


ALIERAS STATE WATER SURVEY LIBRARY CONY

# Water-Level Trends and Pumpage in the Deep Bedrock Aquifers in the Chicago Region, 1985-1991

by Adrian P. Visocky

ILLINOIS STATE WATER SURVEY DEPARTMENT OF ENERGY AND NATURAL RESOURCES

1993

75WS C-177 Ioan C.1

#### **CIRCULAR 177**



# Water-Level Trends and Pumpage in the Deep Bedrock Aquifers in the Chicago Region, 1985-1991

by Adrian P. Visocky

**Title:** Water-Level Trends and Pumpage in the Deep Bedrock Aquifers in the Chicago Region, 1985-1991.

**Abstract:** The deep bedrock aquifer system in northeastern Illinois is encountered at depths ranging from about 200 feet below land surface in areas of north-central Illinois to an average of about 1,000 feet at Chicago. The aquifers have a collective thickness of 300 to 1,300 feet in the Chicago region, with an average of 700 feet. They are composed chiefly of sandstones and dolomites, although most of the water is derived from the sandstone units. Pumpage from deep bedrock wells for public and self-supplied industrial use in the Chicago region increased from 200,000 gallons per day in 1864 to a peak withdrawal of 182.9 million gallons per day (mgd) in 1979. Between 1985 and 1991, pumpage decreased from 157.7 mgd to 112.7 mgd, mostly due to a shift to Lake Michigan water. As a result, water levels in many deep wells rose between 1985 and 1991, particularly in northwestern Cook and southern Lake Counties. Average annual water-level changes during the six-year period varied from a rise of 12 feet in Cook County to a decline of 8 feet in Will County, for an overall average rise of about 3 feet. This marked the first time that the average change was upward since detailed record-keeping began in the 1950s.

**Reference:** Visocky, Adrian P. Water-Level Trends and Pumpage in the Deep Bedrock Aquifers in the Chicago Region, 1985-1991. Illinois State Water Survey, Champaign, Circular 177.

**Indexing Terms:** Chicago, northeastern Illinois, Cook County, Lake Michigan diversion. Lake Michigan allocations, aquifers, Cambrian-Ordovician aquifers, deep sandstone wells, deep bedrock aquifers, ground water, public water supplies, industrial water supplies, water levels, water-level changes, pumpage, ground-water withdrawals.

ALINCES STATE WATER SURVEY LIBERTRY CONT

NTRICC REVIE AVIES SURVEY LIBRARY COPY

-0CT-10-000-

#### STATE OF ILLINOIS HON. JIM EDGAR, Governor

DEPARTMENT OF ENERGY AND NATURAL RESOURCES John S. Moore, B.S., Director

**BOARD OF NATURAL RESOURCES AND CONSERVATION** 

John S. Moore, B.S., Chair Robert H. Benton, B.S.C.E., Engineering Donna M. Jurdy, Ph.D., Geology H.S. Gutowsky, Ph.D., Chemistry Roy L. Taylor, Ph.D., Plant Biology Robert L. Metcalf, Ph.D., Biology W.R. (Reg) Gomes, Ph.D., University of Illinois John H. Yopp, Ph.D., Southern Illinois University

STATE WATER SURVEY DIVISION Mark E. Peden, Acting Chief

2204 GRIFFITH DRIVE CHAMPAIGN, ILLINOIS 61820-7495

1993

ISSN 0097-5522

Funds derived from grants and contracts administered by the University of Illinois were used to produce this report. This report was printed on recycled and recyclable papers. Printed by authority of the State of Illinois. (9-93-200)

# CONTENTS

#### PAGE

| Summary                                                                                        |
|------------------------------------------------------------------------------------------------|
| Introduction                                                                                   |
| Acknowledgments                                                                                |
| Geology and Hydrology                                                                          |
| Production from Deep Bedrock Wells                                                             |
| Pumpage, 1985 through 1991                                                                     |
| Pumpage Related to the Practical Sustained Yield.                                              |
| Water Levels in Deep Bedrock Wells                                                             |
| Water-Level Changes in Observation Wells 14                                                    |
| Water-Level Changes—Regional Trends                                                            |
| Potentiometric Surface of the Deep Bedrock Aquifers. 23                                        |
| Potentiometric Surface, 1985                                                                   |
| Potentiometric Surface, 1991                                                                   |
| Changes in Potentiometric Surface, 1985-1991                                                   |
| Appendix: Water-Level Elevations in the Deep Bedrock Aquifersin Northern Illinois, 1985-199129 |
| References 43                                                                                  |

#### WATER-LEVEL TRENDS AND PUMPAGE IN THE DEEP BEDROCK AQUIFERS IN THE CHICAGO REGION, 1985-1991

by Adrian P. Visocky

#### SUMMARY

This report considers pumpage and water-level changes from 1985 through 1991 in deep bedrock wells penetrating the Cambrian and Ordovician aquifers in northeastern Dlinois. These aquifers are the most highly developed system for large ground-water supplies in Dlinois. Collectively this system has been described as the "Cambrian-Ordovician aquifer" in past reports, but formal hydrostratigraphic unit names, reported by Visocky et al. (1985), have designated this system as the "Midwest Bedrock Aquigroup." An informal term, "deep bedrock aquifers," is used in this report for convenience.

The deep bedrock aquifer system is encountered at depths ranging from about 200 feet below the land surface in areas of north-central Illinois to an average of about 1,000 feet at Chicago. The aquifers have a collective thickness of 300 to 1,300 feet in the Chicago region, averaging 700 feet, and are composed chiefly of sandstones and dolomites. Most of the water is derived from the sandstone units. In this report, emphasis has been given to the eight counties of the Chicago metropolitan area.

Pumpage from deep bedrock wells for public and self-supplied industries in the Chicago region increased from 200,000 gallons per day (gpd) in 1864 to 175.9 million gallons per day (mgd) in 1980. By 1991 pumpage had declined to 112.7 mgd. Peak pumpage of 182.9 mgd occurred in 1979. As a result of the pumpage, artesian pressure in the deep bedrock aquifers declined more than 850 feet at Chicago.

In 1991 pumpage from deep wells in the Chicago region was concentrated in northern and western Cook County; eastern DuPage, eastern Kane, southeastern McHenry, and southern Lake Counties; and in the Joliet area of Will County. In 1992, implementation of Lake Michigan allocations in DuPage County and parts of Lake County caused a significant decrease in deep pumpage in those areas. Outside the Chicago region, heavy pumpage from deep wells occurred at Rockford in southeastern Winnebago County, Belvidere in south-central Boone County, DeKalb-Sycamore in central DeKalb County, Rochelle in southeastern Ogle County, and Ottawa-Peru in central and west-central LaSalle County.

During the period from 1980 through 1985, pumpage from deep wells in the Chicago region dropped from 175.9 to 157.7 mgd, adecrease of 18.2 mgd or 10.3 percent. This was the first extended period of decreased pumpage from deep wells in the area since the post-depression, pre-World War II period. Pumpage continued to decline from 1985 through 1991, but at a sharper rate. While yearly declines averaged about 3.6 mgd from 1980 to 1985, declines during the period 1985-1991 averaged 7.5 mgd—more than double the earlier rate. Most of the decline, about 21.8 mgd per year, occurred during the first two years due to shifts in deep pumpage in Cook County to Lake Michigan water and

decreases in industrial pumpage. During the latter four years, pumpage fluctuated and experienced an overall average decline of only about 0.4 mgd per year.

As a result of the shift to lake water, levels in deep wells in some areas of the Chicago region rose between 1985 and 1991, particularly in northwestern Cook and southern Lake Counties. On average, water levels rose in five of the eight counties in the Chicago region. Elsewhere, significant declines continued as total deep well pumpage continued to exceed the sustained yield. Average annual water-level changes during the six-year period varied from a rise of 12 feet in Cook County to a decline of 8 feet in Will County, with an average overall rise of about 3 feet. This is the first time that the average water-level change was positive since detailed record keeping began in the 1950s.

Despite these gains, Chicago regional withdrawals for 1985-1991 continued to exceed the practical sustained yield of the deep bedrock aquifers, albeit at a diminishing rate. With the subsequent switch to lake water in 1992 in DuPage County and portions of Lake County, total deep bedrock withdrawals were expected to fall within the sustained yield.

#### INTRODUCTION

In May 1959, the Illinois State Water Survey and the Illinois State Geological Survey published Cooperative Ground-Water Report 1 (Suteret al., 1959), which discussed the geology and hydrology of the ground-water resources of the Chicago region, the yields of aquifers, and the possible consequences of future ground-water development. Special emphasis was placed on the deep bedrock aquifers, which have been most widely used for large ground-water supplies. Cooperative Report 1 indicated that pumpage from deep wells during 1958 approached the amount that could be continuously withdrawn without eventually dewatering the most productive formation of the deep bedrock aquifers. Future water-level declines were predicted (1958-1980), ranging from 190 feet at Elgin to 300 feet at Chicago and DesPlaines. It was recognized that actual water-level declines would vary from the predicted declines if future distribution and pumpage rates deviated from extrapolations of past ground water used.

In 1959, as a result of the findings of Cooperative Report 1, the Water Survey expanded its program of collecting and reporting water-level and pumpage data for deep wells in the Chicago region. The objectives of the program were: 1) to provide long-term continuous records of pumpage and water-level fluctuations, 2) to delineate problem areas, and 3) to report hydrologic information to facilitate the planning and development of water resources of the deep bedrock aquifers in the Chicago region. The importance of the program became apparent during the ensuing years because of the increasing demands for water and the continuing decline of ground-water levels.

Many reports on water levels and pumpage from deep wells have been issued by the Water Survey since the publication of Cooperative Report 1: Circular79 (Walton et al., 1960); and Circulars 83, 85, 94, 113, 125, 154, and 166 (Sasman et al., 1961, 1962, 1967, 1973, 1977, 1982, and 1986, respectively). These reports summarized data for 1959, 1960, 1961, 1962-1966, 1966-1971, 1971-1975, 1971-1980, and 1980-1985, respectively. Reports of Investigation 50 (Sasman, 1965) and 52 (Sasman and Baker, 1966) summarized data on ground-water pumpage in 17 northern Illinois counties through 1962 and 1963, respectively. Report of Investigation 73 (Sasman et al., 1974)

discussed ground-water pumpage in 20 northern Dlinois counties during the period 1960-1970. Reports of Investigation 83 (Schicht et al., 1976) and 97 (Singh and Adams, 1980) described available ground-water and surface water resources for the Chicago region, predicted water shortages depending on various water-use schemes, and offered alternatives for meeting projected water supply needs to the year 2010. Contract Report 292 (Visocky, 1982) and Research Report 119 (Burch, 1991) described the impact of additional Lake Michigan withdrawals on deep-well pumpage and water-level trends. Cooperative Ground-Water Report 10 (Visocky et al., 1985) provided an updated hydrogeologic evaluation of the water resources of the deep bedrock aquifers.

In response to expanding urban development, the outward migration of declining water levels, the increasing use of lake water for public supplies, and growing interest in regional water resources development, this report provides a detailed discussion of ground-water withdrawals and water-level trends in northeastern Illinois. The report covers a 15-county area from Lake Michigan to north-central Illinois and from the Wisconsin border south to Kankakee County. Particular emphasis, however, has been given to the eight counties of the Chicago region because of ongoing heavy pumpage from the deep bedrock aquifers and water-level changes due to increasing groundwater withdrawals in some areas and decreasing withdrawals in others.

During spring 1992, major new Lake Michigan allocations were implemented in DuPage County, and many deep-well pumps were turned off. Since this report describes water levels measured in fall 1991, prior to the switch to Lake Michigan water, it is an important record of conditions when water levels were still subject to the stresses of higher pumpages. The next detailed water-level measurement, scheduled for fall 1995, will document the response of the deep bedrock aquifers to major pumpage reductions resulting from the switch to lake water in DuPage and Lake Counties.

Pumpage figures for the period 1986-1991 used in this report were taken from the Illinois Water Inventory Program, which gathers water-use information from questionnaires filled out by public water supply operators and self-supplied industries. Since these data have not yet been published formally and are subject to final revisions, they must be considered preliminary.

In this report, pumpage for public use includes use by municipalities, subdivisions, mobile home parks, and institutions. No attempt has been made to determine the final use of water within these categories. Available records indicate that 105 public water supplies obtained water from deep wells in 1991, compared to 129 in 1985.

Pumpage for self-supplied industries includes only pumpage from wells owned and operated by the industries. (For convenience, country clubs are included in this category in mis report.) Records indicate that at least 85 self-supplied industries in the Chicago region used deep wells in 1991, compared to 119 in 1985.

Pumpage from deep wells for individual domestic and rural residences or for farm supplies is not included in this report, since few wells serve these uses in the Chicago region, and total estimated pumpage for these uses in northeastern Illinois is extremely limited.

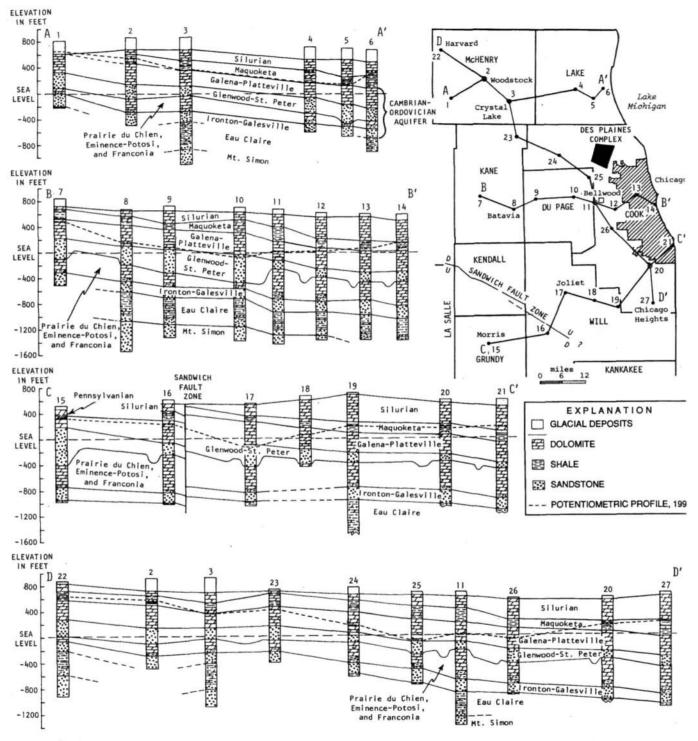
Water levels in deep wells were measured by a variety of methods and under a wide range of operating conditions and reliability. Most measurements were taken with altitude gages attached to air lines suspended in the wells. Other measurements were obtained with graduated steel tapes or electric droplines that set off either light or sound signals when the probe touches water. A few wells are open holes and can be measured very accurately. Most wells, however, are equipped with pumps that limit or prevent access for measurement. Water levels are affected by recent pumpage of the well itself or by pumpage at adjacent wells. The reliability of the water-level measuring equipment and the experience of the person taking the measurement are also important considerations. Altitude gages, for example, are generally limited to a precision of about a foot, while steel tapes and electric droplines can be read with a precision of as much as 0.01 foot and 0.02 foot, respectively.

The eight counties of the Chicago region, with abbreviations used in this report, are:

| Cook   | COK | Kendall | KEN |
|--------|-----|---------|-----|
| DuPage | DUP | Lake    | LKE |
| Grundy | GRY | McHenry | MCH |
| Kane   | KNE | Will    | WIL |

The seven northern counties in the extended area outside of the Chicago region included in this report are:

| Boone    | BNE | Lee       | LEE |
|----------|-----|-----------|-----|
| DeKalb   | DEK | Ogle      | OGL |
| Kankakee | KNK | Winnebago | WIN |
| LaSalle  | LAS |           |     |


#### Acknowledgments

Partial support for the fall 1991 field data collection described in this report was provided by the Illinois Department of Transportation, Division of Water Resources. The author wishes to acknowledge the numerous individuals and organizations who generously contributed information incorporated in this report. Operators of more than 85 percent of the public and self-supplied industrial water supply systems reported their annual pumpage in response to mailed questionnaires. Water-level data were largely obtained in visits of Illinois State Water Survey personnel to system operators. Water-level data were collected by Northern Illinois University students Amjad Asaf, David Munday, and Robert Pell; and by Curtis Benson, Dean Jurss, Scott Meyer, and Adrian Visocky of the Water Survey. Kris Klindworth supplied pumpage information and statistics from the Illinois Water Inventory Program and developed mailing lists for contacting water supply operators. Dorothy Woller provided data and statistics about the status of deep bedrock production wells. Editorial review was done by Laurie Talkington, and graphic support was provided by Linda Hascall and David Cox. Word processing was done by Patti Hill and Lori Woller.

#### **GEOLOGY AND HYDROLOGY**

Ground-water resources in the Chicago region are developed mainly from three aquifer systems: 1) sand-and-gravel deposits of the glacial drift; 2) shallow dolomite formations, mainly of Silurian age; and 3) deep sandstone and dolomite formations of Cambrian and Ordovician age, of which the Ironton-Galesville Sandstone is the most productive. Supplemental yields are obtained from a diminishing number of wells that still penetrate the Elmhurst-Mt. Simon aquifer, a very thick

sandstone that is separated from the overlying Ironton-Galesville Sandstone by the shales, siltstones, and dolomites of the Eau Claire Formation. The sequence, structure, and general characteristics of these rocks are shown in figures 1 and 2.



Bedrock cross sections and stratigraphy and potentiometric profile of the deep bedrock aquifers in the Chicago region (after Suter et al., 1959)

| s                                   | YSTEM                                   | SERIES AND COOL AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                 | HYDROSTRATIGRAPHIC UNITS<br>Aquigroup aquifer/aquitard LOG |                  | LOG                                                          | THICKNESS<br>(ft) | DESCRIPTION                                                                                                                                                            |                                                                                                                                                    |
|-------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------|------------------------------------------------------------|------------------|--------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| ۵                                   | Quaternary Pleistocene Undifferentiated |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                                                         | Prairie         |                                                            | Pleistocene      |                                                              | 0 - 600           | Unconsolidated glacial deposits -<br>pebbly clay (till) silt, and gravel.<br>Loess (windblown silt), and allu-<br>vial silts, sands and gravels.                       |                                                                                                                                                    |
|                                     | rtiary &<br>etaceous                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Undifferentiated                                                          |                 |                                                            |                  |                                                              |                   | 0 -100                                                                                                                                                                 | Sand and silt.                                                                                                                                     |
| erous                               | Pennsyl-<br>vanian                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Undifferentiated                                                          |                 |                                                            |                  | Pennsylvanian                                                |                   | 0 - 500                                                                                                                                                                | Mainly shale with thin sandstone,<br>limestone, and coal beds.                                                                                     |
| Carboniferous                       | Mississippian                           | Valmeyeran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | St. Louis Ls<br>Salem Ls<br>Warsaw Ls<br>Keokuk Ls<br>Burlington Ls       |                 |                                                            | =                | t. Louis - Salem<br>aquifer<br>Keokuk -<br>urlington aquifer |                   | 0 - 600                                                                                                                                                                | Limestone; cherty limestone; green,<br>brown, and black shale; sitty dolomite.                                                                     |
|                                     | ×                                       | Kinderhookian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Undifferentiated                                                          | 1               | oi Valle                                                   |                  |                                                              |                   |                                                                                                                                                                        |                                                                                                                                                    |
| D                                   | evonian                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Undifferentiated                                                          | Bedrock         | Mississippi Valley                                         |                  | Devonian                                                     | 1                 | 0 - 400                                                                                                                                                                | Shale, calcareous; limestone beds, thin.                                                                                                           |
| Niagaran<br>Silurian<br>Alexandrian |                                         | Port Byron Fm<br>Racine Fm<br>Waukesha Ls<br>Joliet Ls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Upper                                                                     | -               | Silurian dolomite                                          |                  |                                                              | 0 - 465           | Dolomite, silty at base, locally cherty.                                                                                                                               |                                                                                                                                                    |
|                                     |                                         | Alexandrian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kankakee Ls<br>Edgewood Ls                                                |                 |                                                            | aquifer          |                                                              | 4,                |                                                                                                                                                                        |                                                                                                                                                    |
|                                     |                                         | Cincinnatian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Maquoketa<br>Shale Group                                                  | 1               |                                                            |                  | Maquoketa<br>confining unit                                  | 三上                | 0 - 250                                                                                                                                                                | Shale, gray or brown; locally dolomite and/or limestone, argillaceous.                                                                             |
|                                     |                                         | Mohawkian [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Galena Group<br>Decorah Subgroup<br>Platteville Group                     |                 |                                                            |                  | ena-Platteville unit                                         |                   | 0 - 450                                                                                                                                                                | Dolomite and/or limestone, cherty.<br>Dolomite, shale partings, speckled.<br>Dolomite and/or limestone, cherty,<br>sandy at base.                  |
| 0                                   | rdovician .                             | Chazyan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Glenwood Fm                                                               |                 | J                                                          |                  | Ancell aquifer                                               | =                 | 100 - 650                                                                                                                                                              | Sandstone, fine- and coarse-grained;<br>little dolomite; shale at top.<br>Sandstone, fine- to medium-grained;<br>locally cherty red shale at base. |
|                                     | Canadian                                | Shakopee Dol<br>D no control of the state<br>of the state of th |                                                                           | Midwest Bedrock | idwest Bedrock<br>confining unit                           | Prairie du Chien |                                                              |                   | Dolomite, sandy, cherty (oolitic), sandstone.<br>Sandstone, interbedded with dolomite.<br>Dolomite, white to pink, coarse-grained,<br>cherty (oolitic), sandy at base. |                                                                                                                                                    |
|                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oreota Dol<br>Gunter Ss<br>Jordan Ss<br>× Eminence Fm-<br>Potosi Dolomite |                 | Midwe                                                      |                  | Eminence-Potosi                                              |                   | 100 - 1300                                                                                                                                                             | Dolomite, white, fine-grained, geodic quartz, sandy at base.                                                                                       |
|                                     | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Franconia Fm                                                              | 1               |                                                            | Middle           | Franconia                                                    |                   |                                                                                                                                                                        | Dolomite, sandstone, and shale, glauconitic, green to red, micaceous.                                                                              |
|                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ironton Ss                                                                | 1               |                                                            | 1                | ronton-Galesville                                            |                   | 0 - 270                                                                                                                                                                | Sandstone, fine- to medium-grained,                                                                                                                |
| C                                   | ambrian                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Galesville Ss                                                             |                 |                                                            |                  | aquifer                                                      |                   |                                                                                                                                                                        | well sorted, upper part dolomitic.                                                                                                                 |
|                                     |                                         | St. Croixian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Eau Claire Fm                                                             | ock             |                                                            |                  | Eau Claire                                                   |                   | 0 - 450                                                                                                                                                                | Shale and siltstone; dolomite, glauconitic;<br>sandstone, dolomitic, glauconitic.                                                                  |
|                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mt. Simon Fm                                                              |                 | Basal Bedrock                                              |                  | mhurst-Mt. Simon<br>aquifer                                  |                   | 0 - 2600                                                                                                                                                               | Sandstone, coarse-grained, white, red in lower<br>half; lenses of shale and siltstone, red, micaceo                                                |
| -                                   |                                         | Pre-Cambrian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           | 0               | rystalline                                                 | +                |                                                              | KXXXXXX           |                                                                                                                                                                        | No aquifers in Illinois                                                                                                                            |

Note: The rock-stratigraphic and hydrostratigraphic-unit classifications follow the usage of the Illinois State Geological Survey.

