Mt. Pulaski | 109234
109236
113261
147294
113262
115421
153361
153359
146788
152584 | D D L D S S S D | AIC1Z
C1
IZ
I
IZ
C1 | 2.9
.6
1.0
3.8
.1
2.5
.9
Tr | .0
Tr
Tr
.3
Tr
.0
Tr | 4.0
.2
.7
Tr
Tr
Tr | 35
35
47
2
2
4
55 | 76.1
48.0
37.7
96.4
86.0
59.0
72.2
119.2 | 37.9
12.9
10.7
33.0
43.3
37.1
19.8
61.5 | 22
14
12
18
11
9
8
19 | .1
.1
.3
.0 | .2 .1 .9 .3 .2 .7 1.1 .2 | .9
.1
.3
Tr
.6
2.9
1.6
40.5 | 12
12
55
55
65
14
7
4
16
30 | 15
14
37
34
23
135
138 | 416
420
156
352
136
324
352
276
216
360 | 347
58
173
495
139
377
393
300
262
551 | 443
466
278
525
269
417
409
312
453
630 | 7.7
7.5
7.1 | 7
10
65 | | 54.5
62.0
63.5
54.6
60.7
57.0 | | Moweaqua Muddy Mulberry Grove Mulfords Subdn. Mundelein Maperville (treated) Nebo Neoga (treated) | 115263
148016
145462
144291
151197
147979
110889
131066
114926
115177 | D
L
D
S
D
S
S
D
D
D | IZC1 IC1 IZC1 IA IZC1 | 1.5
.4
29.0
.7
2.5
.3
.2
7.0
1.5 | .2
.2
1.5
Tr
.1 | 1.4
1.4
.4 | 1
162
27
55
69
23
89 | 96.5
98.0
88.0
45.2
70.0
102.2
83.7 | 34.8
68.0
29.7
37.2
28.1
21.3
23.8 | 15
25
22
21
8
16
27 | .1
.0
.2
.3 | .2
.3
.1
.2
.7
1.0
.5
.5
.2
.1 | 3.1
.8
.7
2.3
.5 | 5
78
14
3
7
23
10
64
117
126 | 115
179
186
201
103
104
46 | 260
578
192
320
164
302
272
196
288
276 | 385
524
342
318
266
290
136
343
308
81 | 435
969
501
330
465
482
504
449
547
586 | 7.0
7.7
7.2
7.2 | 65
16
51
49 | | 54.7
59.5
57.5
51.5
51.0
56.2
52.1
55.0
54.8
55.0 | | Neponset New Baden New Canton New Haven New Holland New Lenox New Windsor Newman (treated) Niantic (treated) | 153664
149495
128851
113566
115830
124594
132155
132251
118848
152610
115788 | S D D D D D D D D | I
zc1
c1
IL
IZ | .6
6.9
Tr
2.6
.3
2.9
1.8
1.1
.6
1.8 | .0
.5
.0
.3
.0
.4
.2
.1 | .1
Tr
Tr
Tr
.0
.0
1.6
1.3 | 267
16
15
6
15
33
25
33
25 | 21.4
37.5
48.1
82.3
129.4
193.0
96.7
69.4
84.1 | 9.8
14.8
8.5
25.1
59.6
55.4
32.2
26.2
28.9 | 8
16
19
24
30
20
27
22 | .0 | .8
.1
.1
.0
.3
.3
.5
.1 | 5.7
1.6
7.4
.4
66.0
2.2
.3
.0 | 40
10
5
4
33
3
1
5
460
14
12 | 145
333
27
32
136
453
4
2 | 464
140
148
284
360
304
428
348
388
336
272 | 94
155
156
309
569
710
375
281
144
330
189 | 793
219
216
335
708
976
435
379
1110
416
329 | 7•2
6.8 | 143 | | 62.0
57.0
56.0
55.0
52.0
54.4
50.0
59.0
61.5 | | | Laboratory
Number | Source | Trestment | Lron | Manganese | Ammonium | Sodium | Calcium | Magnesium | Silica | Boron | Fluoride | Nitrate | Chloride | Sulfate | Alkalinity | Total
Hardness | Total
Dissolved
Minerals | | Carbon
Dioxide | Methane | Eydrogen
Sulfide | Temperature | |---|--|--------------------------------------|--------------------------|---|--|---|---|--|---|--|----------------|--|--|--|--|--|---|---|-------------------|--------------------|------------------|---------------------|--| | City | | | | Fe | Mn | NH ₄ | Na | Ca | Мд | siog | В | F | NO3 | cı | 50 ₄ | (as | caco ₃) | | рĦ | co2 | СĦ ^{j‡} | H ₂ S | o _F | | Noble Nokomis (treated) Normal (treated) North Aurora North Chillicothe North Henderson North Pekin Northbrook W. Subdn. | 152272
126205
115508
152268
116352
147411
126311
145801
144267
148282 | S D D D S D L D L | I
HC1
IZCIF | .1
5.8
.1
11.0
.3
.2
.1
.7
Tr | Tr
.2
.3
Tr
Tr | Tr
.5
.8
.7
.0 | 98
55
10
52
19
303 | 72.8
110.6
185.6
59.2
72.1
10.0 | 47.9
27.4
52.5
26.3
29.4
1.4 | 26
29
14
8
17
8 | .1 .4 .7 .1 .5 | .2
.4
.2
.1
.1
.1 | 1.1
.0
.3
.8
6.7
17.0 | 20
47
59
13
15
10
19
77
27 | 68
225
224
59
91
52
157 | 492
208
24
452
396
292
216
528
300
100 | 379
389
111
680
94
256
302
31
460
319 | 619
632
459
789
474
385
389
777
585
710 | 10.4
7.7 | 20 | | | 54.5
58.0
55.5
54.8
60.5
56.0
53.0 | | Northern Aire Estates
Northfield Woods
Northlake | 148238
147273
146605 | L
S
S | Cl | 2.0
.1
.1 | .l
Tr | Tr
Tr | 54
63 | 46.0
83.7 | 27.2
31.0 | 10
13 | •9
•2 | 1.2
-3
.7 | 2.5
.8
2.3 | 10
22
27 | 144
156 | 172
164
272 | 244
227
337 | 647
413
558 | | | | | 52.5
52.5
58.0 | | N. Tazewell Pub.
