Circular 97

STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION

Groundwater Availability in Ford County

by JAMES P. GIBB

ILLINOIS STATE WATER SURVEY URBANA 1970

HOW TO USE THESE MATERIALS

This circular provides a summary of all available information on water wells and groundwater conditions in Ford County. You can use these materials to find the possibilities of obtaining a dependable water supply at any location in the county.

First you will need the legal description (township, range, section, and portion of section) of your farm, home, or other location of interest. Then follow these steps.

- 1) Turn to appendix A and find your location (township, range, section) in the list of well numbers for existing wells.
- 2) Examine the records of all the wells in your section and in the adjoining sections. The depths of these wells, the water-bearing formations they tap, their nonpumping water levels, and other information give an immediate picture of existing water supplies, which is one indication of what is possible in your location of interest.
- 3) Continue to appendix B for the chemical quality of water in the existing wells in your location, which indicates the quality you may usually expect for the different depths and sources.
- 4) Now turn to the maps in the text which illustrate all of this information to show the possibilities for dependable wells throughout the county. Figures 6, 7, and 8 illustrate information for relatively shallow wells in the upper waterbearing deposits, and figures 9, 10, and 11 give information for deeper wells in the lower deposits.

An example of actual use of these materials for a specific location is presented on page 38, preceding appendix A.

Printed by authority of the State of Illinois-IRS, Ch. 127, Par. 58.29

CONTENTS

P	age
Summary	.1
Introduction	.2
Geology	.4
Groundwater	.6
Occurrence and movement.	.6
Chemical character.	10
Temperature	12
Aquifers	13
Upper glacial deposits	14
Development and availability	14
Chemical character.	17
Lower glacial deposits.	19
Development and availability.	19
Chemical character.	21
Bedrock formations.	23
Development and availability.	23
Chemical character.	24
Wells	25
Types and drilling methods.	25
Construction features	27
Casing.	27
Screening	28
Gravel packing.	28
Grouting.	29
Disinfection.	29
Methods of pumping water.	30
Summary of major water supplies.	30
Example use of materials.	38
-	39
	60
Selected references.	65

ILLUSTRATIONS

Figure		Pag	ge
1	Location of Ford County		3
2	Geologic maps of Ford County		5
3	Generalized graphic logs of glacial deposits and bedrock formations.		7
4 Cy	vcle of water movement (a) and generalized movement of water in Ford County (b).	.8	8
5	Water table contour map of Ford County		9
б	Probable maximum depth of wells in the upper glacial deposits	.1	5
7	Nonpumping water levels (a) and water level elevations (b) in drilled wells tapping the upper glacial deposits.	.16	5
8	Selected chemical analysis (a), probable total dissolved minerals (b), and hardness (c) of water from the upper glacial deposits	.18	3
9	Probable maximum depth of wells in the lower glacial deposits	.20	0
10	Nonpumping water levels (a) and water level elevations (b) in wells tapping the lower glacial deposits	.21	L
11	Selected chemical analysis (a), probable total dissolved minerals (b), and hardness (c) of water from the lower glacial deposits	.22	2
12	Construction features used in Ford County wells	27	7
13	Recommended construction features for large-diameter dug wells	.28	8

TABLES

Table		Page
1	Major dissolved elements and substances in	
	groundwater in Ford County	.11
2	Recommended chlorine dosages for well disinfection	30

GROUNDWATER AVAILABILITY IN FORD COUNTY

by James P. Gibb

SUMMARY

Groundwater in Ford County normally can be obtained from one of two primary water-bearing units within the glacial drift or from the underlying bedrock formations. The drift deposits consist of the Wisconsinan, Illinoian, and Kansan age glacial materials underlain by Pennsylvanian, Mississippian, Devonian, and Silurian age bedrock formations.

Glacial deposits of Wisconsinan age provide approximately 64 percent of the county's current water supply. The maximum recorded depth of wells tapping this upper aquifer system is about 240 feet. Individual yields of domestic Wells finished in these deposits generally are limited by pump capacities of 5 or 10 gallons per minute (gpm). Municipal and industrial supply wells capable of producing in excess of 400 gpm have also been developed in this water-bearing unit. Adequate water for farm and domestic use is usually obtainable from the Wisconsinan deposits throughout the county.

Deeper lying Illinoian and Kansan age glacial deposits also are tapped for domestic and municipal water supplies. Wells tapping this lower aquifer system may be as deep as 340 feet and yield in excess of 1000 gpm. The larger groundwater supplies have been developed from morainal deposits or glacial fill materials contained in the three buried bedrock valleys crossing the county. Groundwater from the glacial deposits is hard and normally contains objectionable concentrations of iron.

The upper bedrock formations have been tapped by a few wells in the northern portion of the county. These wells approach 300 feet in depth and yield from 5 to 150 gpm. Throughout the remainder of the county the bedrock has not been extensively tapped because of the productivity of the overlying drift. The quality of water from the bedrock is generally poor and at depths below 300 or 400 feet may become too "salty" for most uses.

An estimated 2.2 million gallons of water is pumped from the aquifers of Ford County each day to satisfy industrial, municipal, domestic, and rural needs. A much larger quantity of water, perhaps as much as 51 million gallons a day, could probably be withdrawn without overdevelopment. Maps and tables indicating the probable maximum depths of wells, water levels, chemical quality, and general groundwater conditions for each water-bearing unit at specific locations are presented to serve as a guide in the development and utilization of the groundwater resources of Ford County.

INTRODUCTION

More than 500 requests for information concerning groundwater conditions in specific locations of Illinois are answered yearly by the Illinois State Water Survey. Approximately 40 percent of these requests are from individuals seeking advice on locating, developing, or treating home or farm groundwater supplies.

Many of these requests are answered with letter-type reports prepared jointly by the State Water Survey and State Geological Survey from available geohydrologic data in their basic record files. These reports, containing pertinent information on groundwater and geologic conditions at a specific site, permit meaningful appraisals for well construction which have saved considerable time, effort, and money in many cases. However, several thousand wells are constructed each year without the use of such information. If comprehensive summaries of groundwater conditions were available for all possible sites, great savings could result. This report presents such a summary for Ford County, where fairly complex groundwater conditions exist.

Ford County is located in the east-central part of the state (figure 1). It encompasses an area of 488 square miles and is mainly cultivated land. According to the 1960 census, the county has a population of 16,606 with 10,967 of the residents living in incorporated cities and villages. The county seat and largest city, Paxton, has a population of 4370.

The economy of the county is largely dependent on the production of farm crops such as corn, soybeans, and wheat and agriculturally oriented industry. Among the larger industries in Ford County are Central Soya Company, Inc., Stokely Van Camp Canneries, and M S W Gear Company all located in Gibson City.

Drainage from the county is predominantly to the south and west, but a small area southeast of Roberts drains to the northeast. Headwaters for the Iroquois, Mackinaw, North Fork Vermilion, and Vermilion Rivers are located in the upland areas of the county. The Sangamon River originating in neighboring McLean County flows through the extreme southwestern corner of the county.

Information on the streams and rivers in Ford County is not readily available in published form. Agencies in Illinois that may have data on file for these streams include: Illinois State Water Survey, Urbana; Illinois Division of Waterways, Springfield; and the U. S. Geological Survey, Champaign.

The rivers, streams, and creeks in Ford County are not sufficiently large to be considered as a source of water for most uses. All known water supplies in the county are from groundwater sources.

This report summarizes groundwater conditions in Ford County including pertinent geologic factors, occurrence and movement, temperature and chemical quality, and well development. Appendix A contains available records of all known wells, and appendix B lists the results of chemical analyses of water from all wells sampled.

This study is part of a continuing program of water-resource investigations being conducted by the Illinois State Water Survey under the general direction of Dr. William C. Ackermann, Chief, and H. F. Smith, Head of the Hydrology Section. The report was prepared under the direct guidance of William H. Walker. Grateful acknowledgment is made to the many well drillers, engineers, and public officials

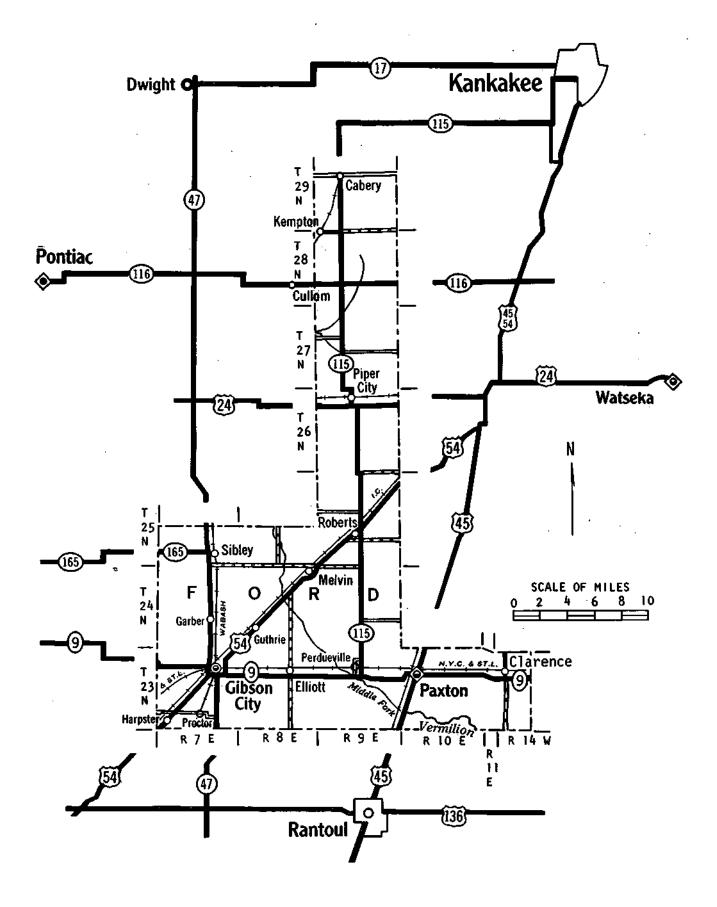


Figure 1. Location of Ford County

who provided invaluable information for use in this report. Special thanks is given to Verne Bear, science teacher from Roberts, who conducted the house to house inventory of wells in Ford County during the summer of 1967 which provided much of the basic data used in this report. Mrs. Dorothy Woller tabulated the well data and typed the manuscript, and John W. Brother, Jr., prepared the illustrations.

GEOLOGY

The geology of Ford County is summarized in general terms in State Geological Survey Circular 248, "Groundwater Geology in East-Central Illinois." The following brief discussion of geologic conditions in the county is taken largely from that publication. For a more detailed definition of the geology in this portion of the state, the reader is referred to the State Geological Survey which is located on the University of Illinois campus, Urbana.