Figure 2. Stratigraphy and water-yielding properties of the rocks and the character of the ground water in northeastern Illinois (after Visocky et al., 1985)

| gravel, permeable. Locally, wells yield as<br>3000 gpm. Specific capacities vary from<br>to 5600 gpm/ft.<br>y variable. Sandstone and limestone units<br>yield less than 10 gpm.<br>ern two-thirds of state, yields generally<br>n 25 gpm.<br>consistent. Major aquifer in NE and NW<br>Yields in fractured zones more than<br>n. | TDS generally between 400 and 600 mg/L.<br>Hardness 300–400 mg/L. Iron generally<br>1–5 mg/L.<br>TDS extremely variable regionally and with depth.<br>North-central Illinois, 500–1500 mg/L; southern,<br>500–3000 mg/L. Hardness: 150–400 mg/L north;<br>150–1000 mg/L south. Iron generally 1–5 mg/L.<br>TDS ranges between 400 and 1000 mg/L.<br>Hardness is generally between 200 and 400 mg/L.<br>Iron: 0.3–1.0 mg/L. | 50 - 64<br>53 - 57<br>53 - 59<br>52 - 54                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| yield less than 10 gpm.<br>ern two-thirds of state, yields generally<br>n 25 gpm.<br>consistent. Major aquifer in NE and NW<br>Yields in fractured zones more than<br>n.                                                                                                                                                          | North-central Illinois, 500–1500 mg/L; southern,<br>500–3000 mg/L. Hardness: 150–400 mg/L north;<br>150–1000 mg/L south. Iron generally 1–5 mg/L.<br>TDS ranges between 400 and 1000 mg/L.<br>Hardness is generally between 200 and 400 mg/L.<br>Iron: 0.3–1.0 mg/L.<br>TDS: 350–1000 mg/L; Hardness: 200–400 mg/L;                                                                                                        | 53 - 59                                                                                                                                                                                                                                                                                                       |
| n 25 gpm.<br>consistent. Major aquifer in NE and NW<br>Yields in fractured zones more than<br>n.<br>nerally not water yielding. Crevices in                                                                                                                                                                                       | Hardness is generally between 200 and 400 mg/L.<br>Iron: 0.3–1.0 mg/L.<br>TDS: 350–1000 mg/L; Hardness: 200–400 mg/L;                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |
| Yields in fractured zones more than<br>n.<br>nerally not water yielding. Crevices in                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                            | 52 – 54                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                               |
| -                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                               |
| werlain by shales, crevicing and well<br>nall. Where overlain by drift, wells yield<br>e quantities of water.                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                               |
| moderate quantities of water. Trans-<br>approximately 15 percent of that of the<br>Bedrock Aquigroup.                                                                                                                                                                                                                             | For Midwest Bedrock Aquigroup as a whole, TDS                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                   | ranges from 400 to 1400 mg/L in NW and up to<br>2000 mg/L in south. Hardness ranges from 175<br>mg/L in northern recharge areas to 600 mg/L in<br>E. Cook and S. Fulton Counties. Iron generally<br>less than 1.0 mg/L.                                                                                                                                                                                                    | 52 – 73                                                                                                                                                                                                                                                                                                       |
| IP. Yields over 500 gpm common in<br>Illinois. Transmissivity approximately<br>int of that of the Midwest Bedrock                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                   | Varies northwest to southeast and with depth.<br>At shallower depths, TDS: 235–4000 mg/L.                                                                                                                                                                                                                                                                                                                                  | 51 - 62<br>in the north,<br>80 or more                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                   | hately 35 percent of that of the Midwest<br>Aquigroup.<br>adductive unit of the Midwest Bedrock<br>up. Yields over 500 gpm common in<br>Illinois. Transmissivity approximately<br>ent of that of the Midwest Bedrock<br>up.<br>enerally not water yielding.                                                                                                                                                                | hately 35 percent of that of the Midwest<br>Aquigroup.<br>oductive unit of the Midwest Bedrock<br>up. Yields over 500 gpm common in<br>h Illinois. Transmissivity approximately<br>ent of that of the Midwest Bedrock<br>up.<br>enerally not water yielding.<br>Varies northwest to southeast and with depth. |

Figure 2. Concluded

The sequence of rocks that make up the Cambrian and Ordovician units described in this report were first defined by Suter et al. (1959) as the "Cambrian-Ordovician aquifer" and have been referred to by tins name in most subsequent reports. A local term often used informally in northeastern Illinois is "deep sandstone aquifer," in reference to the two major sandstone aquifers within the deep bedrock system. Visocky et al. (1985) introduced formal hydrostratigraphic names first proposed by Cartwright (1983) in describing major aquifers, in order to reduce confusion with rock stratigraphic terminology. The name "Midwest Bedrock Aquigroup" was suggested for the sequence of rocks from the Maquoketa Shale Group (the top of the overlying confining layer) to the top of the Eau Claire Formation (the underlying confining layer). Since this formal terminology is not as yet familiar to most readers and is in the process of undergoing formal acceptance by the scientific community, an informal description, "deep bedrock aquifers," will be used in this report.

The deep bedrock aquifers consist of two major sandstone aquifers, the Ancell aquifer (composed of the Glen wood Formation and the St. Peter Sandstone) and the Ironton-Galesville aquifer (composed of the Ironton and Galesville Sandstones). Separating these two aquifers is a confining unit made up mainly of dolomite and shale with some sandstone.

The Ancell aquifer is present throughout northeastern Illinois and frequently exceeds 200 feet in thickness. In some sections of north-central Illinois, faulting and erosion have placed this aquifer immediately below the glacial drift. The majority of public and industrial wells finished in the Ancell aquifer in the Chicago region produce less than about 200 gallons per minute (gpm). In north-central Illinois, however, the Ancell aquifer yields several hundred gpm to wells and is the primary source of ground water for some municipal and industrial supplies.

The Prairie du Chien, Eminence-Potosi, and Franconia Formations underlie the Ancell aquifer and constitute the "middle confining unit" above the Ironton-Galesville aquifer. The formations of the confining unit are present throughout much of northern Illinois, although the upper units have been eroded extensively in the north. In some areas, tilese formations provide moderate amounts of water to wells tapping the deep bedrock aquifers.

The Ironton-Galesville aquifer underlies the FranconiaFormation and overlies the Eau Claire Formation, another confining unit. It occurs throughout northeastern Illinois, and on a regional basis it is the most consistently permeable and productive unit of the deep bedrock aquifers. Most of the high-capacity deep municipal and industrial wells in the Chicago region obtain a major part of thenyields from this aquifer.

Prior to the switch to Lake Michigan water, supplemental yields were obtained from wells penetrating the Elmhurst-Mt. Simon aquifer, particularly in parts of western and northwestern Cook County, eastern Kane County, parts of DuPage and Lake Counties, the Joliet area of Will County, and farther west in Ogle and Winnebago Counties. A major problem with the Elmhurst-Mt. Simon aquifer is the possibility of obtaining water high in chloride concentrations. In the Chicago region, water below an elevation of about 1,300 feet below sea level (msl) is commonly too salty for municipal or industrial use. Over the years, heavy pumping of the deep bedrock aquifers has gradually caused degradation of the water quality in some areas by inducing upward migration of highly mineralized water from the deeper sections of the Elmhurst-Mt. Simon aquifer. The potentiometric surface of the Ironton-Galesville aquifer is lower than that of the Elmhurst-Mt. Simon aquifer, causing upconing of the poorer quality water. Numerous wells in Cook, DuPage, and Kane Counties,

originally drilled into the Elmhurst-Mt. Simon aquifer, have since been plugged above these formations to exclude this poor-quality water.

The primary source of recharge to the deep bedrock aquifers is precipitation, which percolates through the glacial deposits where the Galena-Platteville dolomite or older rocks are the uppermost bedrock formation. This area is defined essentially by the western limits of the Maquoketa Shale Group and, to a small extent, by the northern limits of the Pennsylvanian-age shales. It encompasses major portions of north-central and northwestern Illinois. The Maquoketa Shales are the primary overlying confining material in the Chicago region, along with the underlying Galena-Platteville unit, which locally yields small quantities of water.

Heavy ground-water withdrawals over the years have lowered water levels at the major pumping centers and established steep hydraulic gradients north, west, and southwest of Chicago and Joliet. As a result, large quantities of water from recharge areas in northern Illinois and relatively minor quantities from southeastern Wisconsin are being transmitted toward pumping centers, along with small amounts derived from vertical leakage downward through the Maquoketa and Galena-Platteville units (Walton, 1960). Because of the overpumpage, water derived from storage within the deep bedrock aquifers supplements the water moving horizontally or vertically, and it too moves toward the cones of depression in the potentiometric surface (see discussion later in the report). In addition, lesser amounts of water are derived from the south in Illinois, from the southeast in Indiana, and from the northeast beneath Lake Michigan.

#### PRODUCTION FROM DEEP BEDROCK WELLS

The first deep well in northern Illinois was drilled in Chicago in 1864. It had an artesian flow at ground surface estimated at 150 gpm, or about 200,000 gpd. A considerable number of deep wells were in operation in the Chicago region by 1900, and pumpage was estimated at 23 mgd. Pumpage increased at a rather irregular rate during the first half of this century and reached 75.6 mgd in 1955, as shown in figure 3. During the succeeding 24 years, pumpage for public and industrial uses increased dramatically by 142 percent at an average rate of 4.5 mgd per year. It reached an all-time high of 182.9 mgd in 1979. Public and industrial pumpage dropped to 175.9 mgd in 1980, 157.7 mgd in 1985, and 112.7 mgd in 1991.

#### Pumpage, 1985 through 1991

In comparison with the period from 1980 to 1985, when pumpage declined at a rate of 3.6 mgd each year from its record level in 1979, pumping rates between 1985 and 1991 continued downward, but at a steeper rate of decline—7.5 mgd per year—double the rate of decline of the previous five years. The largest part of the decline occurred during the first two years, when pumpage decreased at a rate of 21.8 mgd per year. In contrast, pumpage fluctuated during the last four years of the period, trending downward at an average rate of only 0.4 mgd per year. The cause of the initial sharp decline in pumpage can be attributed to continued shifts of public water supplies in Cook County to Lake Michigan water and decreased pumpage by industries.

Other reasons for the pumpage fluctuations between 1985 and 1991 are a combination of several factors. They include climate (water use rises during warm, dry periods) shifts in population,

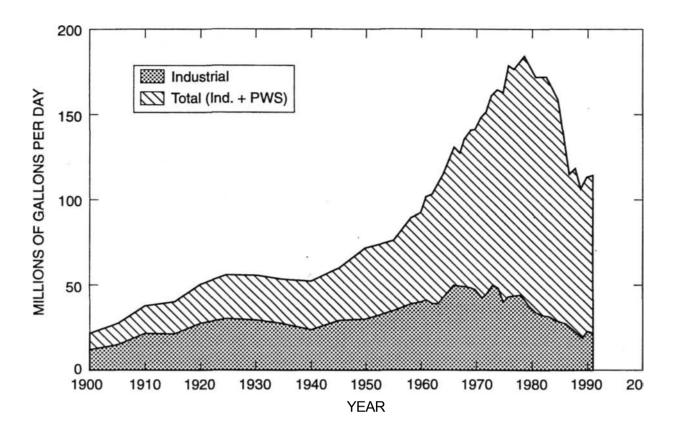



Figure 3. Production from the deep bedrock aquifers in the eight-county Chicago region, 1900-1991, subdivided by use.

and the replacement of deep bedrock wells with shallower wells in order to meet the Safe Drinking Water Standards for radium and barium (USEPA, 1976,1991).

During the period 1985 through 1991, pumpage for public and industrial supplies from deep bedrock wells declined from 157.7 to 112.7 mgd. The 1989 pumpage was 105.0 mgd, the smallest deep bedrock well pumpage since 1962, when it was 101.9 mgd. The distribution of pumpage in the eight-county Chicago region for the period 1985 through 1991, subdivided by public and industrial use categories and by counties, is shown in table 1.

Ground-water production from the deep bedrock aquifers decreased in all counties but DuPage and Grundy in amounts ranging from 42.6 mgd in Cook County to 0.2 mgd in Kendall County. Production in DuPage and Grundy Counties increased by 2.0 mgd and 0.5 mgd, respectively.

Production for public supplies decreased 38.2 mgd or 29 percent during the period 1985-1991 and was 92.7 mgd in 1991. This represents 82 percent of the total deep bedrock production in the Chicago region. Self-supplied industrial water use decreased 6.8 mgd or 25 percent during this period to 20.0 mgd in 1991. This represents approximately 18 percent of the deep well production.

Another interesting part of the deep bedrock water-use statistics is the number of new deep wells constructed and the number taken out of service and sealed. During the years 1986 -1991,41 new wells were drilled, 29 by public water systems and 12 by industries. By contrast, 61 deep wells were sealed, 59 by public water facilities and 2 by industries.

#### Public Pumpage

Public pumpage took a sharp drop from 130.9 to 92.0 mgd between 1985 and 1987, and then fluctuated between 87.6 and 97.3 mgd, ending at 92.7 mgd in 1991. The greatest decreases in public

| Year | County | Public | Industrial | Total  |
|------|--------|--------|------------|--------|
| 1985 | COK    | 48.67  | 8.72       | 57.39  |
|      | DUP    | 31.60  | 0.29       | 31.89  |
|      | GRY    | 2.11   | 7.26       | 9.37   |
|      | KNE    | 22.01  | 0.39       | 22.40  |
|      | KEN    | 0.92   | 0.32       | 1.74   |
|      | LKE    | 7.54   | 1.16       | 8.70   |
|      | MCH    | 3.26   | 1.28       | 4.54   |
|      | WIL    | 14.81  | 6.88       | 21.69  |
|      | Total  | 30.92  | 26.80      | 157.72 |
| 1986 | СОК    | 27.08  | 6.44       | 33.52  |
|      | DUP    | 29.01  | 0.06       | 29.06  |
|      | GRY    | 2.13   | 8.63       | 10.76  |
|      | KNE    | 21.58  | 0.43       | 22.01  |
|      | KEN    | 0.91   | 0.68       | 1.59   |
|      | LKE    | 6.89   | 1.30       | 8.19   |
|      | MCH    | 3.05   | 1.27       | 4.32   |
|      | WIL    | 14.50  | 6.95       | 21.45  |
|      | Total  | 105.15 | 25.76      | 130.91 |
| 1987 | COK    | 12.40  | 4.51       | 16.91  |
|      | DUP    | 31.17  | 0.04       | 31.21  |
|      | GRY    | 2.23   | 8.09       | 10.32  |
|      | KNE    | 21.08  | 0.34       | 21.42  |
|      | KEN    | 0.94   | 0.51       | 1.45   |
|      | LKE    | 6.64   | 1.29       | 7.93   |
|      | MCH    | 2.98   | 1.16       | 4.14   |
|      | WIL    | 14.53  | 6.18       | 20.71  |
|      | Total  | 91.97  | 22.12      | 114.09 |

# Table 1. Distribution of Pumpage from Deep Bedrock Wells in NortheasternIllinois, 1985-1991, Subdivided by Use and County<br/>(millions of gallons per day)

# Table 1. (cont.)

| Year | County | Public | Industrial | Total  |
|------|--------|--------|------------|--------|
| 1988 | COK    | 11.70  | 5.83       | 17.53  |
|      | DUP    | 32.37  | 0.06       | 32.43  |
|      | GRY    | 2.59   | 5.71       | 8.30   |
|      | KNE    | 22.89  | 0.37       | 23.26  |
|      | KEN    | 1.24   | 0.33       | 1.57   |
|      | LKE    | 7.89   | 0.33       | 8.22   |
|      | MCH    | 3.25   | 1.58       | 4.83   |
|      | WIL    | 15.41  | 5.57       | 20.98  |
|      | Total  | 97.34  | 19.78      | 117.12 |
| 1989 | COK    | 11.06  | 4.56       | 15.62  |
|      | DUP    | 30.74  | 0.07       | 30.81  |
|      | GRY    | 0.99   | 6.47       | 7.46   |
|      | KNE    | 18.99  | 0.23       | 19.22  |
|      | KEN    | 0.66   | 0.01       | 0.67   |
|      | LKE    | 7.45   | 0.99       | 8.44   |
|      | MCH    | 3.68   | 0.96       | 4.64   |
|      | WIL    | 14.00  | 4.12       | 18.12  |
|      | Total  | 87.57  | 17.41      | 104.98 |
| 1990 | COK    | 10.27  | 4.04       | 14.31  |
|      | DUP    | 31.42  | 0.07       | 31.49  |
|      | GRY    | 2.61   | 7.75       | 10.36  |
|      | KNE    | 20.68  | 0.19       | 20.87  |
|      | KEN    | 0.90   | 0.31       | 1.21   |
|      | LKE    | 7.10   | 0.31       | 7.41   |
|      | MCH    | 3.16   | 1.26       | 4.42   |
|      | WIL    | 14.06  | 6.87       | 20.93  |
|      | Total  | 90.20  | 20.80      | 111.00 |
| 1991 | COK    | 10.19  | 4.58       | 14.77  |
|      | DUP    | 33.80  | 0.08       | 33.88  |
|      | GRY    | 2.03   | 7.83       | 9.86   |
|      | KNE    | 20.92  | 0.20       | 21.12  |
|      | KEN    | 1.21   | 0.30       | 1.51   |
|      | LKE    | 7.90   | 0.32       | 8.22   |
|      | MCH    | 2.70   | 0.42       | 3.12   |
|      | WIL    | 13.98  | 6.22       | 20.20  |
|      | Total  | 92.73  | 19.95      | 112.68 |

pumpage occurred in Cook, Kane, and Will Counties, which dropped 38.5, 1.1, and 0.8 mgd, respectively. The only significant increase, 2.2 mgd, occurred in DuPage County. Public pumpage in Grundy, Kendall, Lake, and McHenry Counties changed little from 1985 to 1991.

The number of major pumping centers (those in which facilities withdrew 1.0 mgd or more) decreased between 1985 and 1991. Records identify 40 major public water supply facilities in 1985. By 1991, this number had dropped to 26. The largest number of them (ten) were in eastern DuPage County. Others were in the Fox Valley of Kane County (five), western and northern Cook County (four), Lake County (three), Will County (two), and Grundy and McHenry Counties (one each). Pumpage at these major centers ranged from 1.0 to 11.2 mgd.

Records also indicate that a number of facilities stopped using deep wells during this period: 105 public water facilities relied on deep wells in 1991, compared to 129 in 1985.

#### Self-Supplied Industrial Pumpage

Self-supplied industries in the Chicago region withdrew 20.0 mgd of ground-water from the deep bedrock in 1991, a decrease of 25 percent since 1985. Pumpage had decreased each year from 1978 to 1989 before rising in 1990 and falling again the next year. The all-time highs for industrial pumpage from deep wells for the region were 48.1 mgd in 1966 and 48.2 mgd in 1973. Pumpage in 1991 was the lowest since about 1915, when withdrawals amounted to about 18.8 mgd. Pumpage dropped after 1985 in all counties except Grundy. The decreases ranged from 0.2 mgd in DuPage and Kane Counties to 4.1 mgd in Cook County. Pumpage remained virtually the same in Kendall County and increased about 0.6 mgd in Grundy County.

The major self-supplied industries in the Chicago region in 1991 were those producing inorganic chemicals and electric power, along with petroleum refineries, business services, and explosives manufacturers. These industries accounted for 12.9 mgd or 65 percent of industrial pumpage. Other industries included manufacturers of construction machinery; soaps and detergents; plastics; irrigation systems; ammunition; and shortening, table oils, and margarine.

The number of industrial facilities using deep wells dropped from 119 to 85 between 1985 and 1991. Three self-supplied industries pumped more than 1.0 mgd from deep wells in 1991, compared to four in 1985. Production from these three ranged from 1.2 to 5.9 mgd and totaled 9.2 mgd, accounting for 46 percent of the industrial deep-well pumpage.

#### Pumpage Related to the Practical Sustained Yield

Schicht et al. (1976) estimated that the practical sustained yield of the deep bedrock aquifers, regardless of the scheme of well development, cannot exceed about 65 mgd. The practical sustained yield of the deep aquifers is defined as the maximum amount of water that can be withdrawn without eventually dewatering the most productive water-yielding formation, the Ironton-Galesville Sandstone. The yield is largely limited by the rate at which water can move from recharge areas eastward through the aquifers to pumping centers. This movement, in tum, is dependent on the gradient of the potentiometric surface in the direction of flow. Schicht et al. (1976) suggested that the 65 mgd could be obtained by increasing the number of pumping centers, shifting some centers of pumping to the west, and spacing wells at greater distances. Burch (1991), however, concluded from his digital computer model study of the aquifer system that the location of the pumping centers is less important than the **number** of centers.

