Groundwater Flow Modeling

Douglas D. Walker
Illinois State Water Survey
Illinois Department of Natural Resources
Data, Information, Model

Hydrogeology:
- Piezometric mapping
- Aquifer testing (Conductivity, etc)
 → Hydrogeologic Model

Surface Water:
- Location, Width, Depth
- Diversions/Discharge
- Stream Gauge
 → Flow Accounting Model
 → Streamflow Probability

Groundwater Flow Model

Assimilate / Understand
Quantify
Predict

Physics:
- Mass/Energy
- Flow in Porous Media
 → Governing Equations

Other:
- Soil Type
- Land Cover
- Tile/Storm Drains
 → Supporting Data

Geology:
- Boring logs
- Geophysical Surveys
- Interpolation
 → Stratigraphic Model

Well Data:
- Depth
- Water Levels
- Pumping Rates
 → History/Projection

2007 Priority Places Workshop: Implementing a Sustainable Water Supply for Kane County’s Future
Groundwater Flow Model
Finite Difference Block

Inflow – Outflow = Change in Storage
Finite Difference Grid

Leads to many equations, solved together

2007 Priority Places Workshop: Implementing a Sustainable Water Supply for Kane County's Future
Groundwater Flow Model

Result: Hydraulic head at each block center

Result: Groundwater flow rate between blocks
Model Analyses
Groundwater Flow Model

- Conceptual Model
 - Geology, hydrology, etc.
 - Organize/interpret data
- Mathematical Model
 - Physics →
 - Governing equations
 - Boundaries/parameters
 - Yields water levels/flow rates
- Numerical Solution by Finite Difference Approach
 - Flexible, detailed representation of geology and hydrology
 - Many equations, parameters, data
 - Computer program MODFLOW
 - Output processed into head and flux maps, transient or steady-state
Groundwater Flow Model

The mathematical representation of a conceptual model of the aquifer, solved numerically on a computer to determine the distribution of hydraulic head and flows throughout the aquifer:

“The Model”
Model Confidence and Range of Results

- Predict
- Verify
- Simulate
- Calibrate

Hydraulic Head vs. Time

- Predevelopment
- Present Day

Observations at a well

- High Recharge
- Low Pumping
- Low Recharge
- High Pumping

Range

Error

2007 Priority Places Workshop: Implementing a Sustainable Water Supply for Kane County’s Future
Questions the Model Can Answer

Does pumping affect streamflow?
Where does the water come from?

Are additional measurements needed, and where?
What are the long-term effects of current pumping?
Additional Products of the Model

- Data sets and parameter values cross-checked for consistency.
- Framework for follow-up studies of greater detail
 - Wellfield design
 - Groundwater contamination
- Data, information, and results in GIS format.
- Baseline conditions for water management.

Defines the groundwater resource and adds to the scientific basis for water supply planning.
For this Study, Models on Two Scales:

- **Regional Model**
 - Approx. 800,000 nodes
 - Min grid spacing 2,500 ft.
 - All aquifers

- **Local Model**
 - Approx. 1.5 million nodes
 - Min grid spacing 660 ft.
 - Shallow aquifers only

For consistency and realism, the local model takes its boundary conditions from the regional model.