Glacial deposits blanket all of Ford County resulting in a relatively level plain broken only by isolated knobs, stream valleys, and long ridges formed at the front of the glaciers (end moraines). The glacial deposits include those of Wisconsinan (upper deposits), Illinoian, and Kansan (lower deposits) age. Information from wells and rock exposures indicates that the topography of the county has been shaped principally by ice and running water. Features produced by ice were developed long ago when the glaciers, nourished by snow accumulation in Canada, several times advanced across Ford County and melted away leaving vast quantities of rock debris. In front of the ice, sediment-laden meltwaters escaped down valleys, partially filling them with outwash deposits of sorted sand, gravel, and finer materials. Thick extensive till sheets of unsorted clay, silt, sand, and pebbles also were laid down under the advancing ice or dumped into place during melting. The thickness of the glacial deposits varies from about 50 to more than 400 feet, the thicker sections being associated with the bedrock valleys and the morainic ridge just northwest of Gibson City (figures 2a, b, and c).

The Wisconsinan deposits form the present-day land surface of Ford County. Running water continues to modify this surface by cutting into the land, carrying away soil and rock particles, and depositing the debris in river bottoms. This modification is a small-scale version of the changes made on the bedrock surface by the glacial meltwaters. The Wisconsinan deposits in the study area consist primarily of till materials interspersed with somewhat discontinuous pockets and lenses of sand and gravel.

Underlying the Wisconsinan materials from the Piper City area southward are the Illinoian age deposits. The materials in these deposits are more uniform and occur as relatively impermeable till units interbedded with continuous layers of sand and gravel. The Kansan age deposits occupy the basal position in the drift section and consist primarily of permeable sands and gravels, particularly in the bedrock channels.

The bedrock formations in Ford County are layers of consolidated rocks of Pennsylvanian, Mississippian, Silurian, and Devonian geologic age (see figure 2d for areal distribution). These rocks consist of beds of shale, sandstone, limestone, and dolomite arranged one upon the other; the top surface of these rocks is called the bedrock surface (see figure 2c for surface configuration). Origi-

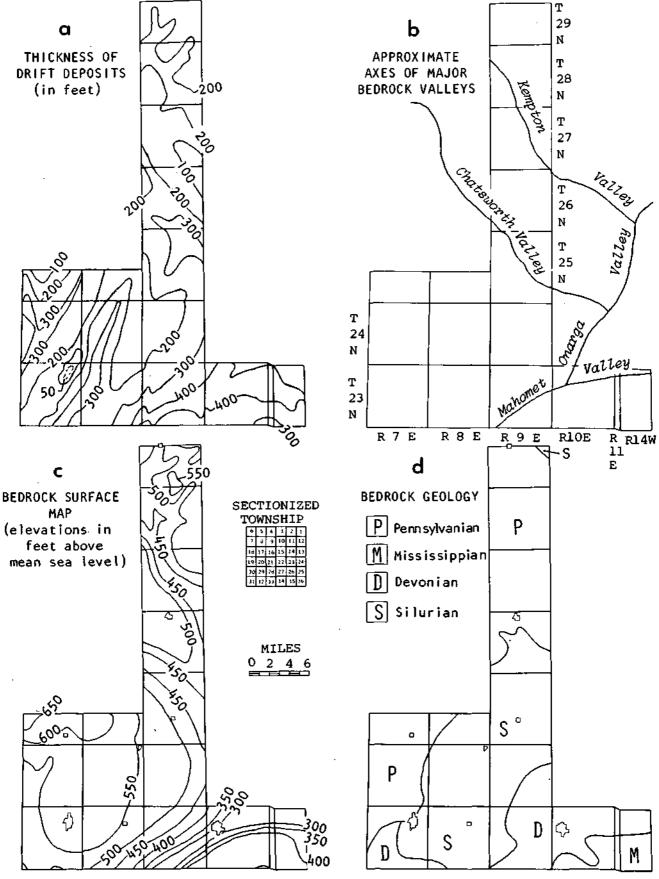


Figure 2. Geologic maps of Ford County

nally the bedrock formations were unconsolidated materials, deposited over many years as sediments in shallow seas or bordering marshes. They were then buried and hardened into solid rock during the several million years after the seas retreated from the area.

Erosion of the bedrock was not uniform through the county. In areas where soft shales and sandstone formations were exposed to weathering, valleys were formed by water and ice action. Hard sandstone and limestone formations in other areas resisted erosion and remained to form ridges and hills on the bedrock Some of the old bedrock valleys coincide with present-day stream surface. valleys, but some are partially or even completely buried by the glacial deposits so that there is little or no surface evidence of their presence. The principal buried valley system in Ford County occurs as part of the ancient Teays River, a master preglacial stream which headed in the Blue Ridge Mountains in North Carolina and discharged into the ancient Mississippi River west of Delavan in Tazewell County. The Teays River Valley, or Mahomet Valley as it is known in Illinois, enters the state in Iroquois County, northeast of Hoopeston, and continues westward into Ford County just east of Paxton. The valley proceeds westward across the county south of Paxton turning southwest into Champaign County about 8 miles northwest of Rantoul. The major tributaries to the Mahomet Valley include the Onarga Valley, with its major tributaries, the Kempton and Chatsworth Valleys (figures 2b and c).

Generalized graphic logs of the glacial deposits and bedrock formations of Ford County are given in figure 3.

GROUNDWATER

Groundwater in Ford County begins as precipitation which seeps downward into the ground through the soils. Figure 4*a* shows the generalized cycle of water movement from the atmosphere as precipitation to the surface and into the ground, and then away from the area either through the ground and in flowing streams or again into the atmosphere through transpiration of plants and evaporation.

Occurrence and Movement

Water enters and filters slowly down through the ground until it reaches a level where all available voids are completely water-filled. Water thus contained in this zone of saturation is groundwater, and its upper surface is the water table. Figure 5 illustrates the general configuration of the water table surface in Ford County. The water table normally lies some 5 to 10 feet below ground level in the lowlands along the streams (points of discharge) and from 15 to 25 feet below ground level in the upland areas. Seasonal fluctuations in the water table levels should be expected to range from 5 to 15 feet.

In glacial drift deposits, water fills the voids between the soil particles that make up the formations. In bedrock, water occurs primarily in two waysit is contained in the spaces between partially cemented grains of sandstone or in the fractures, bedding plains, and solution cracks of limestone formations. A saturated formation of sand, gravel, sandstone, or limestone that is capable of yielding water to wells in usable quantities is called an aquifer.

	STAGE	FORMATION THICKNESS (FT) (not to scale)	SECTION	MATERIALS DRILLERS TERMS	WATER-YIELDING CHARACTERISTICS
UPPER GLACIAL DEPOSITS	WISCONSINAN	50 - 200		TILL, GRAVEL, SAND, SILT, LOESS	WATER-YIELDING FROM SAND AND GRAVEL DEPOSITS THROUGHOUT MOST OF THE COUNTY. WELL YIELDS FROM 5 - 400 gpm.
GLA			III TERRIT	LOESS SILT, LOESS, PEAT	
DEPOSITS	FLLINGIAN	0 - 250		TILL, GRAVEL, SAND	WATER-YIELDING FROM SAND AND GRAVEL LAYERS IN SOUTH-CENTRAL PORTION OF THE COUNTY, WELL YIELDS FROM 10 - 600 gpm.
				SILT, PEAT	· · · · · · · · · · · · · · · · · · ·
LONER GLACIAL	KANSAN	0 - 275	27 A	TILL, GRAVEL, SAND, SILT	WATER-VIELDING FROM EXTENSIVE SAND LAYERS IN SOUTHEAST PORTION OF THE COUNTY, WELL VIELDS FROM 20 - 1000 gpm.
	BEOROCK		////		

GLACIAL DRIFT SECTION

After Horberg (1953)

UPPER BEDROCK SECTION

SYSTEM	SERIES OR GROUP	FORMATION THICKNESS (FT) (not to seale)	GRAPHIC LOG	ROCK TYPE (DRILLERS TERMS)	WATER-YIELDING CHARACTERISTICS; DRILLING AND WELL CONSTRUCTION DETAILS	
	PLEISTOCENE	0~500		UNCONSOLIDATED GLACIAL DEPOSITS, ALLUVIUM AND WIND-BLOWN SILT (DRIFT, SURFACE, OVERBURDEN)	WATER-YIELDING CHARACTER VARIABLE. LARGE YIELDS FROM THICKER SAND AND GRAVEL DEPOSITS IN BEDROCK VALLEYS. WELLS USUALLY REQUIRE SCREENS AND CAREFUL DEVELOPMENT. CHIEF AQUIFER IN AREA.	
PENNSYLVANIAN	MCLEANSBORO	0-1000		HAINLY SHALE WITH THIN	WATER-YIELDING CHARACTER VARIABLE. LOCALLY SHALLOW	
SYLV	CARBONDALE	0-150		LIMESTONE, SANDSTONE AND COAL BEDS	SANDSTONE AND CREVICED LIMESTONE YIELD SNALL SUPPLIES, WATER QUALITY USUALLY BECOMES POORER	
PENN	TRADEWATER CASEYVILLE	0-600		(COAL MEASURES)	WITH INCREASING DEPTH. MAY REQUIRE CASING.	
	CHESTER	0-500		LIMESTONE, SANDSTONE AND SHALE	TOO DEEP TO BE CONSIDERED AS A SOURCE OF GROUNDWATER IN THIS AREA.	
MISSISSIPPLAN		STE. GENEVIEVE 0-120	┝╴╸	LIMESTONE		
a I P	VALMEYER	ST. LOUIS- SALEM 0-270	╟╱╭╌┚	LIMESTONE	MAY BE WATER-VIELDING IN MASON COUNTY WHERE THESE FORMATIONS ARE PRESENT AT A SHALLOW	
Sis		WARSAW 0-130		SHALE	DEPTH, IN THE REST OF THE AREA, TOO DEEP TO Be considered as a source of groundwater.	
WI S		KEOKUK- BURLINGTON 0-300		CHERTY LIMESTONE	DE CONSIDERED AS A SDARLE OF GIRGONDATERY	
	KINDERHODK	0-200		SHALE	NOT WATER-YIELDING	
DEVÔ- I NIAN		0+70	╞┸╾┙╶╹ ╴╹ ╹	LIMESTONE	WATER-VIELDING FROM CREVICES WHERE ENCOUNTERED AT A SHALLOW DEPTH, IN MOST OF THE AREA, TOO	
STLU-	NIAGARAN	0-350	K K K	DOLOMITE AND LIMESTONE	DEEP TO BE CONSIDERED AS A SOURCE OF GROUNDWATER.	
RIAN	ALEXANDRIAN	0-100				
	CINCINNATIAN	MAQUOKETA 0-200		SHALE WITH LIMESTONE AND DOLOMITE BEDS	NOT WATER-YIELDING AT MOST PLACES; CASING REQUIRED.	
ORDOVICIAN	MOHAWKIAN	GALENA-PLATTEVILLE 300-430		LIMESTONE AND DOLOMITE	NOT IMPORTANT AS AQUIFERS, CREVICED DOLOMITE PROBABLY YIELDS SOME WATER TO WELLS DRILLED INTO UNDERLYING SANDSTONE,	
	CHAZY	GLENWOOD-ST. PETER 150-300		SANDSTOME, CLEAN, WHITE, THIN DOLOMITE AND SHALE AT TOP (ST. PETER)	DEPENDABLE SOURCE OF GROUNDWATER IN THE NORTHERN PART OF THE AREA. WATER BECOMES HIGHLY MINERALIZED WITH INCREASING DEPTH.	
	PRAIRIE	SHAKOPEE 200-410		CHERTY DOLOMITE THIN BEDS OF SANDSTONE	NOT IMPORTANT AS AQUIFER. LINERS IN LOWER ST. PETER SANDSTONE ARE CONHONLY SEATED IN UPPER PART OF SHAKOPEE.	
	DU CHIEN	NEW RICHNOND 0-175	7777	SANDSTONE AND DOLOHITE		
		0NE0TA 300-500		DOLOMITE WITH SOME SANDSTONE BEDS (LOWER MAGNESIAN)	NOT INPORTANT AS AQUIFERS IN THIS AREA.	