Based on records of deep well production, the estimated practical sustained yield of the aquifer system has been exceeded since the late 1950s. Despite reductions in pumpage as many communities switched to Lake Michigan water, continued withdrawals at rates above the practical sustained yield have resulted in the partial dewatering of the Ancell (Glenwood-St. Peter) aquifer in a considerable portion of the Chicago region.

Burch (1991) indicated that the switch to lake water in DuPage and Lake Counties in 1992 would reduce total withdrawals from deep wells to amounts at or below the practical sustained yield. This action should have a profound effect on the deep bedrock aquifers.

#### WATER LEVELS IN DEEP BEDROCK WELLS

The first deep bedrock well in Chicago was drilled in 1864 at the corner of Chicago and Western Avenues (Suter et al., 1959). The well was finished in the lowerpart of the Galena-Platteville dolomite, and the artesian pressure was reported to be 80 feet above ground at an elevation of 695 feet above msl. Because it had such a high artesian pressure, the well flowed freely, as did many of the early wells in the region.

Suter et al. (1959) inferred that the potentiometric head of the water in the sandstone aquifers beneath the Galena-Platteville was somewhat higher than in the overlying dolomite. At the time he wrote, the average elevation of water levels in deep bedrock wells at Chicago and Joliet was about 700 feet above msl. As a result of continued heavy pumpage, by 1980 the nonpumping water levels had declined to elevations ranging from 150 feet above msl to more man 250 feet below msl at Arlington Heights in northern Cook County, at Bellwood in western Cook County, at Elmhurst in eastern DuPage County, and at Joliet in northwestern Will County. From 1864 to 1980, the potentiometric level at Chicago declined more than 850 feet (Sasman et al., 1986).

As described earlier, pumpage from deep bedrock wells peaked in 1979 and then began to diminish. Thus by 1985, for the first time since detailed water levels were recorded, they rose in a significant number of wells in the Chicago region. These rises were attributed to major shifts in the distribution of pumpage and to local reductions in pumpage between 1980 and 1985. Regionally, however, water levels continued to decline, especially in the major pumping centers. They were more than 225 feet below msl in some wells at Elk Grove, Elmhurst, and Joliet.

#### Water-Level Changes in Observation Wells

Water levels were measured during fall 1991 in 558 deep wells in a 15-county area of northeastern Illinois. Data for these wells are given in the appendix. Water levels for 433 of these wells, including 320 in the eight-county Chicago region, had also been measured in 1985.

Examples of changes in nonpumping water levels in selected deep bedrock wells in northeastern Illinois for the period 1981 through 1991 are shown in figure 4, and their locations are shown in figure 5. The hydrographs reflect both seasonal and long-term pumping trends. Declining water-level trends generally indicate increasing rates of local and regional pumpage, while rising trends indicate reduced rates of pumpage or long idle periods for well pumps.

Figure 6 shows water-level fluctuations and long-term trends since 1940 at a well in central Cook County (see figure 5 also). The hydrograph indicates rapid declines in water levels during the

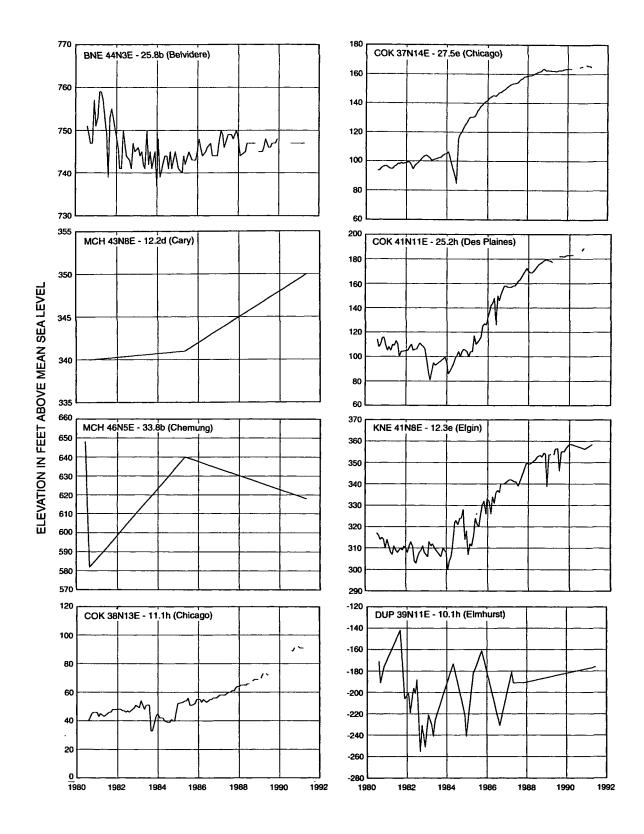



Figure 4. Water levels in selected observation wells in northern Illinois, 1981-1991

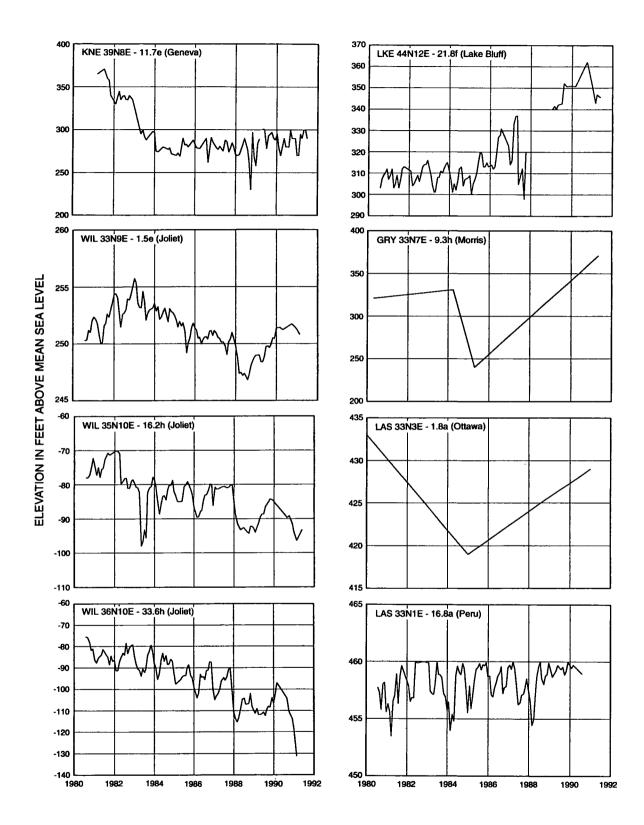



Figure 4. Continued

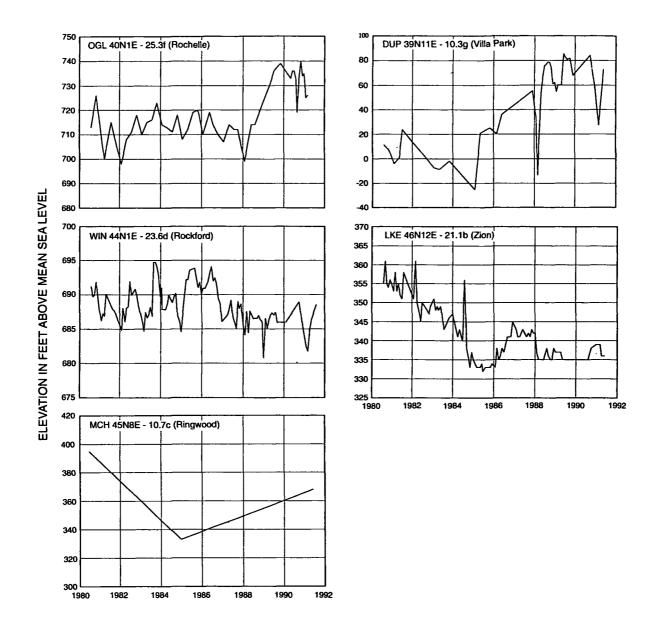



Figure 4. Concluded.

1950s and 1960s, reflecting dramatic increases in municipal and industrial dependence on the deep bedrock aquifers. Water-level declines continued through the 1970s and into the early 1980s, although at slower rates. Decreased pumpage and increased reliance on water from Lake Michigan for public water supplies since 1980 has slowed or reversed the downward trend in water levels in some parts of the Chicago region. Lower rates of decline or rises in water levels are illustrated during the 1980s in many of the hydrographs in figure 4.

Table 2 shows average annual water-level changes in 11 observation wells in the eight-county Chicago region for the periods 1971-1975, 1975-1980, 1980-1985, and 1985-1991. For the period

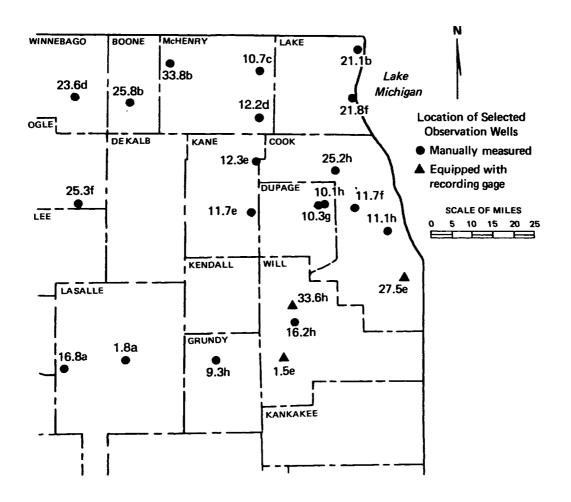



Figure 5. Location of selected wells for which hydrographs are shown in figures 4 and 6.

1971-1975, average changes in the observation wells ranged from a rise of 10.5 feet per year (ft/yr) at Geneva to a decline of 15.0 ft/yr on the north side of Joliet.

Water-level measurements for both 1971 and 1975 were available for 299 wells in the Chicago region. Of the 299, water levels declined in 276 wells, rose in 17 wells, and levels in six showed no change. Declines of 50 to 162 feet occurred in 109 wells. Rises of 84 to 122 feet occurred in three wells in Cook County, and rises of 10 to 45 feet occurred in 13 wells in Cook, Kane, Lake, and Will Counties.

Between 1975 and 1980, average water-level changes in the 11 observation wells shown in table 2 ranged from a rise of 2.2 ft/yr south of Joliet to a decline of 11.6 ft/yr in the center of Joliet. The water level at Geneva continued to rise.

A total of 349 wells were measured in the Chicago region in both 1975 and 1980. In 306 wells, water levels declined, in 40 they rose, and in three no change was noted. Declines of 50 to 149 feet

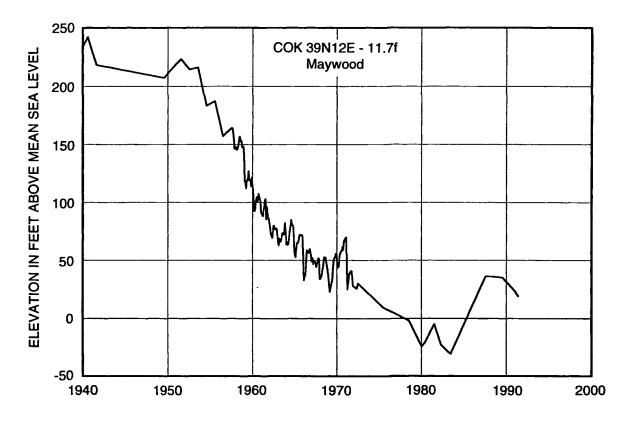



Figure 6. Representative trend of deep-well water levels in Cook County since 1940

were recorded in 148 of the wells. Water-level rises of 52 to 80 feet were observed in four wells in Cook, Kane, and Will Counties; rises of 10 to 47 feet occurred in 22 of them.

Between 1980 and 1985, water-level changes in the 11 observation wells ranged from arise of 8.0 ft/yr in the south part of Chicago to a decline of 25.8 ft/yr at Geneva. In six of the wells, water levels rose, in four they declined, and one showed no change. The dramatic change in levels at Geneva was attributed primarily to a change in the use of the observation well from an institutional supply with limited demand to a municipal supply with heavy demand. The upward trend in water levels noted at the well in south Chicago reflected the major shift of public water supply systems in south Cook County from well water to lake water during that period.

Of the 364 wells measured in both 1980 and 1985, 109 showed rises, 250 showed declines, and five showed no change. Changes in water levels ranged from a rise of 265 feet for one well in Lake County to a decline of 319 feet for one well in DuPage County. Water-level rises were recorded in 43 wells in Cook County, 25 in Will County, 17 in Kane County, and 11 in Lake County. Rises were also recorded in at least one well per county throughout the eight-county region. Water-level declines were also recorded in all eight counties, ranging from 95 wells in Cook County to nine in Kendall County.

From 1985 to 1991, average water-level changes in the 11 observation wells ranged from a rise of 11.5 ft/yr at DesPlaines to a decline of 6.3 ft/yr on the north edge of Joliet. Rises occurred in eight of the wells, and declines were observed in three wells, all in the Joliet area.

| Well & Location                   | 1971-<br>1975 | 1975-<br>1980 | 1980-<br>1985 | 1985-<br>1991 |
|-----------------------------------|---------------|---------------|---------------|---------------|
| COK 37N14E-27.5e<br>(Chicago)     | -7.3          | -4.4          | +8.0          | +5.5          |
| COK 38N13E-11.1h<br>(Chicago)     | -6.5          | -2.8          | +3.2          | +5.2          |
| COK 39N12E-11.7f<br>(Maywood)     | -6.7          | -6.2          | +4.6          | +2.8          |
| COK 41NIIE-25.2h<br>(Des Plaines) | +0.7          | -4.4          | +0.2          | + 11.5        |
| KNE 39N8E-11.7e<br>(Geneva)       | + 10.5        | + 1.8         | -25.8*        | +7.7          |
| KNE 41N8E-12.3e<br>(Elgin)        | -3.5          | -5.2          | 0.0           | +6.8          |
| LKE 44N12E-21.8f<br>(Lake Bluff)  | -6.3          | -7.7          | + 1.6         | +6.0          |
| LKE 46N12E-21.1b<br>(Zion)        | -10.0         | -9.4          | -5.6          | +0.5          |
| WIL 33N9E-1.5e<br>(Joliet)        | -3.5          | +2.2          | +0.4          | -0.3          |
| WIL 35N10E-16.2h<br>(Joliet)      | -11.7         | -11.6         | -1.2          | -1.3          |
| WIL 36N10E-33.6h<br>(Joliet)      | -15.0         | -6.0          | -3.8          | -6.3          |

# Table 2. Average Changes in Nonpumping Water Levels in Selected<br/>Cambrian and Ordovician Observation Wells<br/>in the Chicago Region (ft/yr)

\*Institutional well changed to a municipal supply well.

Of the 387 wells that were measured in the eight-county Chicago region in fall 1991, 320 had also been measured in 1985. Water levels between 1985 and 1991 rose in 174 of these wells (54.4 percent), declined in 140 wells (43.8 percent), and six showed no change. This is a dramatic turnabout in proportions from the 1980-1985 figures, in which declines outnumbered rises by 68.7 to 29.9 percent. Rises and declines were observed in all eight of the Chicago-region counties, ranging from a rise of 218 feet in northern Cook County to a decline of 240 feet at Joliet in Will County. These figures are representative of trends in their respective counties: the largest percentage of rises was found in Cook County, and the largest percentage of declines was found in Will County.

#### Water-Level Changes — Regional Trends

#### Eight-County Chicago Region

A Chicago-region, county-by-county comparison of temporal water-level trends can be seen by comparing average annual water-level changes for the periods 1971-1975, 1975-1980, 1980-1985, and 1985-1991 (table 3).

During 1971-1975 and 1975-1980, average water levels declined in all eight counties. The overall weighted averages for the area were -12 ft/yr for 1971-1975, and -9 ft/yr for 1975-1980. Declines during 1971-1975 ranged from 6 ft/yr in McHenry County to 16 ft/yr in Grundy County. Declines exceeded 10 ft/yr in six of the counties. In the 1975-1980 period, declines ranged from 1 ft/yr in Kendall County to 14 ft/yr in Lake County. Declines exceeded 10 ft/yr in only three counties.

| County                 | 1971-1975 | 1975-1980 | 1980-1985 | 1985-1991 |
|------------------------|-----------|-----------|-----------|-----------|
| Cook                   | -11       | -10       | -4        | + 12      |
| DuPage                 | -13       | -12       | -9        | +2        |
| Grundy                 | -16       | -5        | -5        | -2        |
| Kane                   | -9        | -7        | -2        | + 1       |
| Kendall                | -12       | -1        | -3        | -3        |
| Lake                   | -10       | -14       | -1        | + 1       |
| McHenry                | -6        | -8        | -7        | + 1       |
| Will                   | -14       | -6        | +2        | -8        |
| Weighted average       | -12       | -9        | -3        | +3        |
| Number of observations | 290       | 349       | 364       | 320       |

#### Table 3. Average Changes in Nonpumping Water Levels in Deep Bedrock Wells in the Eight-County Chicago Region (ft/yr)

In 1980-1985, for the first time since about the mid-1950s, average annual water levels rose in one county (1.7 ft/yr in Will County). Also for the first time, average county water-level declines throughout the eight counties were less than 10 ft/yr, and the overall average decline was only 3 ft/yr.

In 1985, about 63 percent of the deep wells in western Cook County, 85 percent in eastern DuPage County, and 93 percent in the Joliet area of Will County had water-level elevations more than 50 feet below msl. In nearly 50 percent of the wells in these areas, water levels were more than 100 feet below msl.

In the period from 1985 to 1991, average water levels declined in only three counties: Grundy, Kendall, and Will. The largest decline was 8 ft/yr in Will County. In contrast, average water-level rises were noted in the remaining five counties. The largest rise, 12 ft/yr, was observed in Cook County. The weighted average for the area was a rise of 3 ft/yr.

In 1991 and 1985, approximately the same percentages of deep wells in western Cook and eastern DuPage Counties and in the Joliet area of Will County had water-level elevations more than 50 feet below msl. Water levels in 56 percent of the wells in these areas were more than 100 feet below msl in 1991.

#### The Extended Chicago Area

Regional water-level trends in selected deep wells in the extended area outside the eightcounty Chicago region (table 4) show less fluctuation and are less well defined. In these areas, wells are fewer and more widely spaced, and in general, regional and local pumpage is considerably less.

| Well & L                       | ocation            | 1971-<br>1975 | 1975-<br>1980 | 1980-<br>1985 | 1985-<br>1991 |
|--------------------------------|--------------------|---------------|---------------|---------------|---------------|
| BNE 44N3E-25.8b<br>(Belvidere) |                    | +0.8          | +2.8          | -2.0          | +0.7          |
| LAS<br>(Peru)                  | 33N1E-16.8a        | -0.7          | -0.6          | +0.2          | +0.2          |
| LAS 33N<br>(Ottawa             |                    | +0.8          | -0.2          | -2.8          | +1.7          |
| OGL<br>(Rochel                 | 40N1E-25.3f<br>le) | -3.3          | +2.6          | +2.6          | +1.5          |
| WIN<br>(Rockfo                 | 44N1E-23.6d<br>rd) | -1.0          | +0.8          | +0.4          | -1.2          |

# Table 4. Average Changes in Nonpumping Water Levels in Selected Deep Bedrock Wells in the Extended Chicago Area (ft/yr)

Also, the proximity to the primary recharge area in north-central Illinois lessens the effect of pumpage on water levels.

During the periods 1971-1975, 1975-1980, and 1980-1985, average water-level changes in five selected observation wells in the extended area ranged from a rise of 2.8 ft/yr (during the middle period at Belvidere in Boone County) to a decline of 3.3 ft/yr (during the early period at Rochelle in Ogle County). None of the five wells exhibited continuous declines or rises during these periods.

During the period 1985-1991, average water-level changes were positive (rises) in all but the well at Rockford in Winnebago County. Rises ranged from 0.2 ft/yr at Peru to 1.7 ft/yr at Ottawa, both in LaSalle County. Levels at Rockford declined an average of 1.2 ft/yr.

Water levels in 113 wells in six northeastern Illinois counties in the extended area were measured in both 1985 and 1991. Thirty-one wells, in five of the counties, indicated water-level rises. They ranged from one foot in both LaS alle and Winnebago Counties to 95 feet in Ogle County. Rises of 50 feet or more were observed in two wells in LaSalle County and in one well in Ogle County. Declines were noted in 77 wells in all six counties, ranging from one foot in DeKalb, LaSalle, and Winnebago Counties to 126 feet in Ogle County. The large decline in Ogle County occurred at an industrial well. Declines of 50 feet or more were seen at four wells in DeKalb County and at one well in both Kankakee and Ogle Counties. Overall, the weighted average water-level change was -0.9 ft/ yr and ranged from +3.8 ft/yr in Kankakee County to -3.1 ft/yr in DeKalb County.

### POTENTIOMETRIC SURFACE OF THE DEEP BEDROCK AQUIFERS

The potentiometric surface is an imaginary level to which water will rise in tightly cased wells (which do not allow vertical communication between aquifers). The term "potentiometric surface" is replacing the term "piezometric surface," which was used in all but the most recent reports of this series. "Piezometric surface" was originally used to imply an artesian head at some level above the top of the aquifer. Potentiometric surface more appropriately refers to the water-level surface, whether or not it is above the top of the aquifer.