Wtr. Dist.
Oak Forest
Oakview Ave. Subdn.
Oakview Subdn.
Oakwood
Oakwood Shores Subdn. | 152274
147154
152394
146277
119115
151002 | D
L
L
D | I | 3.0
2.0
.1
.3
3.1
1.3 | .1
.0
.0
.0 | .2
.1
Tr
Tr
1.7 | 16
29
13
12
49 | 84.9
117.1
106.2
115.6
83.2 | 33.8
53.0
50.0
60.3
34.1 | 15
18
11
16
21 | .1
.1
.1 | .2 .1 .3 .1 .3 .6 | .2
.5
14.4
.5
.3 | 8
12
21
24
25 | 1
216
141
235
18 | 376
332
312
284
404
300 | 351
510
471
537
348
220 | 411
679
557
646
465
305 | | | | | 54.0
54.0
52.8
51.0
55.0
51.0 | | Oblong Odell Ogden Oglesby Ohio Okawville (treated) Olmsted Olympia Fields Omaha | 114506
125147
129966
153216
111798
113887
114108
113337
107162
155845 | D
S
D
D
D
L
L
L | ZC1 A I IZ IIC1 A IC1 C1 | .1
1.8
1.3
2.3
4.8
.5
.5
2.6 |
.0
.1
Tr
.0
.0
.4
Tr | Tr
1.1
1.0
1.1
1.5
.3
.2
.6
3.4 | 16
384
12
219
46
32
31
28
333 | 82.4
66.9
89.2
72.2
37.2
140.4
40.3
130.6
13.6 | 11.8
28.3
36.9
23.7
17.1
34.2
11.8
50.6
8.8 | 19
15
25
10
19
26
14
15 | .7 | .1
1.5
.3
1.0
.0
.1
.1
.3
.5 | 14.8
.1
.0
.7
1.6
.2
Tr
.9
2.0 | 10
490
30
265
1
19
16
52
1 | 46
149
26
85
1
206
14
244 | 216
276
336
296
264
320
184
128
340
560 | 255
284
375
278
164
492
265
150
535
70 | 336
1321
426
880
288
674
467
257
681
883 | 7.1
8.3
7.7 | 38
72
3
6 | | X | 57.3
70.3
55.7
74.0
54.0
56.2
58.0
66.0
51.6
60.0 | | Onarga Cneida Cneida Hts. Subdn. Ophiem Oquawka Orangeville Oreana Oregon Orient Orion | 116359
104729
149559
108505
108142
153358
147332
112800
113652
108553 | DLLLDLDSSL | IC1
I
C1
I | 2.0
1.0
3.5
2.4
.0
Tr
9.1
.3 | Tr.O.Tr.O | 1.6
.7
2.2
1.9
.0
Tr
.1
2.4
2.8 | 56
307
53
139
2
2
2
1
77 | 151.0
11.3
60.2
36.0
61.6
61.2
60.0
85.3
43.6 | 55.0
7.9
26.8
18.6
16.7
34.3
34.5
29.4
17.1 | 20
12
11
14
35
11
12
20
13 | .2 | 3
1.8
.8
.0
.1
.3
2.0 | 3.0
5.1
1.3
43.2
43.2
4
7r
5.7 | 8
110
3
16
8
1
18
6
31 | 398
50
26
77
38
10 | 304
532
348
372
140
268
540
268
436
400 | 604
61
261
167
223
294
372
292
335
180 | 891
842
394
517
281
311
594
286
518
463 | 7.4
7.8 | 35
17 | | x
x | 54.0
62.2
57.5
54.0
55.0
54.5
57.3
57.3
56.5 | | Orland Park Osco Oswego Ottawa Palatine Palestine Palmyra Palos Hts. Palos Highlands Park Forest (treated) | 146510
108555
147412
111050
148814
114506
125586
152396
145962
144154
140351 | LDSSSDDSLLL | ZC1
I | .4
.1
.3
.1
.2
.1
3.3
.5
1.1
1.2
Tr | Tr
Tr
Tr
Tr
Tr
.0
.3
Tr
Tr | .2
1.1
Tr
.5
Tr
.2
Tr
Tr | 21
88
83
42
45
16
10
136
35
4 | 91.9
58.6
51.2
72.9
74.5
82.4
98.7
137.2
113.0
118.5 | 53.3
25.6
24.9
28.1
21.5
11.8
36.9
38.2
44.4
54.2 | 19
12
8
13
8
19
16
8
18 | .2 | .5
.6
1.0
.7
.9
.1
.9
.5
.2 | 1.2
2.3
.6
2.9
.7
14.8
1.3
2.6
3.3 | 1
22
76
15
10
7
133
4
4 | 113
22
114
11
77
46
113
348
235
184 | 376
416
264
268
272
216
292
244
288
372 | 449
252
230
298
274
255
399
500
465
520 | 563
479
467
429
414
336
476
973
640
629 | 7,2 | 38 | | 52.4
58.0
59.0
56.5
57.3
49.7
60.3
52.0
52.0 | |--|--|---|----------------------------|---|--|---|--|---|--|---|------------------------|---|--|--|--|--|--|---|-----|----------|---|--| | Paw Paw Paxton Payson Pearl Pearl City Pecatonica Pekin Peoria Peoria Hts. Peotone | 113131
152590
113934
114727
112577
153364
152374
152391
156332
107858 | S D L L S S D D D L | C1
I
C1
C1
C1F | 1.7
.1
.0
.6
.5
.3
Tr | .0
.0
.0
.0 | .6
Tr Tr | 20
16
12
1
13
1
36
38 | 43.0
86.6
71.1
62.5
93.8
64.7
104.0
123.8 | 23.2
32.5
14.6
12.0
47.3
38.9
37.7
45.8 | 15
18
20
32
15
9
17
19 | •3
•0
•3
•2 | .4 .2 .1 .2 .1 .1 .5 .4 | 3.6
43.8
9.1
3.6
8.9
8.5
9.0 | 1
24
4
13
2
29
50
18
2 | 21
25
19
59
22
151
153 | 236
360
168
176
376
296
288
344
412
296 | 196
350
239
206
429
322
415
498
316 | 238
418
296
236