After Selkregg & Kempton (1958) •

Figure 3. Generalized graphic logs of glacial deposits and bedrock formations

;

;

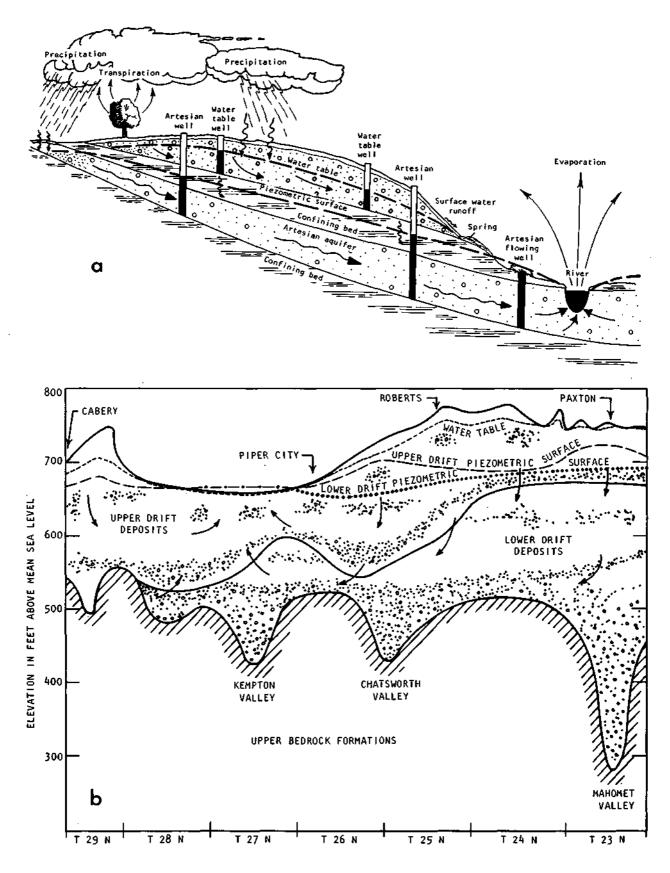
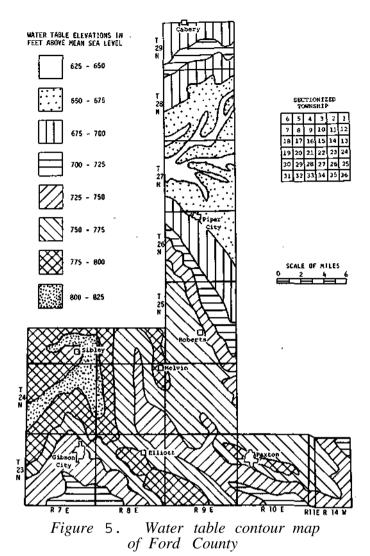



Figure 4. Cycle of water movement (a) and generalized movement of water in Ford County (b)

Under normal conditions, the upper glacial drift deposits are regularly recharged (refilled) by precipitation occurring in the immediate vicinity of the aquifer. Water continues to move freely downward under the influence of pressure and gravity to recharge the lower drift deposits and in some cases the underlying bedrock formations. However, lavers of very dense (almost impermeable) materials separating waterbearing units may impede the downward movement of water. These layers, or confining beds, are usually clays or shales so compact that they cannot yield enough water to be classified as an aquifer. When such confining beds are present, water reaching the aquifer may come from a somewhat distant recharge area where the confining beds are missing or where the aquifer crops out at the land surface.

Water entering permeable formations in an outcrop or recharge area may become confined downslope beneath impermeable beds. Pressure is exerted on the groundwater in the confined aquifer by the weight of water at higher levels in the aquifer system. When a well penetrates such an aquifer downslope from the recharge area, the pressure forces the water to rise in the well above the

top of the aquifer. The water in this instance is confined (or artesian) water, the well is an artesian well, and the upper surface of the water in the well is the piezometric surface of the aquifer. When the piezometric surface of the aquifer is above land surface, wells tapping the aquifer are flowing artesian wells (see figure 4a).

Groundwater movement from recharge areas to discharge points is influenced by gravity and pressure differences. Major points of discharge include springs, lakes, streams, swamps, drainage tiles, and pumping wells. The rate of movement toward points of discharge may amount to a few hundred feet per year in unconsolidated materials and to only a few feet per year in sandstone formations. Water may be held in bedrock aquifers for many years.

The general direction of movement of groundwater in Ford County is illustrated in figure 4b. Precipitation falling in the upland areas south of Cabery and Piper City infiltrates into the upper drift deposits where a portion of it is diverted to discharge into local streams and drainage ditches (note the intersection of the water table surface and stream valleys just north of Paxton). The water not discharged locally continues to move downward to recharge the lower drift deposits. Along with the general downward migration of water in both formations, there is movement downslope.(on the piezometric surfaces) toward the lowland drainage area just north of Piper City. Here the piezometric surfaces of both aquifers occur above land surface resulting in an upward movement of water from both systems to discharge into the streams and ditches draining the area.

Chemical Character

The results of chemical analyses made by the State Water Survey usually are expressed in parts per million (ppm). A part per million is a unit weight of a constituent in a million unit weights of water; thus, a water sample containing 1 ppm of iron (Fe) would indicate 1 pound of iron in a million pounds of water. In order to express chemical dissociations and show water analyses graphically, chemically equivalent weights or equivalents per million are used. Equivalents per million are calculated by dividing the parts per million by the combining weight of the respective cation or anion. Analyses made by private chemical laboratories sometimes are reported in terms of grains per gallon (gpg). In the grain weight system of measure, one grain per gallon is considered a 1/7000 of a pound of a mineral dissolved in a gallon of water. One grain per gallon is equal to 17.1 parts per million.

The sources and significance of the major dissolved elements and substances in the groundwater of Ford County are shown in table 1. The U. S. Public Health Service drinking water standards for these major constituents also are included in the table. These standards have been accepted by the American Water Works Association as desirable limits for public water supplies, and should serve as a guide to owners of farm and home water supplies in evaluating the quality of their water.

As generally may be inferred from the information in table 1, the dissolved minerals in groundwater are derived chiefly from the earth materials through which the water flows. The soils and glacial materials above bedrock are particularly rich in calcium, magnesium, iron, and other minerals which are readily absorbed by the groundwater as it passes over and through these deposits. Calcium and magnesium are responsible for hardness of water, and iron causes reddish-brown staining. The natural chemical quality of groundwater is sometimes altered by highly mineralized surface water that seeps down along the casings in poorly constructed wells. This type of seepage also can result in bacterial pollution of the well and contamination of the aquifer.

Groundwater from glacial deposits throughout the county varies from moderately hard to extremely hard (150 to 2000 ppm), but normally hardness can be successfully removed by home water-softening units that are now readily obtainable. The iron content of water from the drift deposits ranges between 0.1 and 15.0 ppm, and is most often well above the recommended limit of 0.3 ppm. Iron can be removed by units similar to home water softeners; however, for domestic users, tolerance rather than removal is the usual practice. The chemical quality of water from the various glacial formations is discussed in more detail later in this report.

The chemical quality of water from the bedrock aquifers in Ford County varies considerably depending on the formation tapped and depth of penetration into the aquifer. Generally speaking, water from the bedrock becomes more highly mineralized with depth. Chloride, sulfate, and sodium are normally present in larger concentrations than in drift water. A more detailed discussion of the

recommended upper limit ¹	Source	Remarks
Iron (Fe) 0.3 ppm	Dissolved from common iron-bearing minerals present in practically all rocks, clays, and soils; may also be derived from iron pipes, pumps, and other equipment.	On exposure to air, iron oxidizes to a reddish- brown sediment.' More than about 0.3 ppm stains laundry and porcelainware reddish brown; objec- tionable for food and beverage processing. Smalt concentrations may be removed by water softeners, larger concentrations by chlorination or aeration and filtration.
Manganese (Mn) 0.05 ppm	From soils and sediments. Less abundant in rocks than is iron.	Resembles iron in chemical behavior and has same objectionable features, except stains are brown t black. The same types of treatment used for iron are generally effective.
		are generally effective.
Ni trate (N0 ₃) 45 ppm	Results from decayed organic matter such as that from barnyards, feedlots, manure piles, septic tank fields, as well as from silage juices and animal tissue. Usually occurs in waters from shallow wells of less than 50-foot depth, often as the result of poor well construction permitting drainage into the well at or near the surface.	Values higher than a few ppm may suggest pollutio More than about 45 ppm nitrate may cause methemo- globinemia (blue babies) when such water is used preparation of infant feeding formulas. Nitrate poisoning of livestock has also been reported. Removal by demineralization is possible but usual prohibitive in cost.
Chloride	Dissolved from rocks and found in large	In concentrations over about 250 ppm chloride giv
Cl)	amounts in ancient brines and sea water.	a salty taste to water and increases its corrosive
250 ppm	Industrial and domestic waste also may contribute appreciable quantities to shallow aquifers.	ness. Concentrations over 1000 ppm are very objectionable for domestic use; livestock toleran is considerably higher.
Sulfate	Dissolved from rocks and soils containing	Sulfate in water containing calcium forms a hard
(SO4) 250 ppm	gypsum, iron sulfides, and other sulfur compounds. Present in waters from coal mine drainage and some industrial wastes.	scale. In concentrations over about 750 ppm sulfate in combination with sodium or magnesium h a laxative effect, most noted by infrequent users of the water.
Alkalinity [bicarbonate (HCO ₃) and carbonate (CO ₃)]	Results from action of carbon dioxide or acid in water on carbonate rocks such as limestone and dolomite.	Alkalinity is present almost entirely in the form of bicarbonates. In the presence of calcium, carbonates formed may produce a carbonate scale; they decompose on heating with release of carbon dioxide gas and attendant formation of calcium carbonate scale.
lardness (as CaCO ₃)	Caused by calcium and magnesium which occur in almost all rocks but especially in limestone, dolomite, and gypsum.	Before a lather will form, hard water precipitate soap, forming a sludge which causes deposits on bathtubs and is responsible for gray laundry and dingy glassware. Hard water also forms scale in boilers, hot water heaters, and pipes. Hardness normally can be removed by standard home water softening units.
Total dissolved hinerals	Includes all mineral constituents dissolved from rocks and soil.	Mineralization of more than 500 ppm is normally detectable by taste; over 1000 ppm is undesirable for most domestic purposes; livestock may tolerat concentrations up to 7000 ppm. ²
500 ppm		

Table 1. Major Dissolved Elements and Substances in Groundwater in Ford County

chemical character of bedrock water is included in the bedrock formations section of this report.