Previous reports have included several potentiometric surface maps of areas of the deep bedrock aquifers in northern Illinois. Maps of 1950 (Foley and Smith, 1954), 1971 (Sasman et al., 1973), and 1980 (Sasman et al., 1982) cover all of the northern part of the state. Maps of 1958 (Suter etal., 1959), 1959 (Walton etal., 1960), 1960 (Sasman et al., 1961), 1961 (Sasman et al., 1962), 1966 (Sasman et al., 1967), 1975 (Sasman et al., 1977), 1980 (Sasman et al., 1982), and 1985 (Sasman et al., 1986) have been limited to northeastern Illinois. The 1980 map included coverages of both the northern and northeastern portions of the state.

#### **Potentiometric Surface, 1985**

Figure 7 shows the potentiometric surface of the deep bedrock aquifers in fall 1985. Waterlevel data included in the appendix were used to prepare the map. The general features of the 1985 potentiometric surface map differ very little from those of the potentiometric maps for 1975 and 1980. The deepest cones of depression in the Chicago region were in the vicinity of Elk Grove, Elmhurst, and Joliet, where some levels were more than 225 feet below msl. Pronounced cones of depression were also apparent at Arlington Heights, Mt. Prospect, Bensenville, Bellwood, Oak

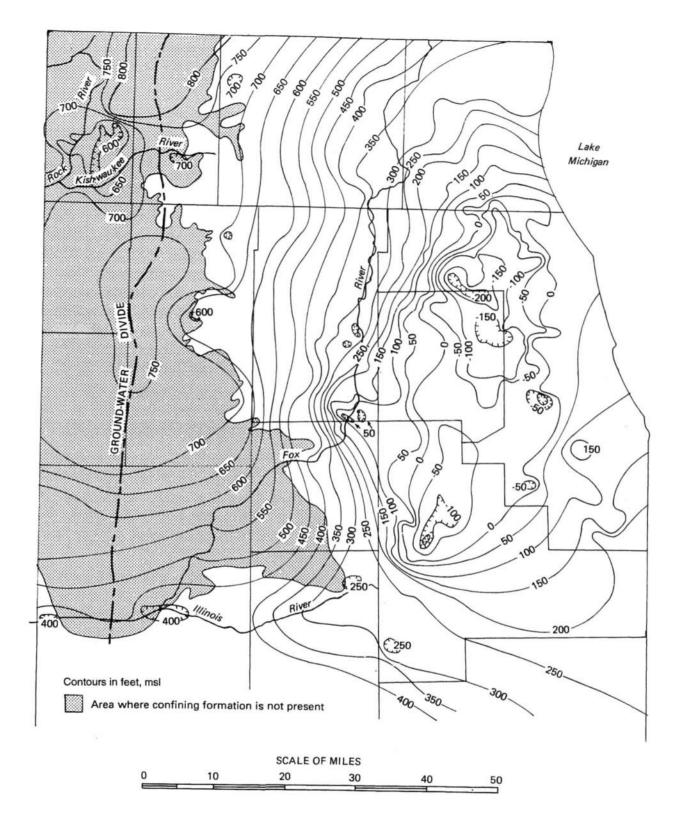



Figure 7. Potentiometric surface of the deep bedrock aquifers in northeastern Illinois, fall 1985 (from Sasman et al., 1986)

Brook, and Aurora. The zero-foot msl potentiometric surface areas, centered around Joliet, Elmhurst, and Arlington Heights, included almost all of western and northern Cook County, most of eastern DuPage County, and a large area of northwestern Will County, totaling about 712 square miles. Contours of -100 feet msl enclosed extensive areas in northern Cook County, western Cook and eastern DuPage Counties, and the Joliet area in Will County, an area of about 166 square miles.

Other depressions in the potentiometric surface in the Chicago region were also apparent in southern and northern Cook County, southwestern DuPage County, eastern McHenry County, and central Grundy County. The potentiometric surface fell below the top of the Ancell aquifer in large areas of northern Cook County, much of DuPage County, and in the Joliet area. Outside of the Chicago region, mis was also the case for an area in LaSalle County centered around the Illinois River valley, where the Ancell is the uppermost bedrock unit due to preglacial faulting and erosion.

The 1985 potentiometric surface map showed die highest elevations in north-central Illinois in Boone/Winnebago and DeKalb/Lee/Ogle Counties. A major cone of depression in the potentiometric surface was apparent at Rockford, and smaller depressions were seen at DeKalb, Belvidere, LaSalle-Peru, and Ottawa.

The general pattern of ground-water flow in the deep bedrock aquifers in 1985 was pri-marily from high elevations in north-central Illinois toward the deep cones of depression centered in Arlington Heights-Elk Grove-Mt. Prospect, Bensenville-Elmhurst, Bellwood, and Joliet. Some of the water moving toward these areas was intercepted by enlarging pumping centers at Aurora, Geneva-St. Charles, Naperville, Lake Zurich, Minooka-Morris, and other locations. In addition, water from the recharge area west of the Chicago region was diverted into cones of depression at Rockford, Belvidere, DeKalb, and the Illinois River valley in LaSalle County.

#### **Potentiometric Surface, 1991**

Figure 8 shows the potentiometric surface of the deep bedrock aquifers in fall 1991. Waterlevel data shown in the appendix were used to prepare the map. The general features of the 1991 potentiometric surface map closely resemble those of the maps for 1980 and 1985.

The deepest cones of depression in the Chicago region in 1991 were again in the Joliet and Elmhurst areas, where levels were as much as 300 feet and 180 feet, below msl, respectively. The major cone of depression observed at Elk Grove in 1985 was no longer present. But significant cones of depression were present at Morton Grove-Niles and Prospect Heights in northern Cook County, Aurora in Kane County, Mundelein-Vernon Hills and Lincolnshire in southern Lake County, and the Crystal Lake and Ringwood areas in McHenry County.

The zero-foot msl contour line encompassed eastern and southern DuPage County, much of western and southwestern Cook County, aportion of southern Lake County, and most of the northern half of Will County. The areal extent of this contour has diminished since 1985 to about 647 square miles. The minus 100-foot contour extended for about 151 square miles around the Elmhurst and Joliet areas.

Other notable depressions in the potentiometric surface were identified in southwestern Will County and northeastern and southeastern Grundy County. The potentiometric surface fell below the top of the Ancell aquifer in large portions of central and eastern DuPage County, in northern Will County, and in small portions of Kane, Kendall, and Grundy Counties. Together, these depressions

# MAIRON STATE WATER SURVEY LIBRARY COPY

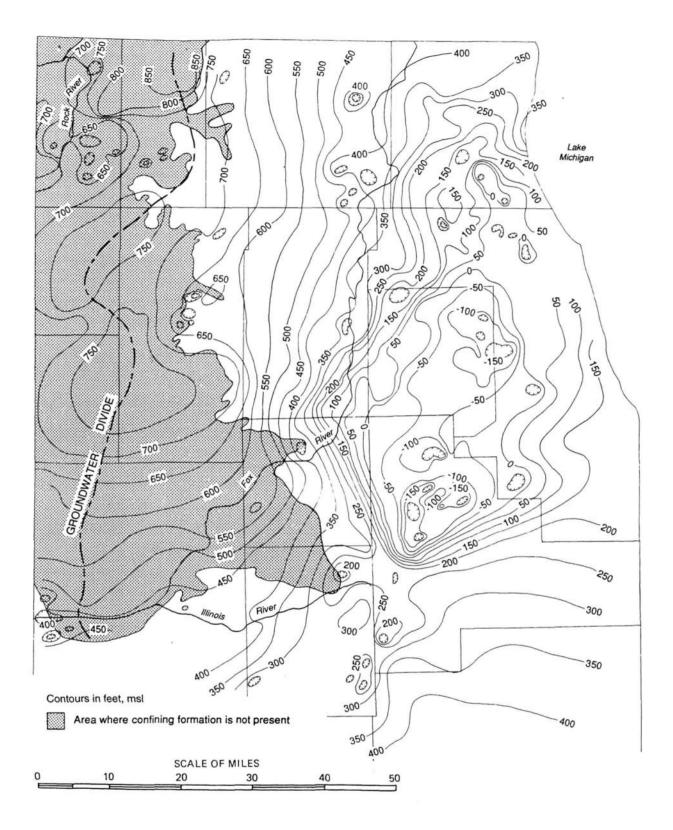



Figure 8. Potentiometric surface of the deep bedrock aquifers in northeastern Illinois, fall 1991

amount to approximately 366 square miles. An area of similar size was dewatered along the Illinois River valley in LaSalle County.

For the entire study area, the 1991 potentiometric surface map showed the areas of highest elevation once more in Boone/Winnebago and DeKalb/Lee/Ogle Counties. A major depression in the potentiometric surface was apparent at Rockford, and smaller depressions were once again seen at Belvidere, DeKalb, Ottawa, and LaSalle-Peru.

The general pattern of ground-water flow in the deep bedrock aquifers continued to originate from high elevations in north-central Illinois toward the east and southeast. Locally, flow traveled toward the deep cones of depression in southern Lake and northern Cook Counties, Elmhurst, and Joliet. Some of the water moving toward these cones of depression was intercepted by pumping centers at Aurora, Bloomingdale-Carol Stream, Geneva-St. Charles, Morris, Naperville, and industrial pumping centers in Grundy, southern Cook, and southern Will Counties. In addition, water from the recharge area west of the Chicago region was diverted into cones of depression at Rockford, Belvidere, DeKalb, and the Illinois River valley in LaSalle County. The approximate limit of diversion for the deep bedrock aquifers west of the Chicago region is shown by the ground-water divides in figures 7 and 8.

#### Change in Potentiometric Surface, 1985-1991

The potentiometric surface maps and the observed water-level changes in deep wells for 1985 and 1991 were used to prepare a map of water-level changes (figure 9). The potentiometric surface maps were overlaid on one another, and the 1991 contours were subtracted from those on the 1985 map. The resulting data points, along with observed changes in deep wells, were used in constructing the change map. Water-level changes observed in wells between 1985 and 1991 are listed in the appendix.

The changes were considerable, even within areas of heavy regional pumpage. The most obvious **recovery** of deep water levels occurred in northern Cook County, where water levels rose more than 200 feet. This recovery was primarily due to the transition from the use of deep well water to the use of lake water for public supplies. Water-level rises were also found in southeast McHenry, southern Cook, and east-central Will Counties; small areas of eastern and southern Lake County; and at several other limited areas throu ghout the region. In the eight-county Chicago region, water-level rises of 50 feet or more occurred over an area of about 831 square miles or 18.6 percent of the region. Rises of 100 feet or more occurred over an area of about 354 square miles or 7.9 percent of the area.

**Declines** in the potentiometric surface were greatest in the Joliet area, where water levels fell more than 200 feet. A major area with declines of 50 feet or more extended over large por-tions of northern and southwestern Will County; portions of southern Lake, northern McHenry, northeastern and southwestern Kendall, southern DuPage, and southeastern Kane Counties; and scattered portions of Grundy County. In the eight-county region, declines of 50 feet or more extended over an area of about 557 square miles or 12 percent of the area. Declines of 100 feet or more occurred over an area of about 157 square miles or less than 4 percent of the area.

Outside of the eight-county Chicago region, rises and declines of 50 feet or more were observed in limited areas, the most notable being in the Rockford area.

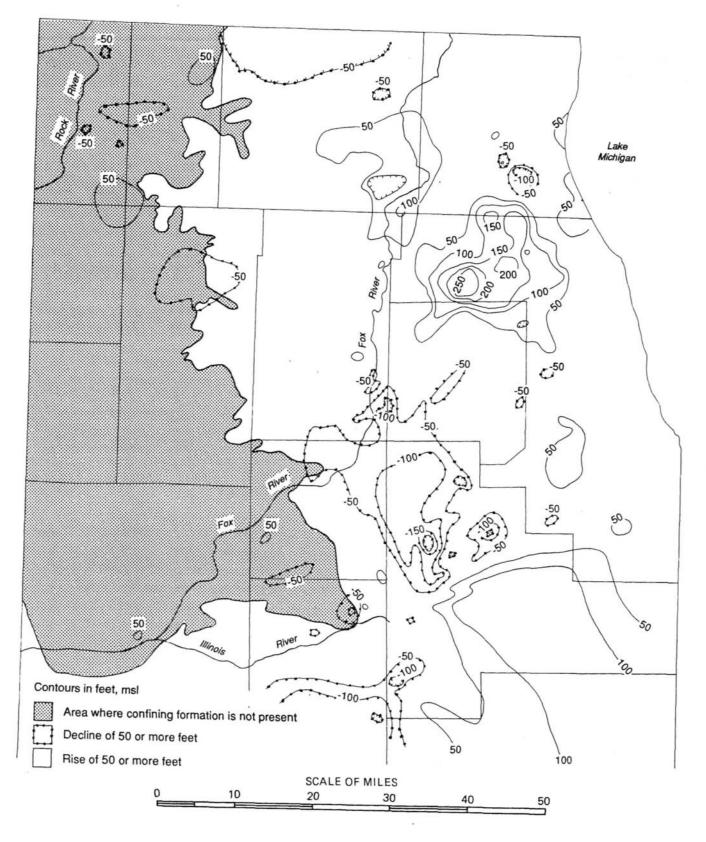



Figure 9. Changes in the potentiometric surface of the deep bedrock aquifers in northeastern Illinois, 1985-1991

| County         | Well   |                                | Depth      | Surface    | Watter level<br>elevation | Water level<br>elevation | Water level<br>changes,ft. |
|----------------|--------|--------------------------------|------------|------------|---------------------------|--------------------------|----------------------------|
| Location       | no.    | Owner                          | fi.        | elev.      | 1985                      | 1991                     | 1985-1991                  |
| _              |        |                                | 5          |            |                           |                          |                            |
| Boone          |        | <b>B</b> 1 (1                  | 0.40       | 0.54       |                           |                          | _                          |
| 00744N03E24.8a | 6      | Belvidere                      | 868        | 874        | 722                       | 717                      | -5                         |
| 00744N03E25.3d | 1      | Pillsbury-Green Giant Pckg Co. | 627        | 770        |                           | 698<br>704               |                            |
| 00744N03E25.4d | 2      | Pillsbury-Green Giant Pckg Co. | 550        | 770        | =10                       | 704                      | 22                         |
| 00744N03E25.6d | 2      | Dean Foods Co.                 | 868        | 770        | 712                       | 680                      | -32                        |
| 00744N03E25.8b | 3      | Belvidere                      | 1803       | 765        | 743                       | 747                      | 4                          |
| 00744N03E26.1e | 4      | Belvidere                      | 1800       | 778        | 716                       | 711                      | -5                         |
| 00744N03E34.2a | 8      | Belvidere                      | 1393       | 780        | 739                       | 610<br>745               | 17                         |
| 00744N03E35.1f | 5      | Belvidere                      | 610<br>969 | 800        | 728                       | 745                      | 17                         |
| 00744N03E36.2g | 7      | Belvidere                      |            | 840        | 652                       | 610                      | -42                        |
| 00744N04E11.7h | 1<br>1 | Capron<br>Mal an Carin an      | 880<br>570 | 912<br>892 | 020                       | 860<br>834               | -4                         |
| 00744N04E19.8f | 1      | McLay Grain co.                | 570        | 892        | 838                       | 834                      | -4                         |
| Cook           |        |                                |            |            |                           |                          |                            |
| 03135N13E01.1d | 602    | Flossmoor (2A)                 | 1764       | 674        | 144                       | 173                      | 29                         |
| 03135N13E02.3a | 606    | Flossmoor (6A)                 | 1784       | 705        | 127                       | 159                      | 32                         |
| 03135N13E12.3b | 607    | Flossmoor (7A)                 | 1722       | 653        | 158                       | 182                      | 24                         |
| 03135N14E08.5e | 32     | Chicago Heights                | 1777       | 652        | 112                       |                          |                            |
| 03135N14E19.4c | 22     | Chicago Heights                | 1800       | 677        | 209                       | 222                      | 13                         |
| 03135N14E21.2h | 2      | Rhone Poulenc Co.              | 1797       | 640        | 127                       | 156                      | 29                         |
| 03135N14E23.6e | 3      | Ford Heights                   | 1858       | 667        | 237                       |                          |                            |
| 03136N12E02.5h | 11     | Orland Park                    | 1683       | 712        | 2                         | 54                       | 52                         |
| 03136N12E03.5d | 609    | Orland Park (9D)               | 1706       | 705        | 38                        | 51                       | 13                         |
| 03136N12E13.1d | 6      | Orland Park                    | 1809       | 732        | 62                        | 91                       | 29                         |
| 03136N12E15.1a | 10     | Orland Park                    | 1718       | 720        | -126                      |                          |                            |
| 03136N12E22.6b | 3      | Citizens Fernway Utility Co.   | 1712       | 720        | -5                        | -65                      | -60                        |
| 03136N13E01.2g | 1      | NBI Industrial Terminal        | 1618       | 597        | 117                       | 139                      | 22                         |
| 03136N13E09.8b | 1      | Oak Forest                     | 1701       | 672        | 77                        | 104                      | 27                         |
| 03137N11E14.8c | 3      | Powell Duffryn Terminal        | 1464       | 585        | -15                       | -25                      | -10                        |
| 03137N11E28.3b | 1      | DeAndreis Seminary             | 1690       | 740        | -48                       | -40                      | 8                          |
| 03137N11E29.1g | 4      | Lemont                         | 1685       | 737        | -54                       | -51                      | 3                          |
| 03137N11E29.4b | 3      | Lemont                         | 1723       | 743        | -90                       | -69                      | 21                         |
| 03137N12E02.8h | 2      | Hickory Hills                  | 1608       | 685        | -21                       | 43                       | 64                         |
| 03137N13E26.1g | 3      | Oak Hill Cemetery              | 1637       | 617        | 227                       | 235                      | 8                          |
| 03137N14E27.5e | 1118   | Met. Wtr. Recl. Dist.          | 1683       | 590        | 131                       | 164                      | 33                         |
| 03138N12E01.8g | 2      | Lyons                          | 2020       | 621        | -27                       |                          |                            |
| 03138N12E05.8d | 3      | Western Springs                | 1600       | 673        | -124                      | -96                      | 28                         |
| 03138N12E06.6b | 4      | Western Springs                | 1913       | 642        | -58                       | -66                      | -8                         |
| 03138N12E18.8g | 3      | Suburban Hospital              | 1540       | 689        | 38                        | 10                       | -28                        |
| 03138N12E23.2g | 13     | CPC International, Inc.        | 1525       | 600        | -92                       | -35                      | 57                         |
| 03138N12E24.1g | 12     | CPC International, Inc.        | 1507       | 597        | -157                      |                          |                            |
| 03138N12E24.7h | 14     | CPC International, Inc.        | 1481       | 597        | -158                      | -88                      | 70                         |
| 03138N13E08.1f | 4      | Rose Packing Co.               | 1590       | 594        | 44                        | 72                       | 28                         |
| 03138N13E11.1h | 1      | Bradshaw-Praeger & Co.         | 1224       | 597        | 54                        | 85                       | 31                         |
| 03138N13E19.4f | 3      | Viskase Corporation            | 1665       | 621        |                           | -36                      |                            |
| 03138N13E19.6f | 2      | Viskase Corporation            | 1590       | 619        | -60                       | -41                      | 19                         |
| 03138N13E21.1f | 2      | Cracker Jack Co.               | 1585       | 620        | 37                        |                          |                            |
| 03138N13E27.5g | 1      | Tootsie Roll Industries        | 1565       | 617        |                           | 62                       |                            |
| 03138N14E07.6c | 1      | Fleischmann-Kurth Malting Co.  | 1523       | 594        |                           | 102                      |                            |
| 03138N14E07.6d | 2      | Fleischmann-Kurth Malting Co.  | 1583       | 594        |                           | 94                       |                            |
| 03138N14E07.7g | 3      | Standard Brands                | 1960       | 602        |                           | 99                       |                            |
| 03139N12E08.5g | 4      | Bellwood                       | 1960       | 645        | -145                      | -110                     | 35                         |
| 03139N12E09.3f | 1      | Bellwood                       | 1956       | 636        | -128                      | -33                      | 95                         |
| 03139N12E09.5a | 3      | Bellwood                       | 1480       | 624        | -227                      | -96                      | 131                        |
| 03139N12E09.5d | 2      | Bellwood                       | 1966       | 632        | -108                      |                          |                            |
| 03139N12E11.7f | 3      | Maywood                        | 1640       | 630        | 4                         | 21                       | 17                         |
| 03139N12E16.2f | 5      | Bellwood                       | 1845       | 627        | -159                      | -167                     | -8                         |
| 03139N12E35.3h | 2      | Brookfield Zoological Park     | 2081       | 615        | -85                       | 31                       | 116                        |
|                |        | 5                              |            |            |                           |                          |                            |