472
309
567
658
498
605 | 7.3 | 43 | | 54.2
55.0
55.8
54.5
53.5
57.0
58.0
53.0
52.5 | | Pere Marquette St. Pk. (treated) Percy Perry Peru (treated) Pesotum Petersburg (treated) Philo | 116056
116054
113728
114584
153214
145149
144573
113599
113598
116746 | D
D
S
D
S
D
D
D | AIC12 ILC1 I ZC1 I | 4.0
.1
.3
2.7
.2
.1
1.0
.4
.1 | .1
Tr
Tr
.0
.0
.3 | .8
.4
.2
.3
Tr
.2 | 90
40
9
190
85
28 | 95.9
60.5
84.0
82.8
15.0
58.5
105.0 | 48.9
14.9
41.8
22.4
17.1
22.6
40.0 | 25
14
20
10
20
18 | Tr
.5
.6 | .1 .3 .9 .5 .2 .2 .1 | .3
.1
.5
3.4
7.6
14.2 | 146
149
18
24
245
255
10
34
41 | 54
18
30
65
1
169 | 376
68
256
336
300
120
404
252
298
208 | 441
76
213
382
299
108
240
427
50
294 | 684
465
322
405
816
627
465
582
626
351 | 7.2 | 39
34 | | 58.0
61.3
54.5
74.0
57.0
59.5
53.7 | | Piper City Pistakee Highlands Plainfield Plano Pleasant Hill Pleasant Plains Pleasant Valley | 133032
146794
146278
112159
114725
144803 | D
D
S
D
D | cı
I | 2.1
1.2
.1
Tr
.9
7.4 | 1.0
Tr
.0
Tr
1.5
1.1 | 4.4
Tr
Tr
Tr
Tr | 37
7
66
5
2
11 | 73.9
66.7
55.6
79.2
73.3
103.1 | 32.7
38.3
18.2
34.3
21.8
46.7 | 19
20
9
22
39
21 | .1 .4 | .3
.3
1.1
.0
.6 | 1.2
2.7
11.4
3.5
2.5 | 6
20
6
13
14 | 1
40
50
62
35
47 | 404
292
276
268
220
404 | 319
325
214
339
274
450 | 405
366
379
384
322
491 | 7.5 | 22 | | 54.0
52.4
58.2
52.2
56.5
59.5 | | Pub. Wtr. Dist.
Pocahontas
Polo | 145497
144207
112654 | D
D
S | AIC1 | .0
18.0
•3 | .6
Tr | 1r
1r | 14
14
4 | 108.5
37.5
66.4 | 44.0
13.3
33.3 | 12
24
15 | .1
Tr | .3
.2
.1 | 1.0
2.8
Tr | 12
12
1 | 20
17 | 332
140
292 | 453
149
303 | 532
211
309 | | | | 55.5
55.0 | | Poplar Grove Port Byron Potomac Prairie City Prairie Du Rocher (treated) Preston Hts. Subdn. Princeton (treated) Princeville | 108433
149560
144936
144577
152229
114109
152066
135745
111591
109020 | D
L
D
S
D
L
D
D
S | IZ
IZ | 1.4
2.2
5.8
15.0
.1
1.8
2.4
.2 | .0
Tr
.3
Tr
.4
Tr | .1
.5
Tr
1.7
2.1 | 3
15
69
490
12
45 | 80.2
41.5
161.9
177.0
116.4
52.9
82.3 | 34.7
17.5
62.0
91.6
41.3
24.9 | 21
10
17
9
43
74
14 | .1
1.3
1.5
.1 | 3.52.22.66 | 1.3
.7
3.6
1.7
1.3
1.2
.8 | 7
19
318
6
5
2
4
7
185 | 490
1490
1173
1
1
730 | 288
204
270
216
476
440
352
328
148
216 | 344
176
660
819
461
66
405
235
92
339 | 360
212
1042
2473
505
462
467
339
182
1604 | 7.1 | 86 | x | 50.5
53.5
56.5
65.0
58.0
57.0 | | | Imboratory
Number | Source | Trestment | Lron | Manganese | Ammontum | Sodium | Calcium | Magnesium | Silica | Boron | Fluoride | Nitrate | Chloride | Sulfate | Alkalinity | Total
Hardness | Total
Dissolved
Minerals | | Carbon
Dioxide | Methane | Hydrogen
Sulfide | Temperature | |--|--|---|----------------------------|---|--|---|--|--|---|---|-----------------------------|---|---|--
--|---|---|---|---------------------------------|----------------------|---------|---------------------|--| | City | | | | Fe | Min | NH4 | Na. | Ca | Mg | si0 ₂ | В | F | NO ₃ | Cl | so ₄ | as) | caco3) | | ДŢ | co ₂ | сн | H ₂ S | o _F | | Prophetstown Prospect Meadows Quad City Airport Ramsey Rankin Ransom Rantoul (treated) Raymond Red Bud | 112155
148234
131329
114758
116552
116857
116797
142427
115294
147734 | L
L
D
D
S
D
D
D | I
F
ALC1 | .3
1.6
1.8
.3
2.8
Tr
Tr
2.0 | .0
.2
Tr
.0
.1 | Tr
3.2
Tr
2.3
.3
2.8
Tr | 79
15
35
214
14
28
20 | 70.9
56.5
181.1
71.6
39.8
59.8
12.0
76.1
68.2 | 25.9
23.2
65.4
30.5
9.2
36.6
20.0
23.5
22.2 | 28
12
20
21
22
17
25
8 | .1 | .1 .3 .3 .3 .3 .1 .1 | 1.5
.3
1.4
.4
.9
.1 | 1
6
6
17
10
35
2
6
11 | 3
134
32
412
1
8
3
35 | 280
256
376
300
372
544
332
168
296
280 | 284
304
237
722
305
137
300
112
287
262 | 306
434
437
901
395
645
322
204