Water from wells throughout Ford County contains varying quantities of carbon dioxide. A relatively small area in and around Sibley also has water known to contain methane gas. These gases are colorless, odorless, and tasteless. Methane gas is lighter than air whereas carbon dioxide is heavier. When methane gas is mixed with air in concentrations of 5 to 15 percent, it is highly explosive if ignited. Most dangerous points of concentration are in the well house, within the air cushion of pressure tanks, and in hot water heaters. All such points should be vented to the outside air if methane gas is detected in a water supply. All new wells constructed should be checked for methane gas by the driller before the installation is placed in service.

Further, no one should ever enter a large-diameter dug well without previously checking for the presence of methane gas or carbon dioxide, both of which can cause asphyxiation. These gases can be readily removed from water by standard aeration procedures.

Nitrates, or simple nitrogen compounds that occur in water as mineral constituents, are considered harmful to people, particularly children, if concentrated in drinking water supplies in excess of 45 ppm. Nitrate poisoning of livestock has also been reported. Excessive concentrations of nitrate have been detected in only a few groundwater samples from Ford County. Among wells sampled during the 1967 well inventory, three bored wells (61, 84, and 122 feet deep) and three dug wells (16, 20, and 35 feet deep) contained more than 45 ppm nitrate. Approximately 2 percent of the sampled wells of less than 50 feet deep had nitrate concentrations greater than h5 ppm, and only 3 percent had concentrations greater than 20 ppm.

Primary sources of the nitrate contamination in these wells were nearby septic tanks, old privies, or drainage from feedlots and pastures. Leachates (seepage) from these sources percolating through the soil or flowing overland to the wells have been determined to be the source of nitrate pollution in practically all such cases. Nitrogen fertilizers have not yet been demonstrated to be of importance in Illinois groundwater pollution. However, these may become a significant future source as larger quantities of nitrogen-rich fertilizers are applied to the soils of the state.

The treatment of water supplies containing nitrate poses a difficult problem. Boiling the water does not help, but rather results in concentrating the nitrate. Nitrates and similar mineral constituents such as chlorides and sulfates can be reduced or removed by demineralization, a process not economically desirable for private water supplies. It is usually easier to abandon the source of high nitrate water and develop a supply either at a location not susceptible to the nitrates or in another aquifer horizon.

Mineral analyses of groundwater from throughout the county are included in appendix B of this report.

Temperature

The temperature of groundwater varies with the location and depth of the aquifer, the origin and time of occurrence of recharge, and the proximity of the

aquifer to bodies of surface water. In Ford County the primary source of recharge is precipitation which enters the groundwater reservoirs mostly in the early spring and late fall when the precipitation is fairly cool. After infiltrating into the ground, little temperature change occurs because of the insulating effect of the surrounding earth materials. The lower groundwater temperatures generally are associated with the shallower aquifers, and temperatures slowly increase at a rate of about 3/4 to 1 degree Fahrenheit for each 100 feet in depth. Therefore, water obtained from a 1000-foot deep bedrock well should be expected to be approximately 10 degrees warmer than that from a shallow glacial drift well. Groundwater temperatures range from about 54 degrees Fahrenheit in the upper glacial deposits to 65 degrees in the deeper bedrock formations tapped in Ford County (see appendix B).

AQUIFERS

Aquifer selection for farm and domestic well construction in the past was often influenced by the quantity of water required, the type of drilling equipment available, and perhaps the amount of money the farmer or homeowner was willing to pay. In most cases, the shallowest water-bearing sand and gravel deposit encountered was capable of satisfying the relatively small water demands, could be easily developed, and provided the cheapest solution to the water supply problem. However, with the increased use of water on the farm and in the home, higher yielding wells than those previously constructed are often required.

Throughout most of Ford County there are two glacial aquifers, each containing one or more layers or zones of water-bearing sand and gravel. In many areas, the deeper deposits are more productive than the shallower sands and gravels currently being tapped. For these reasons, drilling for a farm and domestic well should continue until a satisfactory supply is obtained or until the underlying bedrock is encountered.

For larger capacity municipal or industrial wells, it is advisable to construct a test hole penetrating the entire drift section to determine the presence and relative potentials of the different glacial aquifers prior to completion of the final production well.

For either type of development, the services of a competent well driller experienced in constructing sand and gravel wells should be obtained to maximize the use of available resources. Drilling into the underlying bedrock aquifers is recommended only if a satisfactory supply cannot be developed from the glacial materials.

For the purposes of this study, the various water-bearing units are grouped into three general aquifer systems. The Wisconsinan age glacial deposits outlined by Horberg (1953) are hereafter designated as the upper glacial deposits or upper aquifer system.

The underlying Illinoian and Kansan age glacial deposits defined by Horberg (1953) appear to be hydraulically interconnected throughout most of the county and generally respond to pumpage as a unit. For this reason these deposits are considered as one geohydrologic unit, termed the lower glacial deposits or lower glacial aquifer.

The third aquifer system, the bedrock formations, is composed of all freshwater bedrock units underlying the drift deposits throughout the county. Detailed discussions on the occurrence, water-yielding characteristics, and quality of water of each aquifer system are presented in the following sections.

Upper Glacial Deposits

Water-bearing sand and gravel deposits contained within the Wisconsinan drift section serve as a source of water for approximately 70 percent of the individual farm and domestic water supplies in the county. These deposits occur as scattered pockets in the upper portions of the aquifer, as fill materials in the Kempton Bedrock Valley, and as extensive sheet or striplike deposits present at or near the base of the upper glacial materials throughout most of the county.

Development and Availability. Wells tapping the upper glacial aquifer are of four general types: dug, bored, driven, and drilled. Records of approximately 150 large-diameter dug and bored wells were collected from Water Survey files and from the direct inventory conducted during the summer of 1967. These wells range in depth from 20 to 60 feet below ground level and are from 12 to 48 inches in diameter. The yields of these wells are never large and are often barely adequate for domestic use. Most of these installations were constructed many years ago when water demands were small and mechanized drilling equipment was not always available. Today's larger water requirements usually cannot be obtained from such wells, and the availability of aquifers suitable for drilled . well development in Ford County make dug wells undesirable for most uses.

Records are available for 27 driven wells tapping the upper glacial aquifer to depths of about 20 feet. These wells are from 1-1/2 to 2 inches in diameter and usually yield less than 5 gpm, but generally are adequate for domestic use. This type of well construction in Ford County is limited to a small area south of Gibson City where relatively shallow sands and gravels are present.

The Water Survey files include records of 945 drilled wells finished in the upper aquifer system. These installations range in depth from 50 to 75 feet in the lowland areas of the major drainage courses of the county to about 200 feet on the higher grounds just south of Cabery, northwest of Roberts, north of Gibson City, and in the general vicinity of Paxton.

Figure 6 illustrates the probable maximum depth of a well finished in this aquifer anywhere in Ford County. In many locations several different waterbearing zones are present and conceivably could be penetrated before the maximum depths indicated would be reached. To insure that a suitable aquifer is not overlooked, homeowners are again urged to obtain the services of a competent well driller experienced in constructing screened wells in sand and gravel.

Farm and domestic drilled wells in this aquifer system range from 2 to 6 inches in diameter. However, well diameters between 4 and 6 inches are more desirable than the smaller wells because of the greater selection in types of pumps which can be used and the increased accessibility to the pump for inspection and repairs. The diameters of municipal and industrial wells in the upper deposits range from 6 to 24 inches, usually determined by the desired pump size requirements.

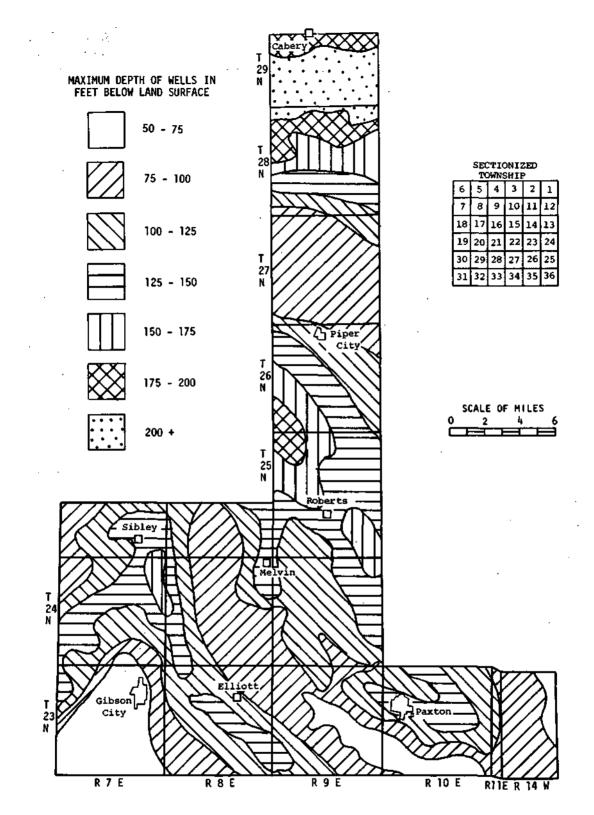
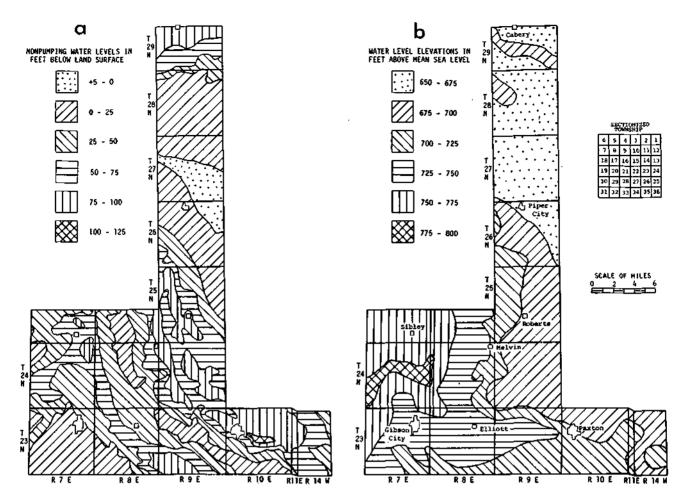



Figure 6. Probable maximum depth of wells in the upper glacial deposits

Figure 7. Nonpumping water levels (a) and water-level elevations (b) in drilled wells tapping the upper glacial deposits

The nonpumping water levels of the drilled wells finished in the upper aquifer are shown in figure 7a. The depths to water are to a large extent influenced by the land surface topography. Seasonal fluctuations as great as 5 or 10 feet may be experienced in the shallower wells and normally will be less in the deeper wells. Figure 7b illustrates the mean water-level elevations that occur in the drilled wells in the upper glacial deposits. The general direction of movement of water in this aquifer system can also be determined from this illustration since water always flows downward (from high to lower elevations) and perpendicular to the individual contours.