# Appendix: Water-level Elevations of the Deep Bedrock Aquifers in Northern Illinois, 1985-1991

# Appendix - Continued

|                                  |          |                                 | D (1         | <b>G</b> ( | Water level | Water level | Water level |
|----------------------------------|----------|---------------------------------|--------------|------------|-------------|-------------|-------------|
| County                           | Well     | 0                               | Depth        | Surface    | elevation   | elevation   | changes,ft. |
| Location                         | no.      | Owner                           | ft.          | elev.      | 1985        | 1991        | 1985-1991   |
| Cook (cont'd)                    |          |                                 |              |            |             |             |             |
| 03139N12E36.8d                   | 3        | Riverside                       | 2047         | 618        |             |             |             |
| 03139N13E21.6g                   | 1        | Kropp Forge Co.                 | 1636         | 608        |             | -102        |             |
| 03139N13E33.4a                   | 1        | Waste Management                | 1650         | 589        | 41          | 53          | 12          |
| 03139N14E21.7b                   | 1        | Industrial Coatings Group, Inc. | 1610         | 593        | 69          |             |             |
| 03139N14E21.7b                   | 2        | Industrial Coatings Group, Inc. | 1603         | 593        |             |             |             |
| 03140N12E18.6c                   | 1        | Nelson Wire Co.                 | 1457         | 663        | -133        | -81         | 52          |
| 03140N12E31.4c                   | 2        | AG Communications System 5 Inc  | 1468         | 655        | -183        | -105        | 78          |
| 03140N12E31.4d                   | 1        | AG Communications System 5 Inc  | 1470         | 655        | -135        | -85         | 50          |
| 03140N12E31.4d                   | 3        | AG Communications System 5 Inc  | 1487         | 655        | -55         |             |             |
| 03140N12E35.2f                   | 3        | Oak Park Country Club           | 1497         | 627        |             | 30          |             |
| 03141N09E23.5g                   | 3        | Streamwood                      | 1410         | 820        | 222         | 302         | 80          |
| 03141N09E36.3f                   | 2        | Hanover Park                    | 1429         | 828        | 68          | 173         | 105         |
| 03141N09E36.6b                   | 4        | Hanover Park                    | 1310         | 820        | 188         |             |             |
| 03141N10E06.5b                   | 10       | Hoffman Estates                 | 1357         | 810        | 132         | 228         | 96          |
| 03141N10E12.3g                   | 21       | Schaumburg                      | 1355         | 735        |             | 60          |             |
| 03141N10E31.3e                   | 3        | Hanover Park                    | 1952         | 798        | 88          | 201         | 113         |
| 03141N10E34.8h                   | 15       | Schaumburg                      | 1350         | 810        |             | 165         |             |
| 03141N10E36.4g                   | 7        | Elk Grove Village               | 1365         | 720        | -270        |             |             |
| 03141N10E36.8b                   | 11       | Elk Grove Village               | 1367         | 725        | -171        | 34          | 205         |
| 03141N11E08.3a                   | 6        | Rolling Meadows                 | 1602         | 694        | -136        | 82          | 218         |
| 03141N11E09.7g                   | 1        | U.S. Army Facility Eng.         | 1812         | 712        | 35          | 114         | 79          |
| 03141N11E12.8h                   | 3        | Mt. Prospect                    | 1935         | 670        | -150        |             |             |
| 03141N11E14.5b                   | 3        | Citizens Util. Co Waycinden     | 1382         | 672        | -153        | 32          | 185         |
| 03141N11E16.2h                   | 12       | Arlington Heights               | 1780         | 714        | -111        |             |             |
| 03141N11E21.1b                   | 1        | Elk Grove Village               | 1415         | 715        | -106        |             |             |
| 03141N11E23.7f                   | 16       | Mt. Prospect                    | 1961         | 675        | -144        | 37          | 181         |
| 03141N11E24.1f                   | 2        | Citizens Waycinden Division     | 1652         | 660        | -160        | 10          | 170         |
| 03141N11E2S.2h                   | 7        | Des Plaines                     | 1815         | 655        | 117         | 186         | 69          |
| 03141N11E2S.6b                   | 4        | Touhy Mobile Homes              | 1515         | 657        | -142        | -118        | 24          |
| 03141N11E25.6b                   | 5        | Touhy Mobile Homes              | 940          | 657        | 30          | 65          | 35          |
| 03141N11E26.8a                   | 2        | Elk Grove Village               | 1395         | 682        | -188        | 00          | 00          |
| 03141N11E27.3f                   | 9        | Elk Grove Village               | 1403         | 682        | -243        | -33         | 210         |
| 03141N11E31.3a                   | 14       | Elk Grove Village               | 1390         | 702        | -208        | -16         | 192         |
| 03141N11E32.5g                   | 3        | Elk Grove Village               | 1408         | 705        | -125        | 10          | 1)-         |
| 03141N11E33.7b                   | 5        | Elk Grove Village               | 1403         | 685        | -199        |             |             |
| 03141N12E12.7b                   | 3        | North Suburban Public Util.     | 1403         | 661        | -139        | -23         | 116         |
| 03141N12E12.7d                   | 2        | North Suburban Public Util.     | 1402         | 658        | -117        |             | 110         |
| 03141N12E12.8b                   | 1        | North Suburban Public Util.     | 1414         | 662        | -128        | -66         | 62          |
| 03141N12E26.6e                   | 1        | Park Ridge Country Club         | 1355         | 643        | -27         | 10          | 37          |
| 03141N13E08.6d                   | 2        | Glenview Club                   | 1535         | 649        | 3           | 10          | 57          |
| 03141N13E20.7e                   | 1        | Equity Financial Mgmt. Co.      | 1414         | 627        | 13          | 27          | 14          |
| 03141N13E22.4g                   | 2        | Evanston Country Club           | 1465         | 608        | -52         | 34          | 86          |
| 03141N13E29.8d                   | 1        | Howard Commons                  | 1465         | 624        | -32         | 34          | 37          |
| 03142N09E34.7a                   | 1        | Allstate Insurance Co.          | 1250         | 850        | 310         | 450         | 140         |
| 03142N09E34.8a                   | 3        | Allstate Insurance Co.          | 1230         | 850        | 510         | 310         | 140         |
| 03142N10E01.4h                   | 16       | Palatine                        | 1616         | 745        | -20         | 510         |             |
|                                  |          | Palatine                        | 1603         | 750        | -10         | 174         | 184         |
| 03142N10E01.8f<br>03142N10E14.6h | 15<br>10 | Palatine                        | 1995         | 750<br>750 | -10<br>60   | 174         | 134         |
|                                  | 10       | Palatine                        | 1350         | 750<br>750 | -95         | 40          | 138         |
| 03142N10E15.3f<br>03142N10E24.8a |          |                                 | 1350         | 750        |             | 40<br>144   | 135         |
|                                  | 1        | Arlington Park Jockey Club      | 1825<br>1906 | 724<br>728 | 10<br>78    | 33          | -45         |
| 03142N10E25.8g                   | 4        | Arlington Park Jockey Club      |              |            | 78<br>9     | 55<br>140   |             |
| 03142N10E26.4h                   | 5        | Rolling Meadows                 | 1555         | 733        |             |             | 131         |
| 03142N10E29.7e                   | 9        | Hoffman Estates                 | 1392         | 820        | 92<br>106   | 172         | 80          |
| 03142N11E03.3b                   | 5        | Wheeling                        | 1355         | 650<br>725 | -106        | 100         | 175         |
| 03142N11E05.8e                   | 1        | Buffalo Grove                   | 1335         | 725        | -75         | 100         | 175         |

# Appendix - Continued

| ~                                |        |                                                  | <b>D</b> 1   | ~ .        | Water level | Water level | Water level |
|----------------------------------|--------|--------------------------------------------------|--------------|------------|-------------|-------------|-------------|
| County                           | Well   |                                                  | Depth        | Surface    | elevation   | elevation   | changes,ft. |
| Location                         | no.    | Owner                                            | ft.          | elev.      | 1985        | 1991        | 1985-1991   |
| Cook (cont'd)                    |        |                                                  |              |            |             |             |             |
| 03142N11E06.6C                   | 13     | Arlington Heights                                | 1795         | 730        | 30          | 140         | 110         |
| 03142N11E08.1a                   | 11     | Arlington Heights                                | 1647         | 689        | -36         | 144         | 180         |
| 03142N11E10.7a                   | 7      | Wheeling                                         | 1350         | 661        | -110        | 71          | 181         |
| 03142N11E12.7b                   | 1      | Plum Creek Condominiums                          | 1338         | 640        | 18          | 38          | 20          |
| 03142N11E12.8b                   | 2      | Plum Creek Condominiums                          | 1323         | 645        | 51          |             |             |
| 03142N11E17.7e                   | 9      | Arlington Heights                                | 1532         | 691        | -19         |             |             |
| 03142N11E24.3g                   | 5      | Citizens Chicago Sub. Util Div                   | 1320         | 638        | -90         | -2          | 88          |
| 03142N11E24.4d                   | 4      | Citizens Chicago Sub. Util Div                   | 1323         | 642        | -120        | -23         | 97          |
| 03142N11E24.5f                   | 6      | Citizens Chicago Sub. Util Div                   | 1323         | 643        | -112        | 5           | 117         |
| 03142N11E26.4h                   | 2      | Prospect Heights                                 | 1318         | 648        | -147        | -2          | 145         |
| 03142N11E26.7d                   | 2      | Citizens Chicago Sub. Util Div                   | 1468         | 661        | -134        | 36          | 170         |
| 03142N11E27.5h                   | 17     | Mt. Prospect                                     | 1282         | 663        | -172        | 11          | 183         |
| 03142N11E30.3b                   | 17     | Arlington Heights                                | 1323         | 708        | -80         | 53          | 133         |
| 03142N11E31.7a                   | 16     | Arlington Heights                                | 1810         | 698        | -77         | 103         | 180         |
| 03142N11E33.3b                   | 4      | Mt. Prospect                                     | 1950         | 693        | -147        | 63          | 210         |
| 03142N11E34.4g                   | 5      | Mt. Prospect                                     | 1822         | 670        | -115        | 15          | 130         |
| 03142N12E14.2a                   | 3      | Sunset Ridge Country Club                        | 1396         | 655        | 1           | 21          | 20          |
| 03142N12E14.2c                   | 2      | Sunset Ridge Country Club                        | 1247         | 655        | 13          | 52          | 39          |
| 03142N12E14.8e                   | 3      | Divine Word Seminary                             | 1190         | 665        | 5           | 135         | 130         |
| 03142N12E18.1e                   | 1      | Mission Brook San. Dist.                         | 1399         | 685        | -36         | 35          | 71          |
| 03142N12E18.2b                   | 1      | Illinois Bell Telephone Co.                      | 1380         | 660        | -33         | 6           | 39          |
| 03142N12E18.3a                   | 1      | Culligan U.S.A.                                  | 1380         | 652        | -56         | -63         | -7          |
| 03142N12E18.3e                   | 1      | Mission Hills Country Club                       | 1400         | 660        | -17         | 25          | 42          |
| 03142N12E18.4a                   | 1      | Imcera Group Inc.                                | 1330         | 660        | -5          | 56          | 61          |
| 03142N12E19.1b                   | 3      | Allstate Insurance Co.                           | 1401         | 662        | -41         | -6          | 35          |
| 03142N12E19.1c                   | 1      | Allstate Insurance Co.                           | 1400         | 663        | -64         | -3          | 61<br>72    |
| 03142N12E19.1d                   | 2<br>4 | Allstate Insurance Co.<br>Allstate Insurance Co. | 1404         | 663<br>655 | -47<br>-46  | 25<br>6     | 72<br>52    |
| 03142N12E19.2a                   | 4      | Anstate Insurance Co.<br>Nielsen Co.             | 1400<br>1400 | 055<br>657 | -40<br>-102 | 23          | 52<br>125   |
| 03142N12E19.2e                   | 2      | Culligan U.S.A.                                  | 1400         | 655        | -102<br>-45 | -100        | -55         |
| 03142N12E19.2h<br>03142N12E19.3a | 1      | Allstate Ins. Co West Plaza                      | 1380         | 640        | -43         | -100        | -35         |
| 03142N12E19.3a                   | 1      | Nielsen Co.                                      | 1332         | 655        | -61         | -10         | 51          |
| 03142N12E19.51                   | 1      | Allstate Ins. Co West Plaza                      | 1328         | 650        | -01         | -10         | 51          |
| 03142N12E19.46                   | 2<br>1 | Household Finance Corp.                          | 1328         | 648        | 48          | 83          | 35          |
| 03142N12E13.46                   | 3      | Convent of the Holy Spirit                       | 1308         | 648        | 40<br>146   | 05          | 55          |
| 03142N12E23.6b                   | 2      | Sunset Mobil Home Park                           | 1431         | 626        | 140         | 39          |             |
| 03142N12E28.7e                   | 1      | Signode Steel Strapping Co.                      | 1413         | 670        | -70         | -35         | 35          |
| 03142N12E29.1h                   | 1      | Glenbrook Hospital                               | 1432         | 677        | -27         | -33         | 49          |
| 03142N12E32.4f                   | 1      | Life Source                                      | 1465         | 670        | -29         | 15          | 44          |
| 03142N12E32.6f                   | 2      | Zenith Radio Corp.                               | 1400         | 662        | -41         | 127         | 168         |
| 03142N12E36.7e                   | 2      | North Shore Country Club                         | 2400         | 645        | -41         | 48          | 100         |
| 051421(12E50.70                  | 2      | North Shore Country Club                         | 2400         | 045        |             | 40          |             |
| DeKalb                           |        |                                                  |              |            |             |             |             |
| 03737N05E32.1c                   | 1      | Somonauk                                         | 190          | 685        | 663         | 656         | -7          |
| 03737N05E32.1c                   | 2      | Somonauk                                         | 502          | 685        | 662         | 656         | -6          |
| 03737N05E36.7g                   | 3      | Sandwich                                         | 610          | 655        | 645         | 639         | -6          |
| 03737N05E36.7h                   | 1      | Sandwich                                         | 600          | 667        | 639         | 647         | 8           |
| 03737N05E36.7h                   | 2      | Sandwich                                         | 600          | 667        | 632         | 635         | 3           |
| 03738N04E15.8d                   | 3      | Waterman                                         | 400          | 813        |             | 771         |             |
| 03738N04E16.2d                   | 2      | Waterman                                         | 400          | 825        |             | 770         |             |
| 03738N05E14.4d                   | 3      | Hinckley                                         | 605          | 740        | 708         | 708         | 0           |
| 03738N05E15.2d                   | 2      | Hinckley                                         | 708          | 740        | 718         | 718         | 0           |
| 03740N03E15.7c                   | 2      | Kishwaukee College                               | 920          | 910        | 736         | 705         | -31         |
| 03740N03E23.6e                   | 2      | Malta                                            | 1254         | 915        | 741         | 735         | -6          |
| 03740N03E23.7e                   | - 1    | Malta                                            | 853          | 915        | 771         | 770         | -1          |
|                                  |        |                                                  | 000          |            | -           | -           | -           |

# Appendix - Continued

| Country            | <b>11</b> 7 11 |                                | D4h   | 5 (              | Water level       | Water level       | Water level               |
|--------------------|----------------|--------------------------------|-------|------------------|-------------------|-------------------|---------------------------|
| County<br>Location | Well           | Owner                          | Depth | Surface<br>elev. | elevation<br>1985 | elevation<br>1991 | changes, ft.<br>1985-1991 |
| Location           | no.            | Owner                          | fi.   | elev.            | 1905              | 1991              | 1965-1991                 |
| DeKalb (cont'd)    |                |                                |       |                  |                   |                   |                           |
| 03740N04E01.4e     | 7              | Sycamore                       | 1233  | 835              | 609               | 525               | -84                       |
| 03740N04E10.7b     | 14             | DeKalb                         | 1313  | 890              |                   | 604               |                           |
| 03740N04E15.7a     | 6              | DeKalb                         | 1291  | 855              | 599               | 594               | -5                        |
| 03740N04E16.1g     | 1              | DeKalb Univ. Development Corp. | 80S   | 880              | 790               | 730               | -60                       |
| 03740N04E16.2g     | 2              | DeKalb Univ. Development Corp. | 970   | 883              | 745               | 720               | -25                       |
| 03740N04E21.4f     | 10             | DeKalb                         | 1310  | 880              | 624               | 623               | -1                        |
| 03740N04E23.5d     | 4              | DeKalb                         | 1325  | 885              | 597               | 592               | -5                        |
| 03740N04E26.3g     | 1              | Del Monte Corp.                | 1324  | 890              | 632               | 600               | -32                       |
| 03740N04E26.3g     | 2              | Del Monte Corp.                | 1345  | 890              | 625               | 635               | 10                        |
| 03740N04E26.6e     | 7              | DeKalb                         | 1315  | 885              | 604               | 561               | -43                       |
| 03740N04E33.1h     | 12             | DeKalb                         | 1200  | 862              | 639               | 584               | -55                       |
| 03740N04E34.Sc     | 13             | DeKalb                         | 1222  | 865              |                   | 641               |                           |
| 03740N05E05.5e     | 5              | Sycamore                       | 1270  | 872              | 595               |                   |                           |
| 03740N05E06.7a     | 8              | Sycamore                       | 1300  | 880              |                   | 641               |                           |
| 03741N05E32.1g     | 3              | Sycamore                       | 1002  | 845              | 819               | 737               | -82                       |
| 03741N05E32.3e     | 1              | Sycamore                       | 902   | 870              | 826               | 815               | -11                       |
| 03741N05E32.7g     | 6              | Sycamore                       | 1214  | 845              |                   | 615               |                           |
| 03742N03E26.3h     | 0              | Kirkland                       | 737   | 767              |                   | 761               | 0                         |
| 03742N03E26.3h     | 1              | Kirkland                       | 636   | 764              | 761               | 752               | -9                        |
| 03742N04E22.7a     | 2              | Kingston                       | 755   | 830              |                   | 703               |                           |
| 03742N04E22.7a     | 3              | Kingston                       | 717   | 830              | 722               | 690<br>710        | 12                        |
| 03742N05E19.4b     | 3<br>4         | Genoa                          | 732   | 830              | 723               | 710               | -13<br>-5                 |
| 03742N05E20.7a     | 4              | Genoa                          | 770   | 847              | 647               | 642               | -5                        |
| DuPage             |                |                                |       |                  |                   |                   |                           |
| 04337NIIE02.7d     | 4              | Southeast Region Water Facilty | 1610  | 710              | -11               | -10               | 1                         |
| 04338N09E01.5a     | 28             | Naperville                     | 1490  | 730              | -11               | -40               | 1                         |
| 04338N09E13.2b     | -0             | Naperville                     | 1445  | 680              | -30               | ••                |                           |
| 04338N09E15.7d     | 1              | J.S. Plastics Co.              | 1000  | 704              | 136               | 135               | -1                        |
| 04338N09E22.2h     | 26             | Naperville                     | 1500  | 700              |                   | -17               |                           |
| 04338N09E29.5f     | 22             | Aurora                         | 1420  | 684              | 62                | -6                | -68                       |
| 04338N10E18.3d     | 25             | Naperville                     | 1491  | 695              |                   | -63               |                           |
| 04338N10E30.4d     | 16             | Naperville                     | 1478  | 690              | -5                | -25               | -20                       |
| 04338N10E33.4h     | 20             | Naperville                     | 1572  | 748              | -47               |                   |                           |
| 04338N11E03.7e     | 13             | Westmont                       | 1578  | 740              | -81               | -96               | -15                       |
| 04338N11E10.7e     | 11             | Westmont                       | 1604  | 751              | -57               | -58               | -1                        |
| 04338N11E11.Sc     | 7              | Clarendon Hills                | 1585  | 722              | -71               | -143              | -72                       |
| 04338N11E23.5e     | 3              | Willowbrook                    | 1620  | 734              | -98               | -58               | 40                        |
| 04338N11E28.1C     | 4              | Darien                         | 1612  | 767              | -28               | -43               | -15                       |
| 04339N09E04.1b     | 3              | West Chicago                   | 1378  | 762              | 152               | 123               | -29                       |
| 04339N09E05.4d     | 5              | West Chicago                   | 1376  | 751              | 128               | 136               | 8                         |
| 04339N09E15.7h     | 4              | West Chicago                   | 1465  | 746              | 85                | 48                | -37                       |
| 04339N09E19.6c     | 4              | Fermi Nat. Accelerator Lab.    | 1432  | 756              | 151               | 131               | -20                       |
| 04339N10E01.5e     | 1              | Comm. Ed Lombard Station       | 1565  | 740              | -45               | -47               | -2                        |
| 04339N11E04.1e     | 7              | Villi Park                     | 1420  | 702              | -160              | -143              | 17                        |
| 04339N11E0S.2c     | 9              | Lombard                        | 1431  | 710              | -137              | -125              | 12                        |
| 04339NUE06.3a      | 4              | Lombard                        | 2062  | 698              | -86               | -67               | 19                        |
| 04339N11E09.1h     | 1              | Villa Park                     | '1441 | 694              | -168              | -177              | -9                        |
| 04339N11E09.2h     | 2              | Villa Park                     | 1605  | 699              | -141              | -95               | 46                        |
| 04339N11E10.1h     | 4              | Elmhurst                       | 1400  | 669              | -181              | -176              | 5                         |
| 04339NUE10.3g      | 11             | Ovaltine Food Products         | 1897  | 670              | 20                | 73                | 53                        |
| 04339NIIE10.4g     | 7              | Ovaltine Food Products         | 1936  | 675              | 73                |                   |                           |
| 04339NIIE12.8e     | 5              | Elmhurst                       | 1480  | 677              | -163              |                   | -                         |
| 04339NIIE13.3g     | 10             | Elmhurst                       | 1567  | 705              | -145              | -150              | -5                        |
| 04339NUEIS.8d      | 10             | Villa Park                     | 1458  | 685              | -117              | -79               | 38                        |