374
304 | 7.7
7.4
7.3
9.2
7.1 | 15
37
43
60 | X
X | | 52.0
51.1
54.2
55.7
55.0
54.5
54.0
59.0 | | Reddick Reynolds Richland Subdn. Richmond Richton Park Ridge Farm Ridgewood Homes Ridgewood Subdn. Ridgewood Wtr. Assn. Ridgeway (treated) | 144572
128329
126480
146783
147811
116583
147019
146499
147934
113567
114102 | S L L D S L L D D | I
I
AIZ | .7
.2
1.7
.8
.1
.6
3.1
3.7
.1 | Tr .0 .1 Tr .1 .0 .1 | 1.2
1.1
.6
.2
Tr
.2
Tr
2.8 | 332
138
2
32
3
12
17
21
33 | 59.0
33.2
82.4
125.1
78.8
145.9
305.5
149.0
71.7 | 29.6
17.7
39.4
40.3
32.7
67.7
120.1
89.3
28.8 | 33
12
21
11
18
13
13
13 | 1.0
.1
.9
.3
.1 | 1.8
.7
.3
.3
.5
.3
.3
.2
.1 | 1.8
2.0
5.2
.2
.7
1.3
11.0 | 293
10
10
1
2
15
14
17
27
7 | 255
39
95
8
199
44
340
824
360 | 315
404
324
364
340
272
296
412
364
368
380 | 269
156
378
361
479
332
644
1258
739
298
52 | 1216
499
440
382
633
347
842
1614
955
384
418 | 7.4
7.9 | 35
36
11 | | XX | 62.5
58.8
52.0
51.0
52.1
54.0
51.8
51.2
53.6
59.3
60.0 | | Rio Riverside Roanoke Robert Allerton Pk. Roberts Robinson Rochelle Rock City Rock Falls Rockdale | 148358
106407
109531
144134
116240
114506
153356
153351
156201
107987 | L
S
D
D
D
D
S
S
S | A C1 AIC1Z I ZC1 I AIC1 C1 | .2
.6
1.0
2.3
.1
.9
Tr
.8 | Tr
.1
.0
.0
.0
.0
.0 | .5
.7
1.1
2.4
Tr
Tr
Tr | 310
185
36
35
46
16
1 | 25.4
72.7
11.4
67.0
11.3
82.4
70.8
58.2 | 11.7
29.1
42.7
33.3
38.0
11.8
34.8
30.5 | 8
17
18
23
19
13
14 | .8
.5
.1 | 2.0
1.4
.1
.3
.4
.1
.2
.2
.2 | .6
.8
1.5
.4
.2
14.8
2.6
8.1
10.7
Tr | 84
162
14
5
5
10
2
1
8
34 | 69
146
79
1
230
46
9 | 595
324
440
376
300
216
308
256
236
268 | 112
303
462
305
440
255
320
271
297
238 | 860
828
567
387
632
336
326
268
335
473 | 7.1
7.4
7.2 | 63
31
38 | | | 59.5
61.2
54.0
54.5
54.2
57.3 | | Rockford Rockton Rolling Meadows Roodhouse Roselle Roseville Rossville Round Lake Round Lake Round Lake | 147386
153365
146781
116394
151193
107559
116584
107669
144671
107780 | S D S L L D D L L L | C1
C1 | Tr
Tr
.5
.1
.7
.2
2.9 | .0
Tr
Tr
Tr
Tr
Tr | Tr
Tr
Tr
Tr
.2
1.4
.1 | 1
51
10
39
5
17
69
70
68 | 60.1
68.2
70.2
87.1
66.2
32.9
70.8
34.2
36.5 | 33.6
31.0
20.2
28.2
35.4
15.9
42.3
26.2
21.9 | 11
15
8
20
19
31
21
18
20
16 | .0 | .0
.2
1.1
.2
.4
.2
.2
1.2
1.0 | .7
18.8
3.0
3.4
2.3
53.8
.2
Tr
1.8 | 5
15
7
4
11
3
4
10
5 | 12
31
82
31
155
46
12
207
134
214 | 280
244
260
312
228
52
376
96
198
108 | 289
298
258
334
311
148
351
165
199
189 | 314
320
410
389
447
235
384
434
426 | 6.6
7.3
7.8 | 33
48
3 | | | 56.3
58.3
54.5
51.5
54.8
54.0
53.0
53.0 | | Roxana Rushville Rutland St. Anne St. Augustine St. Charles St. David St. Francisville St. Jacob St. Joseph | 116651 D
152612 D
153213 D
112697 L
152185 L
146378 S
152422 D
149505 S
144261 S
116713 D | IZ IC1 IZ AIC1 | 4.8 .5
5.6 .1
2.9 .2
1.8 .0
9.5 .0
.4 Tr
2.6 .1
1.1 .4
.1 .0
2.0 Tr | .1 8 87.0
Tr 6 94.8
1.6 133 188.0
Tr 46 100.6
Tr 37 45.5
Tr 7 72.3
3.4 107 57.0
1.8 23 78.5 | 25.0
37.2
66.9
41.8
24.4
22.6
30.6
31.1 | 15
11
19 | .0
1.4
.2
.1 | .4
.9
.3 | .2 19 2.1 6 .3 14 4.2 5 .1 1 1.3 36 1.3 2 .1 13 1.1 28 .6 4 | 106
25
806
281
30
57
1 | 200
368
180
220
444
212
364
212
468
372 | 321
390
745
423
304
215
368
274
269
325 | 410
430
1397
659
427
302
394
335
538
388 | 7-3 | 28
76 | x | 57.5
56.0
54.0
53.5
54.0
59.7
54.5
60.0
62.5
54.5 | |---|---|---------------------------|--|---|---|---|-----------------------|--|--|---|---|---|---|-------------------|----------------|---|--| | St. Marie Sandwich San Jose Sauk Village Saunemin Savana Saybrook Sayre Ave. Subdn. Scots Plains Subdn. Seaton | 133026 D
112145 S
152609 D
146508 L
110182 D
131834 S
115950 D
157810 L