The yields of wells tapping the upper glacial deposits range from 5 gpm for farm and domestic wells (generally fixed by pump capacities) to over 400 gpm from the municipal wells finished in the outwash deposits at Gibson City. Municipal and industrial wells finished in this aquifer at Elliott, Gibson City, Kempton, Piper City, and Sibley produce approximately 60 percent of the municipal pumpage in the county. Installed pump capacities in these wells are 75 gpm, 250 to 400 gpm, 100 gpm, 140 to 170 gpm, and 58 gpm, respectively.

Total groundwater pumpage from the upper glacial aquifer is an estimated 1.4 mgd. Much larger quantities of water could probably be withdrawn without overdevelopment. Pumping tests and aquifer evaluations would be required to accurately determine the groundwater potential in localized areas. Chemical Character. The chemical quality of water from the upper glacial deposits varies considerably within Ford County. Results of analyses of water from approximately 110 drilled wells finished in this aquifer system are included in appendix B. Typical analyses are shown graphically in figure 8a.

Available chemical and hydrologic data suggest that the variation in the chemical constituents in this aquifer system generally can be explained by the period of time the water has been underground and in contact with soil particles from which mineral constituents are dissolved. Relatively low mineralized water, indicating a short period of residence, is usually found in areas of recharge. More highly mineralized waters, suggesting longer periods of contact, are associated with regions of groundwater discharge. The validity of this approach is indicated by the similarity in general configuration of the variation in total dissolved minerals in figure 8b and the movement of water through these deposits shown in figure 7b.

Localized disturbances in the overall general pattern of chemical quality variability are evident in an area east of Roberts and in the extreme northern portion of the county (figures 8b and c). The more highly mineralized waters encountered in the area east of Roberts are probably the result of two separate phenomena. The wells in this area are somewhat deeper (see figure 6) and water recharged to their water-yielding deposits must percolate downward through a greater thickness of overlying materials. Therefore, water finally reaching these deposits would have experienced a longer period of residence during which minerals from the surrounding materials could be dissolved than water derived from shallower depths. Also, available logs of wells in this area suggest the presence of several scattered peat zones which normally would increase the acidity of water coming into contact with these beds, and in turn would result in an increase in total dissolved minerals.

The higher mineral content in the northern portion of the county also can be partially attributed to the increased depth of the wells in that area. In addition, the upper glacial deposits in this area lie directly on the Pennsylvanian age bedrock formations which characteristically contain highly mineralized water. Piezometric surface data show a gradient from the bedrock formations toward the upper aquifer indicating that the more highly mineralized water from the bedrock is being discharged upward into these deposits.

Total mineral concentrations of water from the upper glacial deposits are illustrated in figure 8b. Water from the upper aquifer system is below the recommended 500 ppm upper limit set by the U. S. Public Health Service in all areas except for the two locations just discussed.

The hardness of water obtained from these deposits throughout the county ranges from moderately hard (200 ppm) to extremely hard (over 400 ppm). Figure 8c suggests the probable hardness content which may be expected from this aquifer for any given location. In all areas, the general quality of water from these deposits could be improved by the use of standard home water-softening units.

Iron concentrations above the recommended 0.3 ppm upper limit set by the U. S. Public Health Service were detected in over 90 percent of the sampled wells. Water containing iron in such quantities usually causes staining of laundry and porcelain fixtures unless some type of iron removal equipment is used. Manufacturers of home water softeners advertise that these units will effectively remove as much as 5.0 ppm "dissolved" iron. It should be noted,

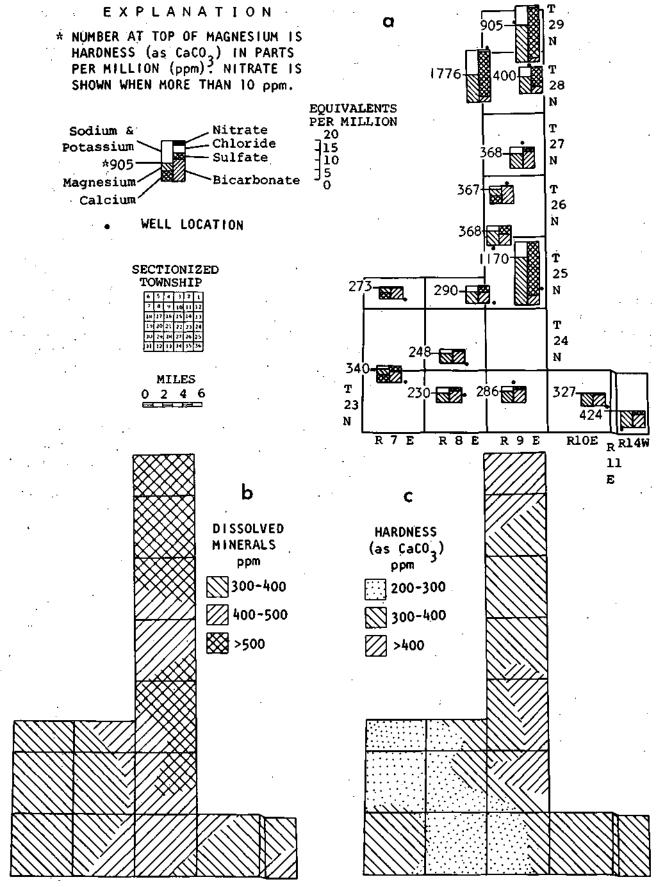


Figure 8. Selected chemical analysis (a), probable total dissolved minerals (b), and hardness (o) of water from the upper glacial deposits

however, that the iron found in the water in Ford County is normally in an insoluble state and can create serious plugging problems in water-softening units. The use of an oxidizing iron removal unit in conjunction with a water softener ' is usually required to provide continuous and effective treatment over a long period of time.

Lower Glacial Deposits

Sand and gravel deposits of Illinoian and Kansan age serve as a source of water for approximately 20 percent of the farm and domestic water supplies in the county. Continuous layers of water-bearing sands and gravels occur near the base of the Illinoian deposits throughout all but the northern one-fourth of the county (see figure 9 for northern boundary). Thicker more permeable sections of sand and gravel (Kansan age) also occur in the fill materials of the ancient Chatsworth and Mahomet Bedrock Valleys.

Development and Availability. Private farm and domestic drilled wells tapping the lower glacial deposits range in depth from about 125 feet in the lowland area just north of Piper City to over 250 feet in the upland areas of the southern portion of the county. Figure 9 illustrates the probable maximum depth that wells of this type may be expected to reach in this aquifer system. Larger capacity wells tapping the deeper.deposits in the bedrock valleys may range in depth from 250 to 340 feet below land surface.

The diameters of farm and domestic wells in this aquifer range from 2 to 6 inches, similar to the wells in the upper aquifer. Because these wells are deeper than those in the upper deposits, the larger selection in pump types and the accessibility for pump repair and maintenance afforded by the 4- and 6-inch wells become even more important. Municipal and industrial wells in the lower deposits are from 8 to 16 inches in diameter depending on the pump size requirements.

The nonpumping water levels of wells finished in the lower glacial aquifer are shown in figure 10a. Seasonal water-level fluctuations in these deposits are insignificant since water stored in the overlying materials normally is available to the lower aquifer system during prolonged periods of drought. Figure 10b illustrates the mean water-level elevations that occur in wells finished in the lower glacial deposits. The general direction of movement of water in this aquifer system also can be determined from this illustration since water always flows downward and perpendicular to the individual contours.

The yields of wells tapping the lower glacial aquifer range from 10 gpm for the farm and domestic wells (generally limited by the installed pump capacity) to about 1000 gpm for the larger capacity municipal and industrial wells finished in the permeable fill materials of the Mahomet Bedrock Valley. Municipal wells finished in the lower drift deposits at Melvin, Paxton, and Roberts produce approximately 38 percent of the current municipal pumpage in the county. Installed pump capacities in these municipal wells are 60 to 200 gpm, 100 to 1000 gpm, and 105 to 130 gpm, respectively. Maximum well yields obtained from the lower aquifer throughout the county generally are limited to about 200 gpm except for those finished in the productive Mahomet Valley deposits.

Total groundwater pumpage from the lower glacial aquifer is estimated to be 0.6 mgd. Much larger quantities of water can be withdrawn without overdevel-

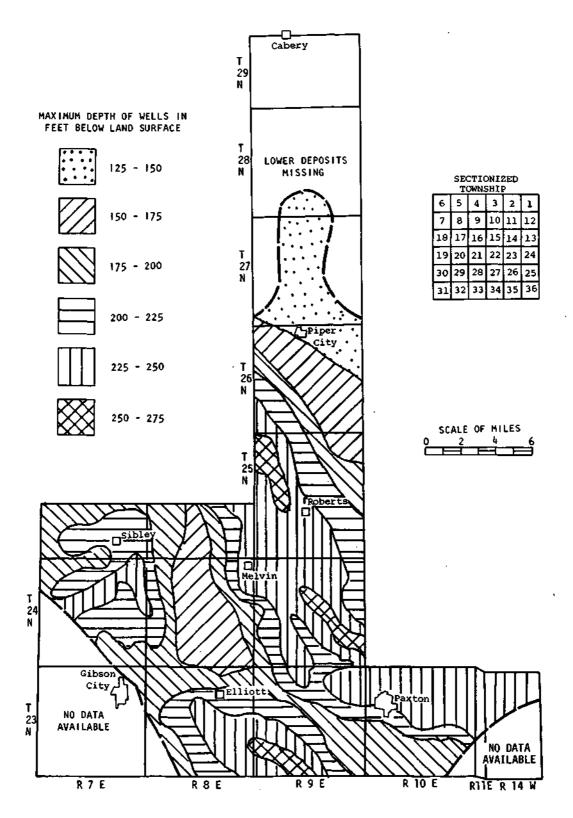


Figure 9. Probable maximum depth of wells in the lower glacial deposits

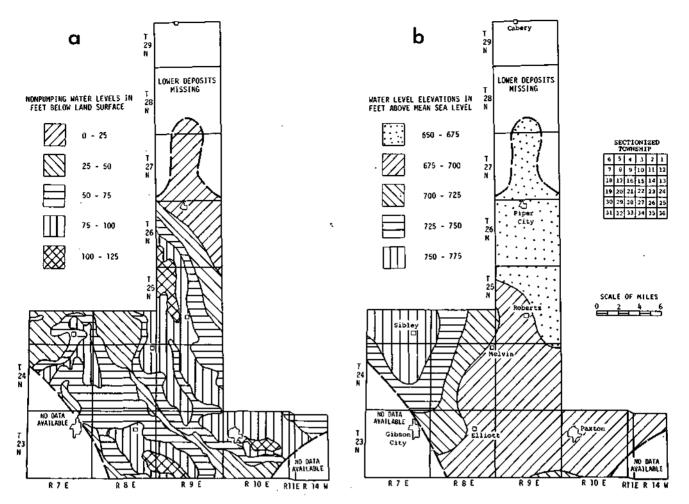


Figure 10. Nonpumping water levels (a) and water-level elevations (b) in wells tapping the lower glacial deposits

opment particularly in the areas overlying the Mahomet Bedrock Valley. The limited development of this aquifer system to date is largely due to the availability of water from the upper glacial deposits. Test drilling, pumping tests, and aquifer evaluations would be required to accurately determine the groundwater potential in localized areas.