| <b>C</b>                         |        |                               | D (          | <b>G</b> ( | Water level       | Water level       | Water level         |
|----------------------------------|--------|-------------------------------|--------------|------------|-------------------|-------------------|---------------------|
| County<br>Logation               | Well   | Owner                         | Depth        | Surface    | elevation<br>1985 | elevation<br>1991 | <i>changes, ft.</i> |
| Location                         | no.    | Owner                         | fi.          | elev.      | 1985              | 1991              | 1985-1991           |
| DuPage (cont'd)                  |        |                               |              |            |                   |                   |                     |
| 04339N11E16.1b                   | 8      | Villa Park                    | 1485         | 705        | -148              | -143              | 5                   |
| 04339N11E17.8d                   | 7      | Lombard                       | 1520         | 730        | -71               | -100              | -29                 |
| 04339N11E20.7a                   | 8      | Lombard                       | 1590         | 775        | -106              | -114              | -8                  |
| 04339N11E24.3b                   | 5      | Oak Brook                     | 1503         | 680        | -135              | -170              | -35                 |
| 04339N11E26.5h                   | 2      | Oak Brook (Well #1)           | 1521         | 685        | -135              | -123              | 12                  |
| 04339N11E26.8h                   | 1      | Oak Brook (Well #2)           | 1458         | 690        |                   | -141              |                     |
| 04339N11E27.6g                   | 7      | Oak Brook                     | 1513         | 715        | -130              | -135              | -5                  |
| 04339N11E33.6h                   | 6      | Oak Brook                     | 1522         | 695        | -155              | -122              | 33                  |
| 04340N09E11.6h                   | 4      | Bartlett                      | 1985         | 770        | 108               | 10                | -98                 |
| 04340N09E13.8d                   | 5      | Hanover Park                  | 1445         | 793        | 74                | 136               | 62                  |
| 04340N09E23.1e                   | 5      | Carol Stream                  | 1357         | 775        | 15                |                   |                     |
| 04340N10E09.3h                   | 5      | Roselle                       | 1423         | 805        | -5                | 63                | 68                  |
| 04340N10E09.4a                   | 7      | Bloomingdale                  | 1420         | 790        | -83               | -24               | 59                  |
| 04340N10E14.8c                   | 2      | Bloomingdale                  | 1395         | 750        | -75               | -27               | 48                  |
| 04340N10E20.4g                   | 8      | Bloomingdale                  | 1415         | 765        | -38               | -17               | 21                  |
| 04340N10E32.1c                   | 4      | Carol Stream                  | 1963         | 790        | 22                | 25                | 3                   |
| 04340N11E03.5e                   | 8      | Elk Grove Village             | 1445         | 700        | -230              |                   |                     |
| 04340N11E10.4h                   | 5      | Wood Dale                     | 1400         | 695        | -165              | -80               | 85                  |
| 04340N11E13.4b                   | 6      | Soo Line Railroad             | 1440         | 671        | 68                | 93                | 25                  |
| 04340N11E13.8e                   | 2      | Bensenville                   | 1442         | 676        | -152              |                   |                     |
| 04340N11E14.4e                   | 3      | Bensenville                   | 1445         | 670<br>(92 | -125              | 12                | 154                 |
| 04340N11E16.6g                   | 7<br>9 | Wood Dale                     | 1356         | 693<br>(75 | -132              | 42                | 174                 |
| 04340N11E26.1d                   | 9      | Elmhurst<br>Bensenville       | 1479<br>1900 | 675<br>684 | -225<br>-171      | -175              | 50                  |
| 04340N11E26.2h                   | 6<br>5 | Lombard                       | 1900         | 684<br>738 | -1/1<br>-104      | 02                | 10                  |
| 04340N11E31.5a<br>04340N11E35.5e | 5      | Elmhurst                      | 1793         | 703        | -104              | -92<br>135        | 12                  |
| 04540IN11E55.5e                  | 0      | Emmurst                       | 14/0         | 703        |                   | 155               |                     |
| Grundy                           |        |                               |              |            |                   |                   |                     |
| 06331N06E06.2e                   | 1      | Kinsman                       | 700          | 658        |                   |                   |                     |
| 06331N06E06.2e                   | 2.     | Kinsman                       | 785          | 658        |                   | 240               |                     |
| 06331N08E04.1a                   | 4      | Gardner                       | 1933         | 588        | 469               | 381               | -88                 |
| 06331N08E04.2b                   | 3      | Gardner                       | 972          | 586        | 328               | 228               | -100                |
| 06331N08E11.6a                   | 4      | South Wilmington              | 970          | 585        |                   | 182               |                     |
| 06331N08E11.6b                   | 3      | South Wilmington              | 994          | 586        |                   | 172               |                     |
| 06332N08E03.1e                   | 4      | Coal City                     | 793          | 567        | 315               | 295               | -20                 |
| 06332N08E26.1f                   | 1      | Braceville                    | 868          | 580        |                   | 121               |                     |
| 06333N06E29.3d                   | 2      | Explosives Technologies Intl. | 1433         | 502        |                   | 417               |                     |
| 06333N06E29.4e                   | 3      | Explosives Technologies Intl. | 1545         | 606        |                   |                   |                     |
| 06333N06E29.4e                   | 6      | Explosives Technologies Intl. | 1530         | 610        |                   | 399               |                     |
| 06333N07E04.2a                   | 3      | Morris                        | 1485         | 523        | 333               | 283               | -50                 |
| 06333N07E04.4c                   | 5      | Morris                        | 1462         | 506        | 350               | 300               | -50                 |
| 06333N07E06.3g                   | 1      | Morris                        | 520          | 549        |                   |                   |                     |
| 06333N07E09.3h                   | 4      | Morris                        | 1501         | 519        | 240               | 371               | 131                 |
| 06333N08E07.4c                   | 3      | Comm. Ed Collins Station      | 1513         | 525        | 252               | 247               | -5                  |
| 06333N08E07.5d                   | 2      | Comm. Ed Collins Station      | 1477         | 525        | 235               |                   |                     |
| 06333N08E07.5f                   | 1      | Comm. Ed Collins Station      | 1510         | 515        | 103               | 220               | 117                 |
| 06333N08E07.8d                   | 4      | Comm. Ed Collins Station      | 1495         | 520        | 275               | 231               | -44                 |
| 06333N08E34.1d                   | 5      | Coal City                     | 1785         | 560        | 310               | 317               | 7                   |
| 06333N08E36.4b                   | 2      | Diamond                       | 850          | 562        | 322               |                   |                     |
| 06333N08E36.5a                   | 1      | Diamond                       | 723          | 562        | 322               | 459               | 137                 |
| 06334N08E01.3e                   | 3      | Minooka                       | 1508         | 610        | 254               | 240               | -14                 |
| 06334N08E01.3e                   | 4      | Minooka                       | 725          | 610        | 362               | 311               | -51                 |
| 06334N08E20.2e                   | 1      | Quantum Chemical              | 1453         | 524        | 161               |                   |                     |
| 06334N08E21.3f                   | 2      | Alumax Mill Products, Inc.    | 1515         | 525        | 216               | 223               | 7                   |
| 06334N08E21.3g                   | 1      | Alumax Mill Products, Inc.    | 1540         | 525        | 211               | 213               | 2                   |
|                                  |        |                               |              |            |                   |                   |                     |

| County          | Well |                                  | Depth       | Surface    | Water level<br>elevation | Water level<br>elevation | Water level<br>changes, ft. |
|-----------------|------|----------------------------------|-------------|------------|--------------------------|--------------------------|-----------------------------|
| Location        | no.  | Owner                            | ft.         | elev.      | 1985                     | 1991                     | 1985-1991                   |
| Grundy (cont'd) |      |                                  | <i>j</i>    |            |                          |                          |                             |
| 06334N08E21.4f  | 3    | Alumax Mill Products, Inc.       | 1540        | 528        |                          | 183                      |                             |
| 06334N08E21.41  | 3    | Quantum Chemical                 | 1340        | 523        | 186                      | 105                      | -85                         |
| 06334N08E21.9c  | 2    | Quantum Chemical                 | 1405        | 526        | 142                      | 110                      | -32                         |
| 06334N08E22.6e  | 2    | Northern III. Gas Co. SNG Pit.   | 1519        | 523        | 42                       | 223                      | -32                         |
| 06334N08E22.8e  | 1    | Northern III. Gas Co. SNG Pit.   | 1511        | 523        | 42                       | 202                      | 160                         |
| 06334N08E28.5f  | 5    | Ouantum Chemical                 | 1455        | 502        | 187                      | 181                      | -6                          |
| 06334N08E34.7h  | 1    | Reichhold Chemicals, Inc.        | 706         | 510        | 425                      | 246                      | -179                        |
| 06334N08E34.7h  | 2    | Reichhold Chemicals, Inc.        | 710         | 518        | 437                      | 406                      | -31                         |
| 06334N08E35.1e  | 2    | Comm. Ed Dresden Station         | 1500        | 515        | 279                      | 286                      | -31                         |
| 06334N08E35.1g  | 1    | Comm. Ed Dresden Station         | 1499        | 519        | 254                      | 241                      | -13                         |
| 06334N08E35.4d  | 2    | General Electric <i>Co</i> .     | 788         | 533        | 254                      | 303                      | -10                         |
| 00554100155.44  | -    | General Encure Co.               | 700         | 000        |                          | 505                      |                             |
| Kane            |      |                                  |             |            |                          |                          |                             |
| 08938N07E05.2d  | 1    | Waubonsee College                | 1323        | 703        | 495                      | 466                      | -29                         |
| 08938N07E19.7e  | 4    | Sugar Grove                      | 1475        | 705        | 441                      | 429                      | -12                         |
| 08938N07E24.6h  | 21   | Aurora                           | 1447        | 670        |                          | 224                      |                             |
| 08938N07E2S.5b  | 23   | Aurora                           | 1420        | 670        | 200                      | 144                      | -56                         |
| 08938N08E01.2c  | 20   | Aurora                           | 1400        | 715        | 135                      | 46                       | -89                         |
| 08938N08E03.6g  | 5    | North Aurora                     | 1330        | 700        | 172                      | 142                      | -30                         |
| 08938N08E04.3g  | 3    | North Aurora                     | 1305        | 675        | 173                      | 148                      | -25                         |
| 08938N08E04.8d  | 4    | North Aurora                     | 1325        | 689        | 185                      | 237                      | 52                          |
| 08938N08E08.3e  | 25   | Aurora                           | 1460        | 695        | 136                      | 130                      | -6                          |
| 08938N08E13.7b  | 2    | Aurora Paperboard Co.            | 2251        | 696        | 169                      |                          |                             |
| 08938N08E13.8b  | 1    | Aurora Paperboard Co.            | 1397        | 696        | 118                      | 49                       | -69                         |
| 08938N08E15.4g  | 11   | Aurora                           | 1434        | 635        | 110                      |                          |                             |
| 08938N08EIS.Se  | 1    | Aurora Bleachery Co.             | 1276        | 648        | 268                      |                          |                             |
| 08938N08E15.5f  | 2    | Aurora Bleachery Co.             | 1368        | 650        | 155                      |                          |                             |
| 08938N08E15.6f  | 1    | Oberweiss Dairy                  | 875         | 660        | 160                      | 69                       | -91                         |
| 08938N08E16.4d  | 17   | Aurora                           | 2152        | 685        | 305                      | 305                      | 0                           |
| 08938N08E19.5a  | 19   | Aurora                           | 1424        | 685        | 115                      | 118                      | 3                           |
| 08938N08E22.7b  | 8    | Aurora                           | 1500        | 628        | 86                       |                          |                             |
| 08938N08E24.7c  | 18   | Aurora                           | 1486        | 715        | 89                       | 46                       | -43                         |
| 08938N08E29.2h  | 15   | Aurora                           | 1719        | 665        | 115                      | 76                       | -39                         |
| 08938N08E32.4f  | 4    | Montgomery                       | 1333        | 642        | 37                       | 42                       | 5                           |
| 08938N08E33.7c  | 3    | Montgomery                       | 1336        | 635        | 14                       | 57                       | 43                          |
| 08938N08E34.6b  | 8    | Montgomery                       | 1378        | 665        | 54                       | 21                       | -33                         |
| 08938N08E34.8g  | 16   | Aurora                           | 2139        | 660        | 161                      | 116                      | -45                         |
| 08939N07E05.8f  | 1    | Elburn                           | 1350        | 850        | 497                      | 494                      | -3                          |
| 08939N07E10.4f  | 1    | Broadview Academy                | 1335        | 790        | 398                      | 380                      | -18                         |
| 08939N08E02.4c  | 5    | Geneva                           | 2292        | 753        | 373                      | 359                      | -14                         |
| 08939N08E03.1b  | 2    | Geneva                           | 2217        | 678        | 271                      | 320                      | 49                          |
| 08939N08E03.5e  | 1    | Burgess Norton Mfg. Co.          | 1308        | 760        | 332                      | 346                      | 14                          |
| 08939N08E03.8g  | 3    | Geneva                           | 2300        | 759        | 102                      | 273                      | 1(1                         |
| 08939N08E09.8h  | 6    | Geneva                           | 1350        | 758        | 193                      | 357                      | 164                         |
| 08939N08E11.7e  | 7    | Geneva                           | 2001        | 730        | 269                      | 315                      | 46                          |
| 08939N08E22.3e  | 2    | Batavia                          | 2200        | 667        | 220                      | 169                      | -51                         |
| 08939N08E22.3e  | 3    | Batavia                          | 2200        | 667<br>721 | 333                      | 388                      | 55<br>15                    |
| 08939N08E23.8f  | 4    | Batavia                          | 1357        | 721        | 205<br>206               | 190<br>196               | -15                         |
| 08939N08E26.6g  | 5    | Batavia                          | 1440        | 780<br>704 | 206                      | 186                      | -20                         |
| 08939N08E33.5g  | 2    | Mooseheart Home                  | 1508        | 704<br>713 | 227                      | 181                      | -46                         |
| 08939N08E33.5g  | 3    | Mooseheart Home                  | 1386        | 713        | 239                      | 208                      | -31                         |
| 08940N06E30.5a  | 4    | Maple Park                       | 960<br>1202 | 862        | 588<br>401               | 601<br>496               | 13                          |
| 08940N07E32.8b  | 3    | Elburn<br>David Face Calf Course | 1393        | 900<br>760 | 491                      | 486                      | -5                          |
| 08940N08E24.6g  | 1    | Royal Fox Golf Course            | 1345        | 760<br>761 | 250                      | 340                      | 10                          |
| 08940N08E25.4a  | 8    | St. Charles                      | 1368        | 761        | 350                      | 340                      | -10                         |

| County                           | Well   |                                    | Depth      | Surface    | Water level<br>elevation | Water level<br>elevation | Water level<br>changes, ft. |
|----------------------------------|--------|------------------------------------|------------|------------|--------------------------|--------------------------|-----------------------------|
| Location                         | no.    | Owner                              | ft.        | elev.      | 1985                     | 1991                     | 1985-1991                   |
| Kane (cont'd)                    |        |                                    | 0          |            |                          |                          |                             |
| 08940N08E27.5a                   | 3      | St. Charles                        | 1191       | 690        | 239                      | 271                      | 32                          |
| 08940N08E27.6b                   | 4      | St. Charles                        | 1647       | 692        | 231                      | 279                      | 48                          |
| 08940N08E31.6f                   | 5      | Illinois Youth Center              | 1292       | 763        | 363                      |                          |                             |
| 08940N08E31.6h                   | 4      | Illinois Youth Center              | 1322       | 790        | 369                      | 364                      | -5                          |
| 08940N08E34.6e                   | 5      | St. Charles                        | 1713       | 764        | 224                      | 333                      | 109                         |
| 08940N08E34.6e                   | 6      | St. Charles                        | 1502       | 755        | 259                      |                          |                             |
| 08941N06E09.1g                   | 2      | Burlington                         | 1105       | 922        | 562                      |                          |                             |
| 08941N06E09.1g                   | 3      | Burlington                         | 1105       | 925        | 564                      | 576                      | 12                          |
| 08941N07E19.3d                   | 2      | Burlington Ctl Middle School       | 1022       | 1037       | 475                      |                          |                             |
| 08941N08E11.1h                   | 2      | Elgin (Slade Ave. #2)              | 1965       | 723        | 289                      | 365                      | 76                          |
| 08941N08E11.1h                   | 3      | Elgin (Slade Ave. #3)              | 1960       | 725        | 285                      | 345                      | 60                          |
| 08941N08Ell.lh                   | 4      | Elgin (Slade Ave. #4)              | 1880       | 720        | 280                      | 340                      | 60                          |
| 08941N08E11.2g                   | 5      | Elgin (Slade Ave. #5)              | 1225       | 720        |                          | 350                      |                             |
| 08941N08E11.3f                   | 6      | Elgin (Slade Ave. #6)              | 1300       | 720        | 220                      | 350                      | 130                         |
| 08941N08E12.3e                   | 1      | Simpson Co.                        | 998        | 805        | 316                      | 357                      | 41                          |
| 08941N08E16.2d                   | 704    | Elgin (4A)                         | 1345       | 831        |                          | 357                      |                             |
| 08941N08E16.4c                   | 701    | Elgin (1A)                         | 1305       | 858        |                          | 398                      |                             |
| 08941N08E16.4d                   | 702    | Elgin (2A)                         | 1353       | 861        |                          | 377                      |                             |
| 08941N08E16.7c                   | 705    | Elgin (5A)                         | 1310       | 815        |                          | 400                      |                             |
| 08941N08E23.3b                   | 1      | Elgin Mental Health Center         | 2000       | 748        | 538                      |                          |                             |
| 08942N06E03.1e                   | 7      | III. Toll Highway Comm. (M6)       | 962        | 910        | 633                      | 618                      | -15                         |
| 08942N06E21.4b                   | 5      | Hampshire                          | 818        | 878        | 618                      | 565                      | -53                         |
| Kankakee                         |        |                                    |            |            |                          |                          |                             |
| 09129N10E04.2a                   | 1      | Nat. Gas Ppl. (Holtman #1)         | 1837       | 690        | 429                      | 416                      | -13                         |
| 09130N09303.8g                   | 1      | Nat. Gas Ppl. (P. Cook #G-1)       | 1815       | 613        | 429                      | 396                      | -15                         |
| 09130N09E06.8a                   | 1      | Reddick                            | 1188       | 612        | 344                      | 289                      | -55                         |
| 09130N10E08.5a                   | 1      | Nat. Gas Ppl. (Heimburger #1)      | 2582       | 628        | 414                      | 20)                      | -55                         |
| 09130N10E16.8c                   | 1      | Nat. Gas Ppl. (J. Karcher #1)      | 1825       | 635        | 410                      | 400                      | -10                         |
| 09130N10E19.3h                   | 1      | Nat. Gas Ppl. (Ruder #1)           | 1769       | 638        | 415                      | 400                      | -10                         |
| 09130N10E28.8h                   | 6      | Herscher                           | 773        | 645        |                          | 404                      | -12                         |
| 09130N10E29.2h                   | 5      | Herscher                           | 789        | 648        | 452                      | 423                      | -29                         |
| 09130N10E30.1h                   | 1      | Nat. Gas Ppl. (Saffer #1)          | 1788       | 649        | 424                      | 409                      | -15                         |
| 09130N10E34.8f                   | 1      | Nat. Gas Ppl. (G. Clodi #1)        | 1881       | 670        | 434                      | 408                      | -26                         |
| ¥Z 1 11                          |        |                                    |            |            |                          |                          |                             |
| Kendall                          | 2      | N                                  | 226        | (00        | (0 <b>5</b>              |                          | •                           |
| 09335N06E05.6a<br>09335N06E06.2e | 3<br>2 | Newark<br>Newark                   | 336        | 690<br>((2 | 605<br>592               | 607<br>592               | 2                           |
|                                  | 2<br>1 |                                    | 287        | 663        | 583                      | 583                      | 0                           |
| 09336N07E06.1g<br>09336N07E16.5g | 1      | Fox Lawn Home Owners Wtr. Assn.    | 715<br>750 | 665<br>725 | 501                      | 476<br>482               | 10                          |
| 09336N07E27.2b                   | 1      | Ill. Division of Highways          | 750<br>550 | 725<br>590 | 405                      |                          | -19<br>10                   |
| 09336N07E28.8b                   | 4      | Hide-A-Way Lakes Inc.<br>Yorkville | 1393       | 628        | 403<br>343               | 386                      | -19<br>-30                  |
| 09336N07E31.5b                   | 4      | Hoover Outdoor Ed. Center          | 850        | 640        | 343<br>497               | 313<br>558               | -30<br>61                   |
| 09336N07E32.1e                   | 3      | Yorkville                          | 1335       | 640<br>584 |                          |                          |                             |
| 09337N08E05.5i                   | 3<br>1 | AT&T                               | 1335       | 584<br>640 | 382                      | 330                      | -52                         |
| 09337N08E05.6e                   | 2      | A1&1<br>Aurora Sanitary District   | 1332       |            | 125                      | 104                      | 21                          |
| 09337N08E05.9f                   | 2<br>1 | Caterpillar Tractor Co.            | 1325       | 628<br>661 | 135<br>123               | 104<br>97                | -31                         |
| 09337N08E06.2d                   | 3      | Caterpillar Tractor Co.            | 1384       | 661        | 123                      | 123                      | -26<br>-18                  |
| 09337N08E06.2f                   | 2      | Caterpillar Tractor Co.            | 1332       | 660        | 141                      | 110                      | -13                         |
| 09337N08E06.21<br>09337N08E17.2e | 4      | Oswego                             | 1346       | 658        | 172                      | 110                      | -02                         |
| 09337N08E17.2e                   | 4      | Oswego                             | 1378       | 640        | 203                      | 185                      | -18                         |
| 570071 (00120.011                | 0      | ~~                                 | 1070       | 510        | 200                      | 105                      | -10                         |
| Lake                             |        |                                    |            |            |                          |                          |                             |
| 09743N09E11.2a                   | 2      | Lake Barrington Shores             | 1305       | 815        | 140                      | 200                      | 60                          |
| 09743N10E14.7d                   | 1      | Kemper Insurance                   | 1400       | 796        | 161                      | 147                      | -14                         |
|                                  |        |                                    |            |            |                          |                          |                             |