153371 L
108248 L | IA IZC1 IC1 ZC1 C1 AC1 | 8.3 .0
1.3 .0
4.6 .1
.4 .0
1.2 .0
.6 .1
.1 .1
2.4 .0
.5 .0 | .6 18 76.9 Tr 1 89.8 Tr 4 74.9 Tr 64 74.7 4.9 142 20.0 .1 4 50.5 Tr 17 124.0 .4 19 128.0 3.3 187 27.3 | 14.8
42.9
34.7
45.4
11.7
34.7
46.7
71.7 | 19
23
21
12
14
11
19
17 | .0 .8 | •3 | .1 8 .3 11 1.6 3 .8 4 .7 12 .8 7 24 .8 41 1.1 3 .9 29 | 21
51
16
99
2
19
133
275 | 260
332
316
404
400
256
344
312
284
460 | 253
401
330
374
98
270
502
615
298
103 | 295
437
352
554
474
286
620
780
339
562 | 7.0 | 4 3 | | 56.0
52.9
52.4
54.0
63.5
53.0 | | Secor
Seneca
Shabbona
Shannon
Shawneetown
Sheffield
Shelbyville
Sheldon
Sherrard
Sibley | 109422 D
118246 S
153620 D
153355 S
113565 D
121807 D
137848 D
116416 D
108242 L
116216 D | C1 IC1 IC1 IC1 | 5.5 Tr
2.1 Tr
1.4 .0
.2 .0
2.3 .1
2.2 Tr
.1 .4
.9
3.9 .0 | 11.9 10 106.2
.7 98 73.2
.1 7 74.6
.6 4 70.8
.1 5 86.3
.1 17 111.8
.5 1 117.6
.6 56 42.2
4.4 106 56.0
.7 12 62.2 | 46.5
35.8
37.2
35.9
58.0
43.7
14.3
19.3
28.5 | 31
13
20
8
28
26
17
18
13
20 | .0 | .3
.4
.4
.2
.1
.4
.8
.3 | .6 1 .1 100 3.0 1 .6 1 .1 3 4.9 22 2.2 24 .2 3 .5 38 .5 2 | 3
124
1
1
12
155
87
4
66 | 508
276
352
340
358
360
348
280
340
288 | 457
330
340
330
364
518
474
165
220
273 | 493
628
375
348
373
603
508
302
508
310 | 7.1
7.6
7.4 | 75
20
29 | x | 51.5
52.2
54.0
55.0
54.0
56.3
53.5 | | Sidell Sidney Sigel Silvis Silvis Hts. Smithton Somonauk Southlands Subdn. S. Beliot S. Chicago Hts. | 117635 D
152155 D
144606 D
149561 IS
130858 L
144225 S
112144 L
136174 L
112321 S
146509 L | C1
IZ
C1
A | .1 Tr 7.0 .1 2.7 Tr .4 Tr .5 .0 Tr .0 1.4 .0 1.4 .0 1.4 .0 | .0 1 66.0
5.8 87 54.1
.3 59 49.5
.1 404 77.7
3.5 42 54.8
Tr 126 29.0
Tr 1 79.8
Tr 8 59.4
Tr 17 93.4 |
24.4
20.7
22.6
37.1
24.6
11.5
35.9
36.8
51.1 | 15
18
17
9
12
12
12
22 | .5 | .2
.4 | 4.7 2
.4 28
.4 17
5.6 453
.0 8
8.6 37
1.5 4
1.9 4
4.2 2 | 56
1
5
338
7
26
14 | 200
384
316
230
320
308
328
304
292
416 | 255
220
217
347
238
120
347
728
300
444 | 302
455
372
1456
338
431
343
824
311
503 | 7.4
7.3
7.5 | 20
49
24 | | 53.0
56.5
65.0
54.0
57.0
52.7
53.2
52.5 | | S. Elgin S. Pekin S. Wilmington Sparland (treated) Spring Valley Standard-Mark Stanford Starved Rock St. Pk. St. ReformatoryWomen (treated) | 111558 S
109276 D
121959 S
108853 D
82550 D
111560 D
109929 S
115979 D
153217 L
117372 S
156304 S | IZ C1 Z LC1 AIC1Z C1 AZC1 | .7 .0
.1 Tr
.4 .2
.0 .0
.4 .0
.2 1.8
2.2 .0
2.3 .1
2.4 .0
.2 .0 | .6 22 66.4 Tr 9 100.9 1.5 311 84.3 .1 17 125.0 Tr 330 4.7 .1 41 168.6 .2 1188 57.0 8.7 77 84.2 Tr 25 89.1 1.0 403 72.8 434 18.0 | 26.2
34.8
39.8
77.3
71.0
22.9
37.8
33.4
36.0
9.0 | 13
21
12
17
18
20
13
26
9
14 | •3 | 1.0 | .9 4
.0 295
7.2 11
17.3 9
2.7 34
1.1 1675
.6 55
2.5 52
.1 545
365 | 23
157
361
356
428
412
143
1
12
166
232 | 292
220
264
276
282
324
312
480
328
268
272 | 274
396
375
631
40
714
237
366
361
330
84 | 343
496
1304
797
975
973
3279
578
424
1402
1258 | 7.4
8.1 | 18 | x | 54.6
55.2
60.2
54.0
56.0
62.5
54.5
53.0
59.1 | | | Laboratory
Number | Source | Trestment | îron | Manganese | Ammonium | Sodium | Calcium | Magnesium | Silica | Boron | Fluoride | Nitrate | Chloride | Sulfate | Alkalinity | Total
Hardness | Total
Dissolved
Minerals | | Carbon
Dioxide | Methane | Hydrogen
Sulfide | Temerature | |---|--|--------------------------------------|-----------------------------|---|----------------------------------|--|---|---|--|--|-----------------------------------|---|--|--|---|--|--|---|-------------------|-------------------|---------|---------------------|--| | <u>C1ty</u> | | | | Fe | Mn | nh ₄ | Na | Ca | Mg | sio2 | В | F | _{Ю3} | Cl | SO ₁₄ | ea) | caco3) | | Ħq | co2 | СН4 | н ₂ s | o _F | | St. Training Sch Sheridan Steeleville Steger Sterling Steward Stewardson Stillman Valley Stockton Stonefort | 111093
