2012 Forecasted Corn Yield Potential based on simulations using Hybrid-Maize model

Patricio Grassini, Haishun Yang, and Kenneth G. Cassman
Department of Agronomy and Horticulture
University of Nebraska-Lincoln
July 15th, 2012
Simulated locations across the U.S. Corn Belt

Stars indicate the sites for which in-season yield forecasting were performed using the Hybrid-Maize model with actual weather and dominant management practices and soil series at each site.

Weather data were retrieved from High Plain Regional Climate Center (HPRCC) and the Water and Atmospheric Resources Monitoring Program (WARM) through the Illinois Climate Network (Illinois State Water Survey [ICWS], Prairie Research Institute, University of Illinois at Urbana-Champaign).
<table>
<thead>
<tr>
<th>Location, state</th>
<th>Water regime</th>
<th>Soil type & initial water</th>
<th>PP (ac⁻¹)</th>
<th>RM (days)</th>
<th>Planting date†</th>
<th>Long-term Yp (bu/ac)‡</th>
<th>2012 forecasted Yp (bu/ac)</th>
<th>75th</th>
<th>Median</th>
<th>25th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holdrege, NE</td>
<td>Irrigated</td>
<td>Silt loam</td>
<td>32.4k</td>
<td>113</td>
<td>April 27</td>
<td>248</td>
<td>268</td>
<td>245</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>Clay Center, NE</td>
<td>Irrigated</td>
<td>Silt clay loam</td>
<td>32.4k</td>
<td>113</td>
<td>April 23</td>
<td>250</td>
<td>261</td>
<td>241</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rainfed</td>
<td>Silt clay loam 100% ASW</td>
<td>24.0k</td>
<td>23</td>
<td>April 23</td>
<td>146</td>
<td>144</td>
<td>121</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Mead, NE</td>
<td>Irrigated</td>
<td>Silt clay loam</td>
<td>32.4k</td>
<td>113</td>
<td>April 30</td>
<td>240</td>
<td>255</td>
<td>237</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rainfed</td>
<td>Silt clay loam 100% ASW</td>
<td>28.0k</td>
<td>30</td>
<td>April 30</td>
<td>160</td>
<td>142</td>
<td>118</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Concord, NE</td>
<td>Irrigated</td>
<td>Silt loam</td>
<td>32.4k</td>
<td>104</td>
<td>May 3</td>
<td>235</td>
<td>246</td>
<td>233</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rainfed</td>
<td>Silt loam 100% ASW</td>
<td>29.0k</td>
<td>40</td>
<td>May 3</td>
<td>154</td>
<td>152</td>
<td>130</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>O’Neill, NE</td>
<td>Irrigated</td>
<td>Sandy loam 100% ASW</td>
<td>32.4k</td>
<td>106</td>
<td>May 3</td>
<td>225</td>
<td>251</td>
<td>228</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>Brookings, SD</td>
<td>Rainfed</td>
<td>Silt clay loam 100% ASW</td>
<td>30.0k</td>
<td>98</td>
<td>May 4</td>
<td>120</td>
<td>145</td>
<td>126</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Sutherland, IA</td>
<td>Rainfed</td>
<td>Silt clay loam 100% ASW</td>
<td>31.4k</td>
<td>99</td>
<td>May 1</td>
<td>168</td>
<td>182</td>
<td>154</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Gilbert, IA</td>
<td>Rainfed</td>
<td>Loam 100% ASW</td>
<td>32.4k</td>
<td>110</td>
<td>April 26</td>
<td>200</td>
<td>193</td>
<td>166</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>Nashua, IA</td>
<td>Rainfed</td>
<td>Loam 100% ASW</td>
<td>32.4k</td>
<td>90</td>
<td>May 1</td>
<td>198</td>
<td>188</td>
<td>169</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Monmouth, IL</td>
<td>Rainfed</td>
<td>Silt loam 100% ASW</td>
<td>32.4k</td>
<td>112</td>
<td>April 27</td>
<td>212</td>
<td>264</td>
<td>234</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>DeKalb, IL</td>
<td>Rainfed</td>
<td>Silt clay loam 100% ASW</td>
<td>32.4k</td>
<td>111</td>
<td>May 1</td>
<td>201</td>
<td>231</td>
<td>196</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>Bondville, IL</td>
<td>Rainfed</td>
<td>Silt clay loam 100% ASW</td>
<td>32.4k</td>
<td>114</td>
<td>April 20</td>
<td>197</td>
<td>199</td>
<td>157</td>
<td>136</td>
<td></td>
</tr>
</tbody>
</table>

¶ Simulations based on dominant soil series, average planting date, and plant population (PP) and relative maturity (RM) of most widespread hybrid at each location (Grassini et al., 2009). ‡ Average (20+ years) simulated yield potential (Yp)