|                                  | <b>11</b> 7 11 |                                                   |              | 5 (        | Water level       | Water level       | Water level              |
|----------------------------------|----------------|---------------------------------------------------|--------------|------------|-------------------|-------------------|--------------------------|
| County<br>Logation               | Well           | Owner                                             | Depth        | Surface    | elevation<br>1985 | elevation<br>1991 | changes,ft.<br>1985-1991 |
| Location                         | no.            | Owner                                             | ft.          | elev.      | 1985              | 1991              | 1985-1991                |
| Lake (cont'd)                    |                |                                                   |              |            |                   |                   |                          |
| 09743N10E15.2d                   | 2              | Kemper Insurance                                  | 1402         | 796        | 105               | 125               | 20                       |
| 09743N10E16.4d                   | 8              | Lake Zurich                                       | 1373         | 868        | 86                | 159               | 73                       |
| 09743N10E19.4h                   | 10             | Lake Zurich                                       | 1340         | 850        |                   | 170               |                          |
| 09743N10E21.5e                   | 7              | Lake Zurich                                       | 1333         | 846        | 166               |                   |                          |
| 09743N10E29.2h                   | 9              | Lake Zurich                                       | 1365         | 875        |                   | 146               |                          |
| 09743N41E09.4a                   | 8              | Vernon Hills (Well 3)                             | 1265         | 700        |                   | -81               |                          |
| 09743N11E21.3g                   | 1              | Powernail Co.                                     | 1258         | 685        | 170               | 220               | 50                       |
| 09743N11E22.6d                   | 3              | Lincolnshire                                      | 1300         | 667        | -34               | -3                | 31                       |
| 09743NIIE23.5f                   | 1              | Lincolnshire                                      | 1305         | 645        | 4                 | -11               | -15                      |
| 09743NIIE32.8f                   | 2              | Buffalo Grove                                     | 1355         | 703        | 11                | 118               | 107                      |
| 09743NIIE33.1b                   | 6              | Buffalo Grove                                     | 1355         | 675        | -100              |                   |                          |
| 09743N12E31.3c                   | 1              | Walgreen Co.                                      | 1465         | 680        | -1                |                   |                          |
| 09743N12E31.6e                   | 1              | Baxter Healthcare Corp.                           | 1456         | 685        | -47               | -56               | -9                       |
| 09743N12E33.6f                   | 1              | Kitchens of Sara Lee, Inc.                        | 1350         | 690        | -80               | 2                 | 82                       |
| 09744N09E24.5d                   | 4              | Wauconda                                          | 1264         | 792        | 293               | 303               | 10                       |
| 09744N10E12.8a                   | 9              | Mundelein                                         | 1380         | 830        |                   | 260               |                          |
| 09744N10E2S.lc                   | 10             | Mundelein                                         | 1421         | 760        |                   | -75               |                          |
| 09744N11E10.3b                   | 3              | Countryside Manor                                 | 1040         | 672        |                   | 167               |                          |
| 09744N11E19.3b                   | 606            | Mundelein (6A)                                    | 1405         | 743        | 143               | 115               | -28                      |
| 09744N11E21.7f                   | 11             | Libertyville                                      | 1490         | 703        | 132               | 118               | -14                      |
| 09744N11E28.4e                   | 12             | Libertyville                                      | 1926         | 700        | 161               | 175               | 14                       |
| 09744N11E31.4h                   | 8              | Mundelein                                         | 1383         | 730        | 168               | 65                | -103                     |
| 09744NIIE32.6a                   | 6              | Vernon Hills                                      | 1912         | 725        | 110               | 120               | 10                       |
| 09744NllE33.3g                   | 1              | Cuneo Museum Gardens                              | 1290         | 690        | 122               | 134               | 12                       |
| 09744NIIE33.5a                   | 7              | Vernon Hills                                      | 1875         | 685        | 90                | -25               | -115                     |
| 09744N12E18.3f                   | 2              | Ingrid Co.                                        | 1600         | 680        | 200               |                   |                          |
| 09744N12E21.8f                   | 2              | Lake Bluff                                        | 1804         | 680        | 310               | 346               | 36                       |
| 09744N12E32.2c                   | 1              | Owentsia Golf Club                                | 1020         | 660        | 135               |                   |                          |
| 09745N09E36.6c                   | 1              | Baxter Healthcare Corp.                           | 2010         | 810<br>700 | 315               | 250               | 10                       |
| 09745N10E15.7e                   | 6              | Round Lake Beach                                  | 1287         | 790        | 332               | 350               | 18                       |
| 09745N10E20.4h                   | 7              | Round Lake Beach                                  | 2044         | 760<br>700 | 284               | 264               | -20                      |
| 09745N10E26.2b                   | 4              | Grayslake                                         | 1354<br>1241 | 780<br>701 | 250               | 240<br>313        | -10                      |
| 09745N10E30.3d                   | 3<br>1         | Round Lake<br>Gurnee                              | 1241         | 791        | 292               | 282               | 21                       |
| 09745N11E14.5a                   | 1              | Gurnee<br>Ill. Toll Highway Comm. (M-4)           | 980          | 667<br>730 | 336               | 282<br>341        | 5                        |
| 09745N11E16.2g<br>09745N11E28.1e | 1              | Gurnee                                            | 980<br>1450  | 730        | 265               | 541               | 5                        |
| 09745N11E20.1e                   | 2              | Wildwood                                          | 1430         | 785        | 203               | 215               | 13                       |
| 09745N11E30.4g                   | 4              | Wildwood                                          | 1320         | 785        | 202               | 213               | -14                      |
| 09745N11E30.4g                   | 7              | Wildwood                                          | 1320         | 813        | 24)               | 233               | -14                      |
| 09745N11E31.5g                   | 3              |                                                   | 1320         | 710        | 231               | 223               | -2                       |
|                                  |                | Baxter Healthcare Corp.                           |              |            |                   | 229               |                          |
| 09745NIIE36.7d<br>09746N12E14.6g | 1              | Baxter Healthcare Corp.<br>U.S. Geological Survey | 1421<br>1250 | 710<br>585 | 395<br>347        | 351               | -102<br>4                |
| 09746N12E14.0g                   | 1              | Zion                                              | 1100         | 633        | 333               | 336               | 3                        |
| 09740IN12E21.1D                  | 1              | 21011                                             | 1100         | 055        | 555               | 550               | 5                        |
| LaSalle                          |                |                                                   |              |            |                   |                   |                          |
| 09931N01E24.6e                   | 4              | Lostant                                           | 1881         | 700        |                   | 442               |                          |
| 09931N03E22.8h                   | 1              | Kangley                                           | 542          | 632        |                   | 446               |                          |
| 09932N01E04.7b                   | 1              | Cedar Point                                       | 1749         | 653        |                   | 350               |                          |
| 09932N02E05.4h                   | 2              | Matthiesen State Park                             | 304          | 640        |                   | 560               |                          |
| 09932N05E17.1a                   | 2              | Comm. Ed Lasalle Station                          | 1620         | 711        |                   | 479               |                          |
| 09932N05E17.2f                   | 1              | Comm. Ed Lasalle Station                          | 1629         | 712        |                   | 438               |                          |
| 09933N01E08.2f                   | 8              | Peru                                              | 2764         | 638        |                   | 390               |                          |
| 09933N01E16.8a                   | 4              | Peru                                              | 1506         | 460        | 458               | 459               | 1                        |
| 09933N01E16.8a                   | -<br>-<br>6    | Peru                                              | 2665         | 540        | 400               | 382               | -18                      |
| 09933N01E20.1h                   | 7              | Peru                                              | 2591         | 460        | 400               | 385               | -15                      |
| 0770011011240.1H                 | '              | 1 11 14                                           | 2071         | 100        | 100               | 200               | -15                      |

| _                |        |                                                                  |              |            | Water level | Water level | Water level |
|------------------|--------|------------------------------------------------------------------|--------------|------------|-------------|-------------|-------------|
| County           | Well   |                                                                  | Depth        | Surface    | elevation   | elevation   | changes,ft. |
| Location         | no.    | Owner                                                            | ft.          | elev.      | 1985        | 1991        | 1985-1991   |
| LaSalle (cont'd) |        |                                                                  |              |            |             |             |             |
| 09933N01E20.2h   | 5      | Pern                                                             | 2601         | 465        | 387         | 389         | 2           |
| 09933N01E36.6g   | 3      | Oglesby                                                          | 2821         | 630        | 406         | 400         | -6          |
| 09933N01E36.6g   | 4      | Oglesby                                                          | 2795         | 630        | 400         | 390         | -11         |
| 09933N02E09.7b   | 2      | Utica                                                            | 1078         | 470        | 401         | 500         | -11 26      |
| 09933N02E09.8b   | 1      | Utica                                                            | 618          | 470        | 4/4         | 510         | 20          |
| 09933N02E21.3g   | 2      | Starved Rock State Park                                          | 475          | 400        |             | 466         |             |
| 09933N03E01.6b   | 7      | Ottawa                                                           | 1187         | 489        |             | 436         |             |
| 09933N03E01.00   | 11     | Ottawa                                                           | 1203         | 488        | 426         | 450         |             |
| 09933N03E01.8a   | 8      | Ottawa                                                           | 1203         | 489        | 419         | 429         | 10          |
| 09933N03E02.4a   | 10     | Ottawa (City Well #9)                                            | 1220         | 495        | 439         | 42)         | 10          |
| 09933N03E03.2b   | 10     | American Hoechst Film Div.                                       | 1220         | 490        | 416         | 457         | 41          |
| 09933N03E03.5a   | 2      | American Hoechst Film Div.                                       | 1225         | 490        | 413         | 430         | 41          |
| 09933N03E12.2h   | 12     | Ottawa                                                           | 1200         | 490        | 415         | 434         | 17          |
| 09933N03E16.2b   | 5      | Libbey-Owens-Ford Glass Co.                                      | 1200         | 492        |             | 333         |             |
|                  | 5      | Naplate                                                          | 420          | 470        | 374         | 333<br>437  | 63          |
| 09933N03E16.2f   | 2      | Buffalo Rock State Park                                          | 420          |            | 374<br>452  | 457         | 65<br>5     |
| 09933N03E17.7c   | 2<br>5 | Marseilles                                                       | 1450         | 542<br>670 |             | 437         | 5<br>72     |
| 09933N04E13.2f   |        | Marseilles                                                       | 850          | 498        | 421         | 493         | 12          |
| 09933N04E13.3c   | 3<br>2 |                                                                  |              |            | 250         |             | 4           |
| 09933N04E15.7e   | 2<br>1 | General Electric Plastic Plant<br>General Electric Plastic Plant | 1292<br>1253 | 480<br>480 | 356         | 352<br>400  | -4<br>-10   |
| 09933N04E15.7f   |        |                                                                  |              |            | 410         |             |             |
| 09933N04E15.8f   | 3      | General Electric Plastic Plant<br>Ottawa Steel & Wire            | 1243<br>442  | 490<br>480 | 366         | 387<br>401  | 21          |
| 09933N04E16.3g   | 1      |                                                                  |              |            | 398         |             | 3           |
| 09933N04E16.6g   | 1      | Garvey International                                             | 440          | 480        | 410         | 414<br>406  | 12          |
| 09933N05E07.6a   | 4      | Marseilles                                                       | 1466         | 688        | 419         |             | -13         |
| 09933N05E20.4e   | 1      | Kaiser Estech                                                    | 360          | 496        | 441         | 441         | 0           |
| 09933N05E21.5c   | 1      | Texas Gulf                                                       | 570          | 490        | 439         | 420         | -19         |
| 09933N05E24.8c   | 1      | Seneca                                                           | 700          | 510        | 420         | 418         |             |
| 09933N05E24.8c   | 2      | Seneca                                                           | 704          | 510        | 430         |             | •           |
| 09934N01E05.1h   | 15     | Northern III. Gas Co.                                            | 1007         | 678<br>(7( | 582         | 584         | 2           |
| 09934N01E05.2h   | 9      | Northern Ill. Gas Co.                                            | 1022         | 676        | 580         | 581         | 1           |
| 09934N03E35.7a   | 1      | Land & Water Association                                         | 540          | 612        |             | 472         |             |
| 09934N04E09.4d   | 2      | Wedron Silica Co.                                                | 242          | 500        |             | 340         |             |
| 09934N04E09.4g   | 1      | Wedron Silica Co.                                                | 261          | 545        |             | 470         |             |
| 09934N04E25.2b   | 1      | Illinois Prairie Estates                                         | 681          | 760        |             | 476         |             |
| 09934N05E02.2i   | 1      | AT&T                                                             | 1348         | 770        | 511         | 510         | -1          |
| 09934N05E02.3h   | 2      | AT&T                                                             | 1353         | 770        | 512         | 502         | -10         |
| 09935N01E34.8g   | 1      | Northern III. Gas Co.                                            | 1292         | 675        | 590         | 592         | 2           |
| 09935N05E08.6b   | 1      | Sheridan Correctional Ctr.                                       | 885          | 591        | 573         | 571         | -2          |
| 09935N05E17.7h   | 3      | Sheridan Correctional Ctr.                                       | 900          | 592        | 565         | 562         | -3          |
| 09935N05E20.1b   | 1      | Girl Scouts - Camp Merrybrook                                    | 300          | 610        | -           | 565         |             |
| 09936N01E27.4a   | 1      | Del Monte Corp.                                                  | 1384         | 730        | 591         | 605         | 14          |
| 09936N01E27.5b   | 2      | Del Monte Corp.                                                  | 1385         | 740        | 580         | 570         | -10         |
| 09936N01E29.2d   | 6      | Mendota                                                          | 1408         | 771        | 570         | 561         | -9          |
| 09936N01E32.1a   | 4      | Mendota                                                          | 1360         | 740        | 585         | 572         | -13         |
| 09936N01E33.3g   | 3      | Mendota                                                          | 1377         | 740        | 566         | 574         | 8           |
| 09936N03E18.4d   | 2      | Earlville                                                        | 150          | 700        |             | 640         |             |
| 09936N03E18.4d   | 3      | Earlville                                                        | 625          | 703        | 673         | 659         | -14         |
| 09936N05E08.4g   | 3      | Lake Holiday Utilities                                           | 664          | 670        |             | 638         |             |
| 09936N05E08.5g   | 1      | Lake Holiday Utilities                                           | 663          | 670        |             | 620         |             |
| Lee              |        |                                                                  |              |            |             |             |             |
| 10319NIIE09.1a   | 2      | Sublette                                                         | 771          | 920        |             | 672         |             |
| 10322NIIE27.5c   | 1      | Ash ton                                                          | 545          | 810        |             | 675         |             |
| 10322NIIE27.6f   | 3      | Ashton                                                           | 1212         | 862        |             | 672         |             |
| 10322NIIE29.2e   | 1      | Funk Seed Co.                                                    | 300          | 825        |             |             |             |
|                  |        |                                                                  |              |            |             |             |             |

| County              | Well   |                                                              | Depth       | Surface    | Water level<br>elevation | Water level<br>elevation | Water level<br>changes,ft. |
|---------------------|--------|--------------------------------------------------------------|-------------|------------|--------------------------|--------------------------|----------------------------|
| Location            | no.    | Owner                                                        | ft.         | elev.      | 1985                     | 1991                     | 1985-1991                  |
| T ( dl)             |        |                                                              | <i>j</i>    |            |                          |                          |                            |
| <i>Lee</i> (cont'd) |        | W/ ( D ) L                                                   |             | 0.45       |                          |                          |                            |
| 10337N01E08.7d      | 4<br>5 | West Brooklyn                                                | 676         | 945        |                          | 704                      |                            |
| 10337N01E08.8c      | 5<br>2 | West Brooklyn                                                | 680<br>1052 | 945<br>045 |                          | 665                      |                            |
| 10337N02E10.1c      | 2      | Paw Paw<br>Paw Paw                                           | 1053        | 945        |                          | 751                      |                            |
| 10337N02E10.2b      | 2      | raw raw<br>Steward                                           | 1018        | 928<br>922 |                          | 726                      |                            |
| 10339N02E20.1h      | 2      | Stewaru                                                      | 400         | 822        |                          |                          |                            |
| McHenry             |        |                                                              |             |            |                          |                          |                            |
| 11143N08E05.4g      | 2      | Crystal Lake                                                 | 1218        | 917        | 467                      |                          |                            |
| 11143N08E06.4a      | 6      | Crystal Lake                                                 | 1295        | 892        | 327                      | 310                      | -17                        |
| 11143N08E08.2c      | 8      | Crystal Lake                                                 | 1300        | 900        | 380                      | 406                      | 26                         |
| 11143N08E12.2d      | 4      | Cary                                                         | 1345        | 855        | 341                      | 350                      | 9                          |
| 11143N08E14.1e      | 6      | Cary                                                         | 1300        | 840        | 322                      | 332                      | 10                         |
| 11143N08E20.4c      | 5      | Lake-in-the-Hills                                            | 910         | 870        | 415                      | 471                      | 56                         |
| 11143N08E21.3a      | 1      | Material Service Corp.                                       | 1262        | 835        | 433                      | 433                      | С                          |
| 11143N08E32.4C      | 1      | The Golf Club of Illinois                                    | 1295        | 910        |                          | 423                      |                            |
| 11143N08E33.4h      | 4      | Algonquin                                                    | 955         | 870        | 421                      | 491                      | 70                         |
| 11143N08E34.1e      | 2      | Algonquin                                                    | 1255        | 860        | 308                      |                          |                            |
| 11144N05E35.5h      | 1      | Arnold Engineering Co.                                       | 846         | 818        | 668                      | 661                      | -7                         |
| 11144N08E33.5a      | 7      | Crystal Lake                                                 | 1400        | 930        | 344                      | 365                      | 21                         |
| 11145N08E10.7c      | 8      | Morton International                                         | 1160        | 835        | 333                      | 368                      | 35                         |
| 1114SN08E10.8a      | 2      | Modine Mfg. Co.(owner #1)                                    | 1200        | 843        | 377                      | 342                      | -35                        |
| 11145N08E10.8d      | 7      | Morton International                                         | 1161        | 850        | 395                      | 390                      | -5                         |
| 11145N08E15.8h      | 3      | Modine Mfg. Co.(owner #2)                                    | 1220        | 835        | 381                      | 290                      | -91                        |
| 11146N05E33.8a      | 2      | Dean Foods Co.(owner #1)                                     | 1783        | 880        | 640                      | 618                      | -22                        |
| 11146N05E33.8b      | 4      | Dean Foods Co.                                               | 825         | 880        |                          | 639                      |                            |
| Ogle                |        |                                                              |             |            |                          |                          |                            |
| 14124N10E24.2h      | 2      | Coram. Ed Byron Station                                      | 1500        | 875        | 635                      | 627                      | -8                         |
| 14124N10E24.4h      | 1      | Comm. Ed Byron Station                                       | 1500        | 860        | 631                      | 021                      | 0                          |
| 14124N11E01.2b      | 1      | Stillman Valley                                              | 300         | 733        |                          | 696                      |                            |
| 14124N11E01.3a      | 2      | Stillman Valley                                              | 460         | 747        |                          | 693                      |                            |
| 14140N01E12.6b      | 1      | Hillcrest                                                    | 387         | 825        |                          | 823                      |                            |
| 14140N01E23.2d      | 5      | Rochelle                                                     | 502         | 810        |                          | 742                      |                            |
| 14140N01E23.3b      | 1      | Del Monte Corp., Plant 110                                   | 494         | 793        | 728                      | 602                      | -126                       |
| 14140N01E24.5h      | 7      | Rochelle                                                     | 925         | 795        | 716                      | 710                      | -6                         |
| 14140N01E24.7a      | 4      | Rochelle                                                     | 1450        | 793        | 725                      | 693                      | -32                        |
| 14140N01E25.2h      | 9      | Rochelle                                                     | 888         | 785        | 715                      | 705                      | -10                        |
| 14140N01E25.3f      | 6      | Rochelle                                                     | 867         | 800        | 717                      | 726                      | 9                          |
| 14140N01E26.5h      | 3      | Del Monte Corp., Plant 109                                   | 420         | 778        | 603                      | 698                      | 95                         |
| 14140N02E21.1e      | 1      | Hughes Hybrid Company                                        | 452         | 840        |                          | 773                      |                            |
| 14140N02E23.1f      | 2      | Creston                                                      | 737         | 905        | 774                      | 792                      | 18                         |
| 14140N02E23.2f      | 3      | Creston                                                      | 724         | 905        |                          | 704                      |                            |
| 14140N02E30.3b      | 8      | Rochelle                                                     | 935         | 793        | 690                      | 672                      | -18                        |
| Will                |        |                                                              |             |            |                          |                          |                            |
| 19732N09E01.6c      | 3      | Lakewood Shores                                              | 700         | 562        |                          | 292                      |                            |
| 19732N09E01.6d      | 4      | Lakewood Shores                                              | 700         | 564        |                          | 284                      |                            |
| 19732N09E05.6d      | 3      | Braidwood                                                    | 1733        | 560        | 230                      | 146                      | -84                        |
| 19732N09E08.5c      | 1      | Braidwood                                                    | 1025        | 575        | 230                      | 130                      | -105                       |
| 19732N09E19.3h      | 1      | Comm. Ed. Braidwood Station                                  | 1753        | 599        | 255<br>360               | 355                      | -105                       |
| 19732N09E19.5h      | 2      | Comm. Ed. Braidwood Station<br>Comm. Ed. Braidwood (Tr Or 1) | 1690        | 594        | 372                      | 000                      | 5                          |
| 19732N10E36.2d      | 3      | Illinois Youth Center                                        | 1700        | 610        | 012                      | 341                      |                            |
| 19733N09E01.5e      | 5      | Joliet Army Ammunition Plant                                 | 935         | 570        | 252                      | 250                      | -2                         |
| 19733N09E25.4g      | 1      | CPI Inorganics                                               | 708         | 565        | 232                      | 200                      | -                          |
| 19733N09E25.6b      | 2      | Wilmington                                                   | 1566        | 546        | 2.0                      | 203                      |                            |
|                     | -      |                                                              | 1000        | 2.0        |                          |                          |                            |