113726
107861
124667
112900
144609
153360
142534
152355 | S
L
S
D
D
S
S | C1
12F
C1
I | .2
.6
.3
.8
.0
.9 | Tr
Tr
.00
Tr
Tr | Tr .6 .5 .0 .2 Tr Tr .1 Tr | 12
57
7
11
5
36
4
10
153 | 75.6
47.7
90.2
63.8
65.3
65.5
63.0
72.6
50.1 | 30.2
13.7
45.5
31.9
25.3
23.6
30.3
36.0
15.2 | 16
15
15
15
25
18
11
11 | .0
.0
.1 | .2 .1 .2 .1 .2 .2 .2 | 2.1
.4
.5
.1
1.2
.6
1.4
2.6 | 8
22
2
23
2
3
1
2
14 | 3
13
51
24
8
32
6
7
273 | 324
256
372
256
268
300
284
340
216 | 313
176
413
296
267
261
282
330
188 | 339
342
432
325
292
376
294
346
669 | 7•5
7•2 | 20
62 | | | 55.5
59.0
52.0
62.0
56.5 | | Stone Park Stonington (treated) Strawn Streamwood Stronghurst Sturms Subdn. Sublette Sugar Grove Sullivan (treated) | 106699
115422
115509
110082
147272
107985
146911
112898
151911
115142
142527 | 0
0
0
0
0 | Cl
12Cl
2Cl
1Z | 1.3
1.6
.1
6.6
2.9
2.1
.5
2.5
.2
3.2 | .1
.2
Tr
.0
Tr
.0 | .3
Tr
.2
.1
1.1
Tr
1.1
Tr | 59
33
8
13
6
74
60
18 | 158.4
99.6
88.9
103.7
72.8
97.5
62.6
97.2
78.4
13.0 | 74.5
33.1
38.8
55.7
31.0
60.4
28.8
45.2
33.7
23.0 | 14
23
17
24
19
18
19
15
20 | .0 | .1
.3
.2
.5
.1
.1
.5
.2
.1 | 2.6
5.3
.2
.4
.3
2.4
.1
.8 | 14
14
13
3
4
3
16
5 | 395
91
105
139
24
504
124 | 356
296
296
272
368
296
124
288
316
344 | 702
385
37
382
489
310
493
275
429
335
128 | 959
505
489
444
583
333
877
306
503
349
175 | 7.0
7.2
8.2 | 94
53
5 | | | 51.2
55.5
59.5
54.5
51.5
53.6
53.6
55.5 | | Suncrest Highlands Sunnyland Subdn. Sunnyside Estates Subdn Swedons Sycamore Sycamore-Greengold Subdi Table Grove Tallula Tampico Tamms | 144064
111944 | S
L
L
S
L
S
D
D | C1
C1
AIC1
IZ
I | .1
1.8
.4
1.0
1.4
.7
3.0
.1 | Tr .2 Tr Tr .0 .0 1.0 .2 .1 | .2
Tr
.1
Tr
Tr
Tr
1.5 | 60
11
8
97
8
20
834
13
15
12 | 64.7
102.0
46.5
55.5
72.2
78.5
156.0
121.0
64.0
99.4 | 29.5
46.5
35.6
21.5
37.7
38.4
69.3
54.0
21.7 | 7
16
20
12
25
15
9
20
16 | .5
.0
.1
.5
.2
2.1 | 1.3
.2
.5
.5
.4
.4
.4
.2
.2
.1 | 1.9
5.36
9.1
2.3
2.2
5.2 | 14
24
2
2
6
4
835
10
4 | 83
122
1
7
17
68
1013
59
84
62 | 308
308
276
420
316
320
260
474
184
308 | 284
446
263
227
336
353
675
524
250
371 | 439
508
289
462
352
443
3106
569
334
418 | 7.7 | 17 | | x | 53.3
53.7
53.8
56.3
52.7
68.0
56.0
53.5 | | Taylorville Teutopolis (treated) Thawville Thomasboro Thomson Thornton Tinley Park Tinley Pk. St. Hosp. Tiskilwa | 125602
145466
114786
122612
152067
153362
146633
106885
144431
111943 | | AIC1
I
C1
C1 | .6
1.8
.4
1.3
1.4
1.4
2.1
.5
.5
2.3 | .1
.1
.1
.1
Tr
.0 | .0
.4
Tr
Tr
.1
.1 | 34
39
61
6
285
4
9 | 32.9
88.5
.1
115.7
43.6
198.0
103.1
109.0
82.0 | 10.9
29.6
21.3
50.3
14.1
56.8
49.7
51.9
36.5 | 19
19
27
22
8
17
11
29 | .0 .8 | .1
.2
.5
.3
.2
1.2
.3
.5
.5 | 14.3
1.0
7.2
.4
20.7
3.0
1.2
1.3
7.6 | 23
24
1
1
6
275
5
3 | 33
99
294
29
706
72
109
43 | 148
292
128
316
344
124
224
388
388
352 | 126
343
91
497
286
167
729
463
486
355 | 234
466
268
748
360
227
1715
501
564
455 | 9 . 7 | 135 | | x | 55.5
56.0
57.7
54.0
54.5
52.5
54.0
53.5 | | Toledo (treated) Tolono Toluca Tonica Toulon Tower Hill Towner Subdn. Trement | 149503
115175
139406
153666
153215
145322
144607
151196
118659
145464 | D D S D L S L D S | IZC1
IZC1
A | 1.3
.2
4.1
1.2
1.5
4.0
2.9
.1
1.3 | .0
.0
.0
.1
Tr | Tr
4.0
1.8
1.9
1.5
.6 | 115
500
128
659
44
117
27
386 | 52.5
93.4
50.6
44.9
24.3
62.5
81.0
69.7 | 21.8
32.8-
21.5
25.7
11.3
16.4
59.0
50.3
3.1 | 14
27
10
9
8
24
17
25
8 | .1
.4
.8
1.0
1.0
.0
.4 | .5
.1
.3
1.6
.8
2.0