Chemical Character. The chemical quality of water from the lower glacial deposits is less variable than that from the upper aquifer but generally is higher in total mineral content. Results of analyses of water from approximately 40 wells finished in this aquifer system are included in appendix B. Typical analyses are shown graphically in figure 11a.

Available chemical and hydrologic data generally imply that the length of time the water has been in the ground, and in contact with soil particles from which mineral constituents are dissolved, may account for most of the variation in the chemical constituents of water in this aquifer. Since water in the lower glacial deposits must first pass through the overlying upper aquifer, it follows that it should be slightly more mineralized than water from the upper glacial deposits. Relatively low mineralized water indicating the shortest period of residence is noted in the southern portion of the county (figure 11b) where recharge to the lower aquifer system occurs rapidly and readily because of the

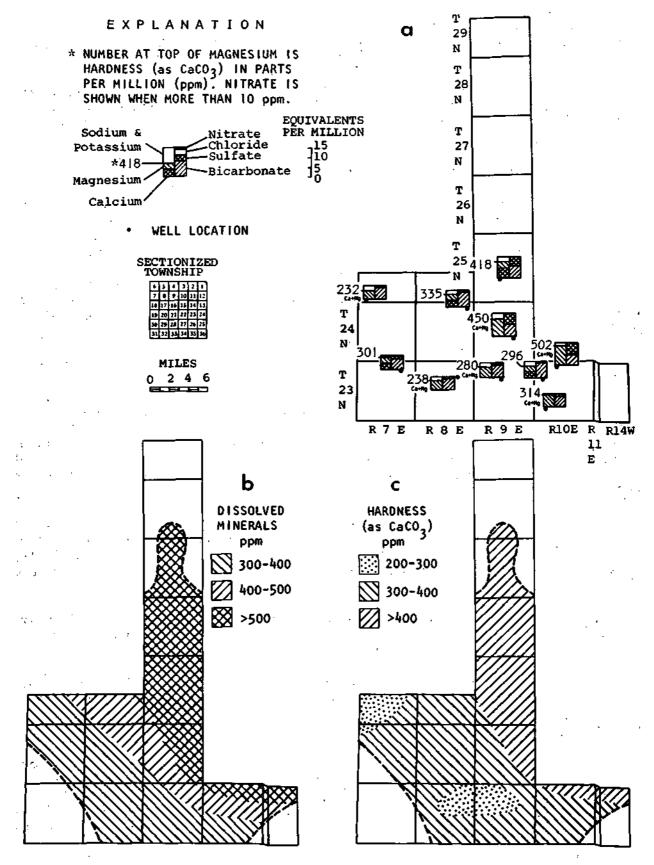


Figure. 11. Selected chemical analysis (a), probable total dissolved minerals (b), and hardness (a) of water from the lower glacial deposits

absence of an overlying confining clay layer. Then as the water slowly moves northward (see figures 4b and 10b) to discharge through the upper aquifer system, it gradually increases in total mineral content.

Total mineral concentrations of water from the lower glacial deposits are illustrated in figure 11b. Water from this aquifer system is below the recommended 500 ppm upper limit set by the U. S. Public- Health Service in the southwestern portion of the county.

The hardness of water obtained from the lower deposits ranges from moderately hard (200 ppm) to extremely hard (400 ppm). Figure 11c suggests the probable hardness content which may be expected from this aquifer for any given location. In all areas, standard home water-softening units could improve the general quality of water from these deposits.

Iron concentrations above the recommended 0.3 ppm upper limit set by the U. S. Public Health Service were detected in over 95 percent of the sampled wells. The use of an iron removal unit in conjunction with a water softener is usually the most efficient and long-lasting method for treating water of this quality.

Bedrock Formations

The upper bedrock formations in Ford County consist of Pennsylvanian, Mississippian, Devonian, and Silurian age rocks (see figures 2a and d for surface configuration and areal distribution). Water-bearing layers of sandstone, limestone, and dolomite contained within these geologic systems serve as a source of water for approximately 9 percent of the farm and domestic water supplies in the county.

Development and Availability. Private farm and domestic wells finished in the Pennsylvanian rocks range in depth, from 150 to 250 feet in the northern two townships of the county and from 350 to 450 feet in the area northwest of Sibley. Throughout the remaining portions, of the study area, the Pennsylvanian rocks are either not present or have not as yet been tapped by wells.

Farm and domestic wells finished in the Pennsylvanian rocks range in diameter from 4 to 8 inches. Two municipal wells owned by the village of Cabery tapping this aquifer are 6 and 8 inches in diameter.

The nonpumping water levels of wells tapping the Pennsylvanian formations range from about 25 to over 50 feet below land surface. Seasonal water-level fluctuations are negligible due to the availability of water from the thick overlying glacial materials.

The yields of wells finished in this formation range from 2 or 3 gpm from the thin layers of sandstone and limestone normally encountered in the upper portions of these rocks to over 100 gpm from thicker, more permeable waterbearing units occasionally found at greater depths. Municipal Well No. 3 (drilled 357 feet deep) owned by the village of Cabery is reportedly capable of producing 125 gpm for 4 hours with a drawdown of 34 feet from a nonpumping water level of 48 feet below ground level (specific capacity =3.4 gpm/ft of drawdown). However, individual well yields from the Pennsylvanian rocks throughout most of Ford County should not be expected to exceed 3 gpm, and yields in excess of 25 gpm as at Cabery should be considered anomalies.

Other more promising bedrock aquifers in the county are as yet relatively unexplored. The Silurian and Devonian age formations have been tapped by only one or two wells in the vicinity of Gibson City. However, yield data from these wells and previous studies by Csallany and Walton (1963) indicate that individual well yields ranging from about 50 to 250 gpm may be obtainable from these formations.

The deeper lying St. Peter sandstone of Ordovician age may also be a promising aquifer in the northernmost part of the county. This deeply buried formation (1000 to 1200 feet below land surface) is the deepest known fresh-water aquifer in this part of Illinois. It has been tapped by the nearby towns of Cullorn, Chatsworth, and Fairbury, and the State Reformatory for Women in neighboring Livingston County. Individual production rates for these wells range from 75 to 200 gpm.

Total groundwater pumpage from all bedrock formations is estimated to be 0.2 mgd. Greater quantities of water could certainly be withdrawn without overdevelopment. However, because large quantities of groundwater are generally available from the overlying glacial aquifers throughout the county, the bedrock formations will probably always be explored and developed only as a last resort.

Chemical Character. The chemical quality of water from the bedrock formations varies considerably both areally and with depth. Results of analyses of water from the bedrock are included in appendix B.

Water from the Pennsylvanian age rocks in Ford County is generally highly mineralized. Restricted circulation of water through the relatively tight sandstone and limestone layers of these rocks probably accounts for the high degree of mineralization and the normal increase in chemical constituents with depth. Water obtained from depths below 300 or 400 feet is likely to be too highly mineralized for domestic use. Analysis number 116366 from the Cabery Village Well No. 2 generally illustrates the quality of water available from the Pennsylvanian rocks.

Analysis No. H6366

Chemical constituent	Symbol	Concen- tration <u>(ppm)</u>	Chemical constituent	Symbol	Concen- tration <u>(ppm)</u>
Iron	Fe	1.4	Silica	Si0 ₂	14.3
Manganese	Min	Tr	Fluoride	F	1.0
Calcium	Ca	171.5	Chloride	Cl	21.0
Magnesium	Mg	67.5	Nitrate	NO ₃	5.4
Ammonium	\mathbf{NH}_4	1.4	Sulfate	SO4	1059.8
Sodium	Na	278.8	Alkalinity	(as $CaCO_3$)	180
			Hardness	$(as CaCO_3)$	707
			Total dissol	ved minerals	1744

Although few data are currently available concerning the chemical quality of water from the Silurian and Devonian age formations in Ford County, regional data suggest that chemical constituents similar to those noted in water from the overlying glacial materials should be expected. Water contained in these formations throughout the county normally originates from recharge areas where the Pennsylvanian rocks are missing and a free exchange of water from the overlying drift materials occurs. Recharge from the Pennsylvanian rocks in other areas is usually prohibited by the presence of tight shale layers commonly found near the base of that formation. Analysis number 109960 of water from Central Soya Well No. 3 generally illustrates the quality of water which may be expected from the Silurian and Devonian formations.

Analysis No. 109960

Chemical consti tuent	Symbol	Concen- tration <i>(ppm)</i>	Chemical constituent	Symbol	Concen- tration <u>(ppm)</u>
Iron	Fe	0.9	Silica	Si0 ₂	21.3
Manganese	Mn	0.0	Fluoride	F	0.4
Calcium	Ca	58.8	Chloride	CI	1.0
Magnesium	Mg	33.5	Nitrate	NO ₃	0.6
Ammonium	NH ₄	5.6	Sulfate	S04	2.5
Sod i um	Na	49.7	Alkalinity	(as CaCO ₃)	404
			Hardness	(as CaCO ₃)	285
			Total disso	lved minerals	406

The chemical quality of water from the deeper lying St. Peter sandstone in the northern portions of the county can only be inferred. Data from wells tapping this formation in nearby Livingston County suggest that water from the St. Peter sandstone in this part of Illinois might be similar to that obtained at Cullom (Fe = 0.5 ppm, Cl = 330 ppm, SO4 = 72.0 ppm, hardness = 122 ppm, and total dissolved minerals = 975 ppm).

In many attempted developments in the past, the St. Peter sandstone has been erroneously accused of containing very highly mineralized water and in some cases a very strong hydrogen sulfide (H_2S) or rotten egg odor. Several such cases have been the result of poor well construction allowing entrance of highly mineralized water and hydrogen sulfide from overlying formations to contaminate the St. Peter water. For this reason, careful quality monitoring and proper well construction are very important in attempting to finish a well in this formation.

WELLS

Types and Drilling Methods

Wells may be classified into types according to the method used in sinking the hole into the ground. The four types commonly found in Ford County are dug or augered, bored, driven, and drilled. The type of well constructed for a given location depends on the aquifer to be tapped and the needs and economic limitations of the user. Dug or augered wells 2 to 5 feet in diameter are commonly used where waterbearing materials are not highly permeable (cannot transmit much water) and where they are less than 40 or 50 feet below land surface. Many of the large-diameter wells in use today are very old wells which were excavated with hand tools and lined with uncemented brick or stone. These wells are often subject to contamination by surface seepage and may be unsuitable for domestic use.

Current methods for constructing large-diameter wells involve the use of a rotary bucket drilling rig for the-excavating process. A large cylindrical bucket with auger type cutting blades on the bottom is rotated until the bucket is loaded with the materials being excavated.' When full, the bucket is raised and swung aside to be dumped. Sections of precast large-diameter porous concrete tile are then placed to case the hole. This type of operation has proven most successful in areas where clay formations are present and caving of overlying materials into the bore hole is at a minimum. '

Bored wells 6 to 18 inches in diameter were commonly sunk prior to 1930 when home and farm demands were relatively small. Water enters this type of well only through the bottom opening which limits its yield capabilities. Because the bored well has a small capacity for receiving and storing water from the aquifer, it usually is inadequate for present-day water demands.

Continuous-flight spiral augers are normally used to construct bored wells. This method of drilling is also limited to regions where sufficient clay is present so that the bore hole will not cave in.