| County         | Well |                              | Depth    | Surface | Water level<br>elevation | Water level<br>elevation | Water level<br>changes, ft. |
|----------------|------|------------------------------|----------|---------|--------------------------|--------------------------|-----------------------------|
| Location       | no.  | Owner                        | ft.      | elev.   | 1985                     | 1991                     | 1985-1991                   |
|                |      |                              | <b>j</b> |         |                          |                          |                             |
| Will (cont'd)  |      |                              |          |         |                          |                          |                             |
| 19733N09E36.7h | 3    | Wilmington                   | 1578     | 530     | 263                      |                          |                             |
| 19734N09E03.1a | 4    | Amoco Chemical Corp.         | 1415     | 570     | -6                       | -39                      | -33                         |
| 19734N09E09.4a | 1    | Channahon                    | 765      | 570     | 294                      | 206                      | -88                         |
| 19734N09E10.1h | 2    | Amoco Chemical Corp.         | 1405     | 568     | 4                        | -60                      | -64                         |
| 19734N09E11.2d | 2    | Stepan Chemical Co.          | 1402     | 520     |                          | -10                      |                             |
| 19734N09E11.2e | 3    | Stepan Chemical Co.          | 1410     | 525     |                          | -91                      |                             |
| 19734N09E11.7g | 1    | Amoco Chemical Corp.         | 1422     | 569     | -5                       |                          |                             |
| 19734N09E11.8f | 3    | Amoco Chemical Corp.         | 1400     | 575     | -8                       | -20                      | -12                         |
| 19734N09E21.2d | 1    | Mobil Chemical Corp.         | 1573     | 545     | 300                      | 245                      | -55                         |
| 19734N09E21.8a | 2    | Van Den Bergh Foods Co.      | 1555     | 530     | 240                      | 230                      | -10                         |
| 19734N09E21.8b | 1    | Van Den Bergh Foods Co.      | 1555     | 530     | 140                      | 110                      | -30                         |
| 19734N09E25.5a | 8    | Joliet Army Ammunition Plant | 1641     | 606     | 251                      |                          |                             |
| 19734N09E25.5d | 9    | Joliet Army Ammunition Plant | 1603     | 590     | 230                      | 225                      | -5                          |
| 19734N09E25.5h | 10   | Joliet Army Ammunition Plant | 1569     | 591     |                          | 235                      |                             |
| 19734N09E28.5h | 1    | Dow Chemical Co.             | 1605     | 534     | 249                      | 205                      | -44                         |
| 19734N09E29.2d | 2    | Dow Chemical Co.             | 800      | 523     | 255                      |                          |                             |
| 19734N09E34.7d | 2    | Hager Wood Preserving        | 1593     | 530     | 200                      | 200                      | 0                           |
| 19734N09E35.5a | 1    | Joliet Army Ammunition Plant | 1598     | 539     | 214                      |                          |                             |
| 19734N09E35.8a | 2    | Joliet Army Ammunition Plant | 1612     | 532     | 242                      | 242                      | 0                           |
| 19734N09E36.5a | 6    | Joliet Army Ammunition Plant | 1653     | 578     | 243                      | 213                      | -30                         |
| 19734N09E36.Se | 7    | Joliet Army Ammunition Plant | 1649     | 601     | 249                      | 246                      | -3                          |
| 19734N10E07.1a | 1    | Liquid Carbonic Corp.        | 1630     | 620     | 65                       | 45                       | -20                         |
| 19734N10E07.5a | 1    | Peoples Gas SNG Plant        | 1581     | 609     | 56                       | 49                       | -7                          |
| 19734N10E07.6b | 2    | Peoples Gas SNG Plant        | 1597     | 609     | 49                       | 40                       | -9                          |
| 19734N10E31.7a | 12   | Joliet Army Ammunition Plant | 1709     | 625     | 241                      |                          |                             |
| 19735N09E01.3e | 11   | Joliet (11D, Gael Drive)     | 1623     | 619     |                          | -216                     |                             |
| 19735N09E09.3c | 2    | Shorewood                    | 1499     | 605     | 115                      | -5                       | -120                        |
| 19735N09E10.3a | 2    | Days Inn                     | 1556     | 570     | 20                       | -30                      | -50                         |
| 19735N09Ell.lb | 10   | Joliet (10D, Essington Rd)   | 1572     | 610     | 88                       | -139                     | -227                        |
| 19735N09E25.1e | 3    | Caterpillar Tractor Co.      | 1556     | 547     | -63                      |                          |                             |
| 19735N10E02.8b | 4    | Joliet (4D, Williamson Ave)  | 1608     | 558     |                          | -277                     |                             |
| 19735N10E03.4e | 3    | Joliet Correctional Center   | 1600     | 560     | -150                     | -148                     | 2                           |
| 19735N10E03.5e | 2    | Joliet Correctional Center   | 1550     | 549     | -149                     | -140                     | 9                           |
| 19735N10E04.2h | 1    | Sheffield Steel              | 1595     | 553     | -93                      | -42                      | 51                          |
| 19735N10E07.4b | 9    | Joliet (9D, Campbell St)     | 1671     | 647     | -73                      | -206                     | -133                        |
| 19735N10E09.1d | 1    | Joliet (ID, Ottawa St)       | 1621     | 536     | -114                     | -130                     | -16                         |
| 19735N10E11.7g | 1    | EJ & E Railroad              | 1589     | 560     |                          | -30                      |                             |
| 19735N10E14.5d | 1    | Ivex Corp.                   | 1639     | 593     | -107                     |                          |                             |
| 19735N10E14.6h | 5    | Joliet (SD, Washington St)   | 1608     | 564     |                          | -188                     |                             |
| 19735N10E16.2h | 604  | Joliet (Des Plaines St)      | 1575     | 531     | -85                      | -93                      | -8                          |
| 19735N10E16.5c | 3    | Joliet (3D, Jasper St)       | 1565     | 537     | -1                       | -241                     | -240                        |
| 19735N10E19.2b | 4    | Comm. Ed Sta. 9, Units 7,8   | 1525     | 523     | -141                     | -182                     | -41                         |
| 19735N10E20.6a | 2    | Comm. Ed Sta. 9, Units 7,8   | 1505     | 536     | -154                     | -137                     | 17                          |
| 19735N10E20.7g | 2    | Rockdale                     | 1586     | 556     | -112                     |                          |                             |
| 19735N10E21.4b | 2    | American Cyanamid Co.        | 1612     | 583     |                          |                          | 0                           |
| 19735N10E22.8g | 1    | Joliet Equipment             | 1608     | 569     | 69                       | 256                      | 187                         |
| 19735N10E29.8c | 5    | Olin Co.                     | 1490     | 567     | -136                     |                          |                             |
| 19735N10E29.8h | 5    | Comm. Ed Station 9           | 1505     | 527     |                          | -54                      |                             |
| 19735N10E30.lc | 4    | Olin Co.                     | 1555     | 583     | -211                     |                          |                             |
| 19735N10E30.1e | 1    | Olin Co.                     | 1520     | 548     | -232                     | -323                     | -91                         |
| 19735N10E30.1e | 2    | Olin Co.                     | 1495     | 550     | -229                     | -290                     | -61                         |
| 19735N10E30.2h | 3    | Comm. Ed Sta. 9, Units 7,8   | 1525     | 510     |                          | 96                       |                             |
| 19735N10E30.6e | 2    | Caterpillar Tractor Co.      | 1543     | 546     | -129                     | -189                     | -60                         |
| 19735N10E30.7f | 1    | Caterpillar Tractor Co.      | 1560     | 544     | -74                      | -106                     | -32                         |
| 19735NIIE05.7h | 8    | Joliet (8D, Hadley VaUey)    | 1660     | 648     |                          | -244                     |                             |
|                |      |                              |          |         |                          |                          |                             |

| County                           | Well     |                                          | Depth        | Surface    | Water level<br>elevation | Water level<br>elevation | Water level<br>changes, fi. |
|----------------------------------|----------|------------------------------------------|--------------|------------|--------------------------|--------------------------|-----------------------------|
| Location                         | no.      | Owner                                    | fi.          | elev.      | 1985                     | 1991                     | 1985-1991                   |
|                                  |          |                                          |              |            |                          |                          |                             |
| Will (cont'd)<br>19735N11E08.8h  | 7        | Jaliet (7D. Hadley Valley)               | 1701         | 674        |                          | 122                      |                             |
|                                  | 7<br>4   | Joliet (7D, Hadley Valley)<br>Plainfield | 1701<br>1443 | 620        | 38                       | -133                     | 110                         |
| 19736N09E04.4a                   | 4        | Plainfield                               | 1445         | 612        | 38<br>34                 | -81<br>-78               | -119                        |
| 19736N09E10.7d<br>19736N09E25.6d | 12       | Joliet (12D, Homart Site)                | 1461         | 602        | 34                       | -78<br>-106              | -112                        |
| 19736N109E25.00                  | 12       | Comm. Ed Station 18                      | 1500         | 587        | -88                      | -100<br>-93              | 5                           |
| 19736N10E02.71                   | 3        | Coram. Ed Station 18                     | 1500         | 590        | -00<br>-64               | -93<br>-64               | -5<br>0                     |
| 19736N10E02.8h                   | 2        | Comm. Ed Station 18                      | 1507         | 590<br>590 | -04<br>-67               | -04                      | U                           |
| 19736N10E02.8h                   | 4        | Romeoville                               | 1524         | 670        | -07<br>-41               | -149                     | -108                        |
| 19736N10E16.4e                   | 3        | Lewis University                         | 1523         | 666        | -41                      | -78                      | -100                        |
| 19736N10E21.3a                   | 6        | Stateville Correctional Center           | 1611         | 642        | -105                     | -233                     | -128                        |
| 19736N10E27.7b                   | 1        | Met. Water Recl. Dist.                   | 852          | 547        | -71                      | -88                      | -123                        |
| 19736N10E28.1b                   | 1        | Alcan Ingot and Powder                   | 1546         | 563        | -98                      | -133                     | -35                         |
| 19736N10E28.6f                   | 4        | Stateville Correctional Center           | 1566         | 640        | -90                      | -157                     | - <b>6</b> 7                |
| 19736N10E33.6h                   | 1        | Nash Brothers                            | 1558         | 593        | -94                      | -132                     | -38                         |
| 19736NIIE31.8a                   | 6        | Joliet (6D, Hadley Valley)               | 1656         | 642        | -87                      | -152                     | -67                         |
| 19737N09E12.8c                   | 21       | Naperville                               | 1441         | 645        | -07                      | -45                      | -120                        |
| 19737N10E25.7a                   | 3        | Uno-Ven, North Plant                     | 1501         | 600        | 15                       | -44                      | -120                        |
| 19737N10E25.7c                   | 2        | Uno-Ven, North Plant                     | 1456         | 590        |                          | -44                      |                             |
| 19737N10E33.1h                   | 2        | Romeoville                               | 1520         | 640        | -40                      | -152                     | -112                        |
| 19737N10E35.3c                   | 1        | Uno-Ven, South Plant                     | 1320         | 585        | -40<br>-74               | -168                     | -112<br>-94                 |
| 19737N10E35.3c                   | 2        | Uno-Ven, South Plant                     | 1460         | 585<br>585 | -86                      | -183                     | -94<br>-97                  |
| 1975/MI0E55.50                   | 2        | Ono-ven, South Flant                     | 1400         | 303        | -00                      | -165                     | -97                         |
| Winnebago                        |          |                                          |              |            |                          |                          |                             |
| 20143N02E17.7h                   | 36       | Rockford (Unit Well 36)                  | 1505         | 864        | 585                      | 558                      | -27                         |
| 20144N01E02.3b                   | 3        | Rockford (Unit Well 3)                   | 1127         | 760        | 505                      | 635                      | -21                         |
| 20144N01E02.55                   | 20       | Rockford (Unit WeU 20)                   | 1200         | 735        | 652                      | 615                      | -37                         |
| 20144N01E0J.10                   | 1        | Essex International Inc.                 | 1150         | 740        | 690                      | 685                      | -5                          |
| 20144N01E12.6b                   | 1        | Ingersoll Milling Machine Co.            | 729          | 746        | 698                      | 663                      | -35                         |
| 20144N01E12.00                   | 1        | Dean Foods Co.                           | 1125         | 740        | 639                      | 643                      | -33                         |
| 20144N01E15.5c                   | 22       | Rockford (Unit Well 22)                  | 1381         | 760        | 656                      | 633                      | -23                         |
| 20144N01E17.2d<br>20144N01E20.7f | 21       | Rockford (Unit Well 21)                  | 1205         | 820        | 657                      | 648                      | -23                         |
| 20144N01E20.71                   | 15       | Rockford (Unit Well 15)                  | 1355         | 810        | 621                      | 594                      | -27                         |
| 20144N01E23.6d                   | 801      | Rockford (Beattie Pk/Obs WeU)            | 1300         | 708        | 693                      | 686                      | -7                          |
| 20144N01E25.0u                   | 1        | Reed-Chatwood, Inc.                      | 300          | 705        | 643                      | 665                      | 22                          |
| 20144N01E27.1e                   | 18       | Rockford (Unit Well 18)                  | 1380         | 820        | 045                      | 634                      |                             |
| 20144N01E28.SC                   | 10       | Muller-Pinehurst Dairy                   | 482          | 760        | 729                      | 034<br>726               | -3                          |
| 20144N01E33.8f                   | 2        | Muller-Pinehurst Dairy                   | 465          | 759        | 724                      | 720                      | -4                          |
| 20144N01E33.6h                   | 4        | Rockford (Unit WeU 4)                    | 1219         | 730        | 634                      | 647                      | -4                          |
| 20144N01E34.0h                   | 2        | National Business & Ind. Ctre.           | 1140         | 731        | 677                      | 047                      | 15                          |
| 20144N01E55.21<br>20144N02E03.4c | 30       | Rockford (Unit Well 30)                  | 1325         | 905        | 599                      | 578                      | -21                         |
| 20144N02E05.4c                   |          | Woodward Governor Co. (Well 2)           | 1323         | 725        | 697                      | 700                      | -21                         |
| 20144N02E07.7e                   | 29       | Rockford (Unit Well 29)                  | 1357         | 845        | 595                      | 597                      | 2                           |
| 20144N02E08.2g<br>20144N02E09.3a | 25       | Rockford (Unit Well 25)                  | 1290         | 878        | 615                      | 610                      | -5                          |
|                                  | 23<br>31 | Rockford (Unit Well 31)                  | 1290         | 880        | 592                      | 010                      | -3                          |
| 20144N02E14.5d<br>20144N02E16.2a | 27       | Rockford (Unit Well 27)                  | 1303         | 840        | 592<br>575               | 569                      | -6                          |
| 20144N02E10.2a<br>20144N02E17.6g | 17       | Rockford (Unit Well 17)                  | 1195         | 785        | 645                      | 307                      | -0                          |
| 0                                |          | Rockford (Unit Well 5)                   |              |            |                          | 600                      | 10                          |
| 20144N02E18.7a<br>20144N02E20.4b | 5        | Rockford (Unit Well 13)                  | 1312<br>1457 | 792<br>835 | 610<br>594               | 600<br>593               | -10<br>-1                   |
| 20144N02E20.4h                   | 13       | Best Western Clock Tower Inn             | 860          |            | 594<br>650               | 593                      | -1<br>-38                   |
| 20144N02E23.1a                   | 3        | Rockford Park District                   |              | 818<br>793 | 050                      | 612<br>598               | -38                         |
| 20144N02E25.7g                   | 1        | Rockford (Unit Well 26)                  | 1185         |            | (20                      |                          | 2                           |
| 20144N02E28.Sh                   | 26       | Rockford (Unit Well 10)                  | 1326         | 835<br>865 | 630                      | 632<br>599               | 2                           |
| 20144N02E29.3a                   | 10       | Rockford (Unit Well 6)                   | 1426         | 865        | 606                      | 588                      | -18                         |
| 20144N02E31.7f                   | 6        | Rockford (Unit Well 16)                  | 1372         | 790        | (00                      | 652<br>502               | 0                           |
| 20144N02E32.4a                   | 16       | Cherry Valley                            | 1310         | 840        | 600<br>(75               | 592<br>(70               | -8                          |
| 20144N02E35.5e                   | 3        |                                          | 682          | 800        | 675                      | 670                      | -5                          |

| County<br>Location | Well<br>no. | Owner                          | Depth<br>ft. | Surface<br>elev. | Water level<br>elevation<br>1985 | Water level<br>elevation<br>1991 | Water level<br>changes,ft.<br>1985-1991 |
|--------------------|-------------|--------------------------------|--------------|------------------|----------------------------------|----------------------------------|-----------------------------------------|
| Winnebago (cont'd) |             |                                |              |                  |                                  |                                  |                                         |
| 20144N02E35.6h     | 2           | Cherry Valley                  | 1206         | 800              |                                  | 655                              |                                         |
| 20144N02E35.8e     | 1           | Cherry Valley                  | 1201         | 800              | 648                              | 648                              | 0                                       |
| 20145N02E33.3a     | 4           | Loves Park                     | 1313         | 888              | 682                              | 680                              | -2                                      |
| 20145N02E34.4g     | 3           | Loves Park                     | 863          | 885              | 845                              | 845                              | 0                                       |
| 20146N01E24.8a     | 6           | Rockton                        | 728          | 828              | 728                              | 718                              | -10                                     |
| 20146N02E05.7d     | 3           | Wis. Pwr & Lght Co. (S Beloit) | 1200         | 745              | 706                              | 692                              | -14                                     |
| 20146N02E06.Sq     | 5           | Wis. Power & Light Co.         | 1225         | 779              | 709                              | 691                              | -18                                     |
| 20146N02E15.5b     | 1           | Colt Industries                | 301          | 820              | 774                              | 775                              | 1                                       |
| 20146N02E28.8b     | 1           | North Park Public Water Dist.  | 780          | 750              |                                  | 686                              |                                         |
| 20146N02E28.8b     | 2           | North Park Public Water Dist.  | 780          | 750              |                                  | 638                              |                                         |

#### REFERENCES

- Burch, S.L. 1991. The New Chicago Model: A Reassessment of the Impacts of Lake Michigan Allocations on the Deep Bedrock Aquifers in Northeastern Illinois. Illinois State Water Survey Research Report 119, 52p.
- Cartwright, K. 1983. Classification of Hydrostratigraphic Units in Illinois. Illinois State Geological Survey Draft Memorandum, Open File. Champaign.
- Foley, F.C., and H.F. Smith. 1954. Ground-Water Recharge of a Deeply Buried Artesian Aquifer in Illinois and Wisconsin, U.SA. International Association Scientific Hydrology, Publication 37, Book 11. Assembly of Rome (Gentlerugge), Belgium.
- Sasman, R.T. 1965. *Ground-Water Pumpage in Northeastern Illinois Through 1962*. Illinois State Water Survey Report of Investigation 50, 31p.
- Sasman, R.T., and W.H. Baker, Jr. 1966. Ground-Water Pumpage in Northwestern Illinois Through 1963. Illinois State Water Survey Report of Investigation 52, 33p.
- Sasman, R.T., W.H. Baker, Jr., and W.P. Patzer. 1962. Water-Level Decline and Pumpage During 1961 in Deep Wells in the Chicago Region, Illinois. Illinois State Water Survey Circular 85, 32p.
- Sasman, R.T., C.R. Benson, G.L. Dzurisin, and N.E. Risk. 1973. Water-Level Decline and Pumpage in Deep Wells in Northern Illinois, 1966-1971. Illinois State Water Survey Circular 113, 41p.
- Sasman, R.T., C.R. Benson, G.L. Dzurisin, and N.E. Risk. 1974. *Ground-Water Pumpage in Northern Illinois, 1960-1970.* Illinois State Water Survey Report of Investigation 73, 45p.
- Sasman, R.T., C.R. Benson, R.S. Ludwigs, and T.L. Williams. 1982. Water-Level Trends, Pumpage, and Chemical Quality in the Cambrian and Ordovician Aquifer in Illinois, 1971-1980. Illinois State Water Survey Circular 154, 64p.
- Sasman, R.T., C.R. Benson, J.S. Mende, N.F. Gangler, and V.M. Colvin. 1977. *Water-Level Decline and Pumpage in Deep Wells in the Chicago Region, 1971-1975.* Illinois State Water Survey Circular 125, 35p.
- Sasman, R.T., R.S. Ludwigs, C.R. Benson, and J.R. Kirk. 1986. Water-Level Trends and Pumpage in the Cambrian and Ordovician Aquifers in the Chicago Region, 1980-1985. Illinois State Water Survey Circular 166, 47p.
- Sasman, R.T., C.K. McDonald, and W.R. Randall. 1967. Water-Level Decline and Pumpage in Deep Wells in Northeastern Illinois, 1962-1966. Illinois State Water Survey Circular 94, 36p.
- Sasman, R.T., T.A. Prickett, and R.R. Russell. 1961. Water-Level Decline and Pumpage During 1960 in Deep Wells in the Chicago Region, Illinois. Illinois State Water Survey Circular 83, 43p.
- Schicht, R.J., J.R. Adams, and J.B. Stall. 1976. *Water Resources Availability, Quality, and Cost in Northeastern Illinois*. Illinois State Water Survey Report of Investigation 83, 90p.

- Singh, K.P., and J.R. Adams. 1980. Adequacy and Economics of Water Supply in Northeastern Illinois: Proposed Ground-Water and Regional Surface Water Systems, 1985-2010. Illinois State Water Survey Report of Investigation 97, 205p.
- Suter, M, R.E. Bergstrom, H.F. Smith, G.H. Emrich, W.C. Walton, and T.E. Larson. 1959. *Preliminary Report on Ground-Water Resources of the Chicago Region, Illinois*. Illinois State Water Survey and Illinois State Geological Survey Cooperative Ground-Water Report 1, 89p.
- U.S. Environmental Protection Agency. 1976. National Primary Drinking Water Regulations. *Federal Register*, July 9, 1976:28403.
- U.S. Environmental Protection Agency. 1991. National Primary Drinking Water Regulations. *Federal Register*, July 1, 1991: 30274.
- Visocky, A.P. 1982. Impact of Lake Michigan Allocations on the Cambrian-Ordovician Aquifer System. Illinois State Water Survey Contract Report 292, 36p.
- Visocky, A.P., M.G. Sherrill, and K. Cartwright. 1985. *Geology, Hydrology, and Water Quality* of the Cambrian and Ordovician Systems in Northern Illinois. Illinois State Geological Survey and Illinois State Water Survey Cooperative Ground-Water Report 10, 136p.
- Walton, W.C. 1960. *Leaky Artesian Aquifer Conditions in Illinois*. Illinois State Water Survey Report of Investigation 39, 27p.
- Walton, W.C, R.T. Sasman, and R.R. Russell. 1960. Water-Level Decline and Pumpage During 1959 in Deep Wells in the Chicago Region, Illinois. Illinois State Water Survey Circular 79, 39p.