.3
.5
.3 | 3.7
1.1
.4
8.3
.1
.0
2.8
7.6
1.1 | 24
15
6
580
75
600
24
8
3
215 | 27
1
224
1
225
2
573
1 | 252
260
620
256
388
464
284
88
432
562 | 221
74
369
215
218
108
224
445
382 | 333
328
640
1550
534
1812
376
961
457
950 | 7.8 | 10 | | | 54.0
59.0
75.0
53.5
60.0
54.5
54.5
58.5 | |---|--|---|------------------------|---|--|---|--|--|--|--|--
--|--|--|---|--|--|--|-------------------|----------------|---|--------|--| | Tri-State Village Troy Tuscola Ullin Union Utica Valley View Subdn. Valmeyer Van Orin Varna | 146607
144046
117920
152302
111047
110852
146912
113886
111799
108900 | L D L S L D D D | AZC1
I
IZC1
I | .1
.6
4.8
.1
.2
.9
6.8
1.6 | Tr .1 .0 .2 .1 .0 Tr .4 .0 Tr | Tr
Tr
.5
Tr
.9
.5
Tr
Tr | 25
98
56
91
32
40
23
81 | 98.0
102.5
58.6
72.6
42.3
98.0
72.4
134.0
55.1
72.0 | 38.5
44.4
23.5
17.9
25.3
34.4
23.9
25.3
28.8 | 20
25
15
18
14
15
17
35
25
24 | .2
.3
.0 | .4 .3 .2 .4 .5 .3 .2 .5 .4 | 4.0
1.3
Tr
2.3
1.0
1.2
2.9
2.3 | 3
7
66
6
2
170
3
91
2
6 | 132
149
12
1
1
21
74
113
1 | 316
292
352
256
264
324
304
272
288
336 | 404
438
243
255
210
387
318
433
242
299 | 526
517
498
290
280
627
408
594
310
532 | 7.2
7.5
7.0 | 55
22
67 | | х | 51.0
56.5
57.0
57.0
52.3
55.5
51.4
57.5
52.5
54.5 | | Vermilion Versailles Victoria Villa Grove (treated) Villa Park Viola Waggoner Walnut Wapella | 141306
132473
144665
152579
115183
146384
108243
144971
126678
144611 | D D L L L S S D D D | IA ALC1 C1 I | 3.1
.7
.1
.1
.2
.1
6.1
4.2
5.0 | .1
Tr .0
.0 | .1
Tr
.5
.5
1.7
Tr
.8 | 37
537
118
95
317
2
6
13 | 84.4
15.2
51.4
80.3
50.4
66.2
77.2
84.0 | 45.8
7.4
25.9
38.5
20.4
21.7
27.5
35.0 | 18
10
10
8
13
19
26
21 | 1.8
.1
.6
.1 | .2
.1
1.8
.4
.6
2.4
.5
.3 | .5
14.5
2.7
.9
1.3
.2
5.3
.4 | 13
19
410
83
95
33
260
5
4 | 41
123
12
239
298
1
1 | 112
348
528
364
168
272
228
296
316
392 | 380
399
69
235
74
360
210
255
306
357 | 429
457
1448
529
381
665
1104
318
320
410 | | | | | 55.8
53.0
63.5
64.0
66.2
55.4
61.2
55.0
53.0 | | Warren Warrensburg (treated) Warrenville Washburn Washington Washington Estates Subdu Wataga Waterman Watseka | 153363
152577
115789
147701
109512
152727
1.708070
144661
112084
128960 | S D D D D D D D D D D D D D D D D D D D | IZ
I
IZ
ICL | 3.8
.6 | .0
.0
.0
Tr
.0 | .1
5.6
Tr
2.4
Tr
5.8
.1
.1 | 1
66
75
37
7
74
391
4 | 78.0
72.4
85.5
69.5
69.5
85.6
10.0
56.4
39.2 | 43.0
34.0
40.6
32.3
30.2
28.2
3.3
37.7
13.8 | 12
21
14
24
17
26
9
24
16 | .0 .4 .4 .0 | 2 5 2 6 6 2 4 9 4 3 | .4
.7
.6
1.0
2.5
2.8
3.5
8
.5 | 4
6
8
77
17
1
1
3
180
1 | 22
1
115
2
1
3
57
4
5 | 344
472
452
316
368
308
496
572
296
300 | 372
321
38
381
307
298
330
39
296
155 | 374
504
482
609
416
317
526
1024
307
342 | 7.6
7.5 | 28 | | | 55.5
58.5
52.2
54.0
56.0
62.0
55.0 | | Wauconda Waycinden Park Waynesville Wedron Weldon Weldon Springs St. Pk. Wenona Wenninger Subdn. W. Brooklyn W. Chicago | 107499
152023
115702
111092
115683
152601
108901
708072
113202
110809 | L
S
D
D
S
D
D
S
D
D
L | I
IC1 | 1.3
.2
3.3
1.5
1.8
2.6
1.5
1.9 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | .9
.5
4.3
3.1
.2
1.7
2.4
1.1 | 66
67
62
64
439
52
19
20 | 68.1
75.9
95.6
68.1
68.5
61.0
76.0
71.7
105.4 | 48.2
36.4
52.6
23.9
31.0
25.1
31.6
27.7
54.4 | 40
8
28
23
14
15
22
27
17 | •3 | .4
.3
.2
.1
.5
.2
1.4
.2
.3 | .4
1.2
.2
.1
4.7
.6
1.9
Tr
1.0 | 36
46
490
490
38 | 13
172
16
147
1
22
253
2
1
158 | 356
268
592
296
404
280
420
420
336
312 | 369
339
456
465
269
256
320
294
487 | 382
537
634
490
445
338
1437
453
338 | 7.3
7.9 | 46 | x | X
X | 52.5
56.0
54.6
54.0
55.3
55.0
70.0
57.0 | | | Laboratory