Driven wells, constructed by driving a small-diameter pointed screen and attached pipe directly into the aquifer, are feasible only where the aquifer is shallow (less than about 30 feet below the surface) and the overlying materials are easily penetrated. These wells usually are 1 to 2 inches in diameter, and are pumped by shallow well suction lift type pumps.

Drilled wells, which are most common in Ford County, may be constructed by the cable-tool or hydraulic-rotary methods. In the cable-tool method, the earth materials are broken into small fragments by the alternate raising and dropping of a heavy chisel-edged bit, and these fragments are removed from the hole at intervals by a bailer. In unconsolidated formations, an open hole is maintained by driving a stringer of casing as drilling progresses. After the aquifer has been penetrated, a well screen usually is placed opposite the water bearing formation, the casing pulled upward to expose the screen, and the screen sealed to the casing.

In the conventional hydraulic-rotary method, the drill pipe with a bit attached to the lower end is rotated to break the material into small particles. A thin mud is pumped through the drill pipe, out through openings in the bit, and up to the surface through the space between the drill pipe and the walls of the hole. The circulating mud thus removes the drill cuttings and prevents caving by plastering and supporting the formations penetrated with a thin mud cake on the bore wall until the final well casing and screen are placed in the hole.

In reverse hydraulic-rotary drilling, the flow of the drilling fluid is reversed from that in the conventional rotary method. The drilling fluid, usually a relatively clear water rather than mud, moves slowly down through the opening between the drill pipe and the bore hole, picks up formation cuttings loosened by the drill bit, enters the drill pipe through holes in the bit, and by suction pumping moves to a surface pit where the cuttings settle. From there the clear water is again circulated down the hole. The fluid level in the hole must be kept at ground level at all times, since the difference in pressure between the water column in the hole and that in the aquifer prevents caving of the hole until the final well casing with attached screen is installed.

Construction Features

Construction features vary with the type of well and the characteristics of the aquifer to be utilized. Some of the features commonly employed in various types of wells in the county are casing, screening, gravel packing, and grouting (figure 12). These features, along with those for a dug well shown in detail in figure 13, are recommended by the Bureau of Public Water Supply of the Illinois Environmental Protection Agency. They are designed to minimize contamination from the surface. Detailed requirements are given in the rules and regulations of the Illinois Water Well Construction Code.

Casing. Wells are cased to maintain an open hole and to assist in protecting the quality of the water supply. Wells penetrating bedrock aquifers are cased opposite the overlying unconsolidated materials (figure 12a) and opposite any bedrock formations subject to caving. Drilled wells tapping water-bearing sand and gravel deposits are cased to the top of the well screen (figures 12b and c). Steel casing is used in drilled wells and some large-diameter dug wells;

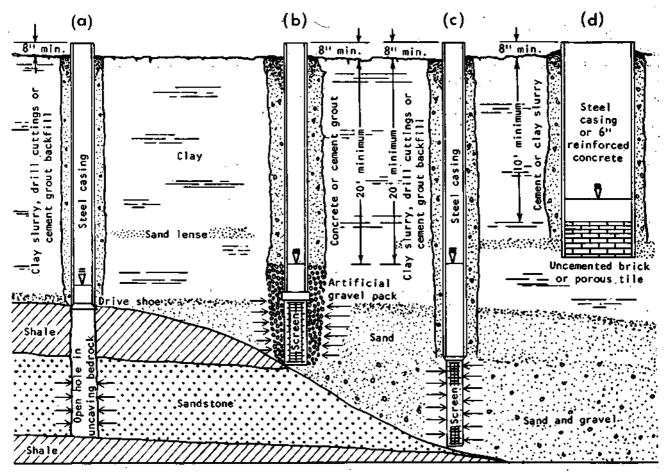


Figure 12. Construction features used in Ford County wells

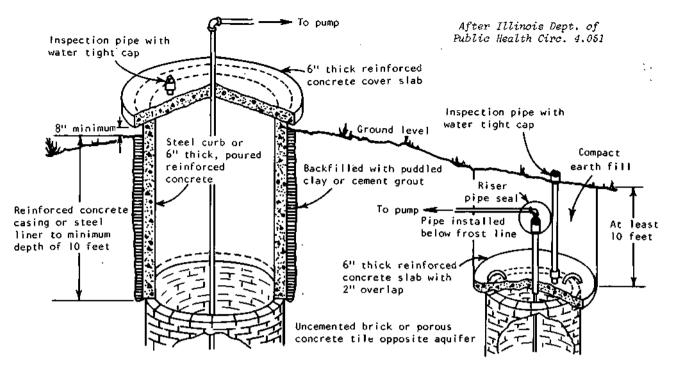


Figure 13. Recommended construction features for large-diameter dug wells

bored and dug wells may be cased with 6-inch thick reinforced concrete from at least 8 inches above ground level to a minimum depth of 10 feet below land surface with the lower portion usually lined with clay or porous concrete tile or uncemented brick (figures 12 and 13). Pitless adaptor units or surface well seals are normally used to provide sanitary protection to small-diameter wells equipped with steel casings. Sanitary protection for bored and dug wells also may be provided by placing a concrete slab at a point at least 10 feet below ground level and by filling in above the slab with compacted earth (figure 13).

Screening. Most successful drilled wells tapping sand and gravel are equipped with a length of commercially made well screen placed opposite the water-bearing formation (figures 12b and c). A properly selected and installed screen is designed to retain the aquifer material yet permit water to freely enter the well. Torch-cut and hand-sawed slotted casing sometimes is substituted for commercially made well screens because of the cheaper initial cost; this practice is not recommended because the openings in such a casing are usually too large to retain the aquifer material and too few to allow free water flow into the well. Most wells so equipped have a history of silt or sand pumping, low yield, and short production life, thus often proving to be more costly on a long-term basis than the well equipped with a commercially made screen.

Wells finished in bedrock aquifers not subject to caving do not require well screens.

Gravel Packing. Drilled wells finished in sand and gravel (figure 12c) usually are equipped with a screen that will retain the coarser 30 to 60 percent of the aquifer material immediately adjacent to the well screen; the remaining fine grains are removed from this area by surging, pumping, and bailing. This development practice causes a layer of coarse materials (a natural gravel pack) to accumulate around the screen. If the aquifer is uniformly fine-grained

(figure 12b) and the natural development methods are not possible, an artificial gravel pack envelope at least 6 inches thick may be required around the outside of the screen to prevent migration of fine material into the well. The grain size of this gravel pack should be about five times as large as the average grain size of the water-bearing material.

Some drillers partially fill the well casing with large-diameter gravel in an attempt to hold back the aquifer and term this gravel packing. This procedure is a very poor substitute for a true gravel pack, as it greatly reduces the yieldcapability of the well and usually permits fine-grained materials to move into the well to plug it up or "chew up" the pump.

Grouting. The annular space between the casing and the bore hole must be sealed to minimize the chance of contamination from the surface. In drilled, dug, or bored wells (figures 12a, c, d) a clay slurry or cement grout must be used to seal the opening between the casing and the upper part of the bore hole. For artificial gravel-pack wells (figure 12b), a cement or concrete grout is required to insure an adequate seal. Minimum depths for grouting depend on the materials penetrated at the well site and vary from 10 feet for dug wells to 20 or more feet for the drilled wells.

Disinfection

New wells, or old installations after rehabilitation, usually are bacterially contaminated and should be disinfected before being placed in service. After the disinfection is completed, the well should be sealed to safeguard against future contamination. The Illinois Environmental Protection Agency, Bureau of Public Water Supply, recommends disinfection procedures using a *strong chlorine laundry bleach* (5.25 percent chlorine). The correct amount to use can be determined from table 2, as explained in the instructions which follow.

- Measure the depth of water in the well if possible. (Considering the well full of water will be satisfactory in most cases since a slight overdose does no harm.)
- Determine the amount of laundry bleach (from table 2) and mix it in about 10 gallons of water. For example, a 6-inch diameter well with 75 feet of water would require 3 cups of laundry bleach.
- 3) Pour this solution into the well between the casing and the drop pipe. (This may involve raising the pump about 4 inches to allow sufficient space for the addition of the solution and for the placement of a sanitary well seal.)
- 4) Connect one or more hoses from faucets on the discharge side of the pressure tank to the top of the well, and while pumping the well, let water from these flow back into the well for at least 15 minutes. Then open each faucet in the system and let the water run until a chlorine odor or taste is detected. Close all faucets. Seal the top of the well casing.
- 5) Let stand for several hours, preferably overnight.

6) Operate the pump, discharging water from all outlets until all chlorine odor and taste disappears. Faucets on fixtures discharging to septic tank systems should be throttled to a low flow to avoid overloading the disposal system.

Diameter of well			nt of chlo epth of wat			
(inches)	5	10	25	50	75	100
2	0.5	0.5	0.5	0.5	0.5	0.5
3	0.5	0.5	0.5	0.5	1.0	1.0
4	0.5	0.5	0.5	1.0	1.5	2.0
6	0.5	0.5	1.0	2.0	3.0	4.0
8	0.5	1.0	2.0	3.5	5.5	7.0
10	1.0	1.5	3.0	6.0	9.0	12.0
12	1.0	2.0	4.0	8.0	12.0	16.0
18	2.0	3.5	9.0	18.0	27.0	36.5
24	3.0	6.5	16.0	32.5	48.5	64.5
30	5.0	10.0	25.0	50.5	76.0	
36	7.0	14.5	36.0	72.5		
48	13.0	26.0	64.5			
60	20.0	40.3				

Table 2. Recommended Chlorine Dosages for Well Disinfection

Chlorine always should be used outside or in well-ventilated places because breathing the fumes is dangerous. In heavy concentrations, chlorine also is harmful to the skin and clothing.

Additional instructions on safe water supplies from wells can be obtained from the Bureau of Public Water Supply of the Illinois Environmental Protection Agency (formerly Illinois Department of Public Health), Springfield.

Methods of Pumping Water

Most wells in Ford County are equipped with electrically driven pumps of the suction, jet, cylinder, or turbine types. Suction pumps can be used only where the pumping level is less than about 18 feet. For greater lifts, deep-well jet, cylinder, or vertical and submersible turbine pumps are required. Farm and domestic pumps generally are of the deep-well jet, cylinder, or submersible turbine types. Sizes of commercially available submersible pumps limit their use to wells with minimum inside diameters of 4 inches. Large-capacity municipal and industrial wells in the county utilize both the submersible and vertical turbine type pumps.

SUMMARY OF MAJOR WATER SUPPLIES

Municipalities and industries in Ford County pump about 1.4 mgd from wells. Groundwater pumped for farm and domestic purposes is estimated to be 0.8 mgd. The major portion of municipal pumpage occurs at Gibson City and Paxton which pump about 500,000 and 365,000 gpd, respectively. In addition, industrial pumpage at Gibson City is an estimated 200,000 gpd. All municipal water supplies are obtained from wells tapping sand and gravel deposits of the drift materials with the exception of Cabery which obtains its water supply from the Pennsylvanian bedrock formations. Wells tapping the upper glacial deposits yield from 100 to 400 gpm; two wells tapping the lower deposits in the buried Mahomet Valley at Paxton yield about 1000 gpm. The bedrock wells at Cabery reportedly yield 125 . gpm.