Number | Source | Trestment | Tron | Manganese | Armonium | Sodium | Calcium | Magnesium | Silica | Boron | Fluoride | Nitrate | Chloride | Sulfate | Alkalinity | Total
Hardness | Total
Dissolved
Minerals | | Carbon
Dioxide | Methane | Hydrogen
Sulfide | Temperature | |---|--|--------------------------------------|--------------------------|---|--|---|----------------------------------|--|---|--|----------|---|--|--|--|---|--|--|--|---------------------------|---------|---------------------|--| | Clty | | | | Fe | Mn. | NH ₄ | Ne. | Ça | Mg | Si0 ₂ | В | F | NO3 | Cl | 30 _{],} | (as | caco3) | | pН | co2 | СНД | H ₂ s | ° _F | | West Dundee Western Springs (treated) Westfield Westfield (treated) Wheaton Wheaton Farms Wheeling White Pines Forest | 111399
142088
106409
114982
110352
110884
150615
110604
106248 | S D D S L L L L L | C1
IIC1
IZ
A. | Tr
.2
.0
2.5
1.5
.3
1.1
1.2 | .0
.0
.0 | Tr
.8
1.3
.8
.0
Tr | | 73.7
97.6
18.1
138.6
102.9
82.9
44.2 | 38.3
38.7
12.1
37.3
43.7
39.2
33.2 | 21
8
14
23
14
25
16 | .4 | .1 .7 .9 .4 .2 .3 .5 | 15.1
Tr
.3
.6
2.5
1.0 | 9
30
20
7
34
14
6
7 | 72
214
1
178
165
141
179 | 248
296
56
264
372
340
288
244
188 | 342
403
195
96
500
25
437
369
247 | 387
664
978
282
620
610
528
456
460 | 8.2
7.2
7.5 | 5
59
26
17 | | | 51.0
54.4
55.0
57.0
51.8
56.5
51.6
50.5 | | St. Pk. | 112652 | s | | .2 | Tr | Tr | 9 | 59+9 | 25.3 | 17 | | .1 | .1 | 2 | 22 | 248 | 254 | 277 | | | | | | | Wildwood Subdn. Williams Field Williamsville Willisville Willowick Estates Wilmington Winchester (treated) Windsor Winfield Winnebago | 125913
107735
108197
145895
151277
107910
113693
113694
145470
148010 | S L D S L S D D D L S | IC1 A I C1 C1 IC1 IC1 C1 | 2.0
5.4
.4
.4
1.4
.1
2.9
6.0 | .0
.2
.1
.0
.1
Tr
.1 | .3
1.1
.5
.6
1.0
.9
8.2
Tr | 251
8
35
16 | 80.4
21.7
85.7
59.4
117.0
110.2
82.2
72.5
98.0
93.6 | 19.0
6.8
36.3
17.4
52.8
39.7
33.9
39.5
53.8
41.6 | 15
14
17
11
17
12
23
18
17 | .1
.5 | 1.0
4.0
.2
.1
.5
1.2
.3
.3
.7
.3 | .2
.4
.1
.2
.4
.7
.3
5.5
1.4 | 11
570
3
19
2
295
9
9
5
7 | 59
176
84
8
225
323
20
1
158 | 260
620
276
274
356
236
332
80
432
326 | 279
83
364
220
510
439
345
72
344
466 | 360
1882
405
313
669
1188
367
117
446
580 | 7.4 | 26 | | x
x | 62.0
63.5
62.0
59.5
55.0
56.0
51.0 | | Winslow Winthrop Harbor Witt Wooded Shores Subdn. Woodhull Woodland Wood River Woodstock (treated) | 112584
148586
115293
148175
114636
116472
146646
111019 | SLOOSDOOD | IZ
Cl
Cl
IICl | .1
5.3
Tr
1.6
.5
1.1 | .0
.2
.0
Tr
.5 | Tr
.1
.2
7.9
Tr
1.8 | 2
55
44
273
39
39 | 61.2
23.1
69.3
35.4
96.8
122.3
78.0 | 40.0
9.0
20.0
14.7
38.2
40.6
42.2 | 15
20
26
12
20
23
31 | .0 | .1
.5
.2
.1
1.2
.3
.1 | Tr
2.3
Tr
4.3
2.1
2.0
1.1 | 2
8
15
11
149
10
11
4 | 15
56
61
243
34
176
8 | 304
152
268
402
276
456
308
360
70 | 318
110
256
490
149
399
473
369 | 311
235
388
521
901
498
626
382
102 |
7.5
7.1
7.5
7.5
7.5
9.6 | 38
60
21
34
1 | | х | 52.4
51.7
55.0
51.3
62.6
58.2
51.2
54.5 | | Worden Wyanet Wyoming Yates City (treated) York Center Yorkville Zion Zurich Hts. San. Dist. | 152183
111809
109136
109798
109795
146496
145958
107588
146914 | D
D
D
D
L
D
S
L | I
I
ZF
C1
Z | .9
6.0
.1
Tr
.1
1.9
.1 | Tr .6 .0 .0 Tr .0 Tr | 2.4
2.8
1.7
Tr
Tr
Tr | 1
56 | 36.4
87.3
42.8
74.8
105.0
91.5
92.0
142.4 | 17.0
36.0
18.1
29.2
48.4
45.5
21.7
93.1 | 8
33
14
22
17
11
12
16 | .1 | .5
5.5
2.4
.1
.3
.3
.1
1.6 | .6
.6
.6.5
16.5
1.6
10.7
.5
3.5 | 90
7
270
6
6
15
13
23
18 | 71
2
303
33
133
124
151
872 | 416
396
232
252
264
332
262
252 | 161
367
182
307
37
462
416
320
739 | 715
414
1136
329
339
572
488
520
1378 | 7.6 | 14
39 | | х | 58.0
53.0
66.4
53.8
47.0
59.4
53.2 | .