The municipal and industrial groundwater supplies described in this section should provide a general indication as to what could be obtained from other such installations in areas where similar aquifer conditions are present. Probable maximum well yields can be estimated using specific capacity (yield per foot of drawdown) data in conjunction with available drawdown information at the area of interest. For example: Paxton City Well No. 6 has a reported specific capacity of 10 gpm/ft and nonpumping water level 102 feet below land surface. The top of the screen in this well is 133 feet below ground level providing an available drawdown of about 30 feet (133 feet minus 102 feet = 31 feet available drawdown). The estimated maximum short-term yield of this well should therefore be about 300 gpm (10 gpm/ft times 31 feet = 310 gpm).

In the descriptions below, population figures are taken from the 1960 census; pumping figures are the most recent available and in most cases are for 1969.

Cabery

The municipal water supply for the village of Cabery (population 293) is obtained from two wells (Nos. 2 and 3), located on the south edge of town, that tap the Pennsylvanian age bedrock formations. Well No. 1, the old Park well, was abandoned in 1930.

The older well (No. 2) was drilled in 1920 by Lars Jensen, Clifton, to a depth of 233 feet below ground level. The well is cased with 200 feet of 6-inch pipe and is used only for standby purposes. The other well (No. 3) was drilled in 1956 by J. Bolliger and Sons, Fairbury, to a depth of 357 feet. The well is cased with. 8-inch pipe from 3 feet above the surface down to 214 feet 10 inches, below which the hole was finished 8 inches in diameter. Upon, completion, the well reportedly produced 125 gpm for 4 hours with a drawdown.of 34 feet from a. nonpumping water level of 48 feet (specific capacity = 3.6 gpm/ft of drawdown).

Analyses of water samples from the two wells show the water to have the following mineral constituents in parts per million (ppm) :

Well No.	Hardness	Iron	Total dissolved minerals
2	684	1.6	1406
3	640	0.2	1619

The water is not treated.

Central Soya Company, Inc. (Gibson City)

Five wells have been drilled at the Central Soya Company processing plant. Three wells have been abandoned, and the plant now uses Well No. 4, tapping the bedrock, and Well No. 5, finished in the upper glacial materials, as a supplemental supply to water purchased from the city. Well No. 4 was drilled by L. F. Swanson and Sons, Gibson City, in 1947 to a depth of 552 feet below ground level. It is cased with 7"inch diameter pipe from 1 foot above land surface to 395 feet, below which is open hole. The well is equipped with a vertical turbine pump rated at about 150 gpm against 300 feet of head. Upon completion, the well produced 120 gpm for 30 hours with 59 feet of drawdown from a nonpumping water level 75 feet below ground level (specific capacity = 2.0 gpm/ft of drawdown).

Well No. 5 was constructed in 1947 by plant employees to a depth of 34 feet below ground level. It is cased with 60-inch porous concrete pipe from 2 feet above land surface to a depth of 34 feet. The well is equipped with a vertical turbine pump rated at 100 gpm against 75 feet of head.

Average daily pumpage is estimated to be about 200,000 gallons.

Analysis of a sample from Well No. 4 (appendix B, Lab. No. 110829) showed the water to have a hardness of 236 ppm, total dissolved minerals of 346 ppm, and an iron content of 0.6 ppm.

The water is not treated.

Elliott

The village of Elliott (population 343) uses one well (No. 2) finished in the upper glacial formation as a source of municipal supply. Well No. 1 drilled in 1911 is no longer in use. Well No. 2 was constructed in 1950 by J. Bolliger and Sons, Fairbury, to a depth of 126 feet below land surface. The well is cased with 8-inch pipe to a depth of 120 feet and is equipped with 6 feet of No. 80 slot (0.080 inch) Johnson Everdur well screen. Upon completion, the well produced 120 gpm for 5 hours with a drawdown of 53.4 feet from a nonpumping water level of 69.8 feet below land surface (specific capacity = 2.2 gpm/ft of drawdown). This well is equipped with a 75-gpm vertical turbine pump.

Average daily pumpage is reported to be 20,000 gallons.

Analysis of a sample (appendix B, Lab. No. 144933) showed the water to have a hardness of 244 ppm, total dissolved minerals of 363 ppm, and an iron content of 2.1 ppm.

The water is not treated.

Gibson City

The municipal water supply for Gibson City (population 3453) is obtained from three wells, located in the north end of town, tapping the upper glacial formation. Well No. 1 was drilled by American Water Company, Aurora, in 1927 to a depth of 58 feet below ground level. It has 10 feet of 24-inch screen with a gravel-pack annulus 7 inches thick. Wells No. 2 and 3 were drilled by LayneWestern Company, Aurora, in 1939 and 1949 to depths of 56 and 58 feet below land surface, respectively. Both are equipped with 20 feet of 18-inch screen with gravel-pack annuli 9 inches thick. Pumping tests conducted on the wells indicate they have specific capacities from 22 to 24 gpm/ft of drawdown and should be capable of yielding 300 to 400 gpm each on a short-term basis. Pump capacities in the three wells range from 250 gpm to 400 gpm.

Average daily pumpage is reported to be 575,000 gallons, of which approximately 100,000 gallons per day is used by Central Soya Company.

Analyses of water samples from the three wells show the water to have the following mineral content in parts per million (ppm):

			Total
			dissolved
Well No.	Hardness	Iron	minerals
1	304	2.0	355
2	360	1.5	388
3	340	1.3	382

The water is fluoridated.

Kempton

Four wells have been drilled at the village of Kempton (population 252). Wells No. 1 and 3 have been abandoned and filled. Wells No. 2 and 4, finished in the upper glacial formation, serve as the source for municipal water supply.

The older well (No. 2) was drilled in 1931 by E. W. Johnson, Bloomington, to a depth of 238 feet below ground level. It is 8 inches in diameter and is equipped with 10 feet of Johnson welded screen, the top 7 feet having No. 20 (0.020 inch) slot openings and the lower 3 feet having No. 30 (0.030 inch) slots. When completed, the well produced 110 gpm for 4 days with a drawdown of 100 feet from a nonpumping water level of 80 feet (specific capacity = 1.1 gpm/ft of drawdown).

Well No. 4 was drilled in 1962 by J. Bolliger and Sons, Fairbury, to a depth of 238 feet. It is an 8-inch well equipped with 5 feet 8 inches of No. 20 (0.020 inch) slot Johnson Everdur screen. Upon completion, the well produced 100 gpm for 4 hours with a drawdown of 61.5 feet from a nonpumping water level of 87.5 feet (specific capacity = 1.6 gpm/ft of drawdown). The long-term safe yields of the two wells are estimated as 75 and 50 gpm (108,000 and 72,000 gpd), respectively. Both wells are equipped with 100-gpm submersible turbine pumps.

Analyses of water from the two wells show the water to have the following mineral contents in parts per million (ppm):

Well No.	Hardness	Iron	Total dissolved <u>minerals</u>
2	734	2.1	1688
4	730	2.2	1776

The supply is continuously chlorinated for bacterial protection.

Melvin

The village of Melvin (population 559) utilizes one well (No. 4), finished in the lower glacial formation, as a source of water supply. A second well (No. 3) is maintained for emergency use. Two earlier wells (Nos. 1 and 2) are no longer in service. Well No. 4 was constructed in 1954 by J. Bolliger and Sons, Fairbury, to a depth of 260 feet. It is an 8-inch well equipped with 20 feet 8 inches of No. 12 (0.012 inch) slot Johnson Everdur screen. Upon completion, the well produced 153 gpm for 4.5 hours with a drawdown of 13 feet from a nonpumping water level of 118 feet (specific capacity =11.8 gpm/ft of drawdown). Well No. 3 was drilled in 1923 by E. W. Johnson, Bloomington, to a depth of 265 feet. It is a 6-inch well, equipped with 25 feet of No. 10 (0.010 inch) slot screen. Wells No. 4 and 3 are equipped with 200-gpm and 60-gpm pumps, respectively.

Average daily pumpage is reported to be approximately 27,000 gallons.

Analyses of water from the two wells show the water to have the following mineral contents in parts per million (ppm):

			Total dissolved
<u>Well No.</u>	Hardness	Iron	minerals
3	335	0.6	427
4	316	0.7	426

The supply is continuously chlorinated for bacterial protection.

<u>Paxton</u>

Eight wells have been drilled at the city of Paxton (population 4370). Four wells (Nos. 1, 2, 3, and 4) have been abandoned and sealed. The city now uses two wells (Nos. 7 and 8), located approximately 2 miles west of town, as the primary source for municipal water supply. These wells tap the lower glacial (Kansan) deposits. Wells No. 7 and 8 were drilled in 1956 and 1959 by J. P. Miller Artesian Well Company, Brookfield, to depths of 340 feet. Both are gravelpacked wells with 16-inch diameter casings, 10-inch thick annuli, and 100 feet of 16-inch No. 80 (0.080 inch) slot screen.

Two older wells (Nos. 5 and 6) located in town, which are also in the lower glacial (Illinoian) deposits, are maintained for emergency use. Well No. 5 was drilled in 1945 by Woollen Brothers, Wapella, to a depth of 149 feet. It is an 8-inch well and is equipped with 23 feet of Johnson Armco-iron screen. Well No. 6 was drilled in 1950 by Hayes and Sims, Champaign, to a depth of 153 feet. It is a 10-inch well and is equipped with 20 feet of Johnson screen. The top 6 feet of screen has No. 30 (0.030 inch) slot openings, the middle 5 feet has No. 25 (0.025 inch) slots, and the bottom 9 feet has No. 18 (0.018 inch) slots.

Upon completion the individual wells were tested to determine their potential yields. A summary of the test data is as follows:

		Length		Nonpumping				
Well No.	Pumping rate <u>(gpm)</u>	of test <u>(hr)</u>	Drawdown <u>(ft)</u>	water level (ft below <u>land surface)</u>	Specific capacity <u>(gpm/ft)</u>			
5	155	1	13	101	12			
6	200	4	20	102	10			
7	800-1900	2k	lk	66	135 (avg)			
8	1200	2k	8	68	150			

Installed pump capacities for the four wells are: No. 5, 100 gpm; No. 6, 150 gpm; No. 7, 1000 gpm; and No. 8, 1000 gpm.

Average daily pumpage is reported to be 450,000 gallons.

Analyses of water samples from the four wells show the water to have the following mineral contents in parts per million (ppm):

			Total
			dissolved
Well No.	Hardness	Iron	minerals
5	194	1.4	311
6	295	1.3	451
7	332	1.6	368
8	350	1.7	418

The water is treated with phosphate to sequester the iron (help hold it in solution) and is continuously chlorinated for bacterial control. The water is also fluoridated.

Piper City

Seven wells have been drilled at the village of Piper City (population 807). The first five wells constructed have been abandoned and the village now uses two wells, finished in the upper glacial formation, as a source of water supply. The two wells (Nos. 6 and 7) were drilled in 1944 and 1953 by Hayes and Sims, Champaign, to depths of 90 feet and 127 feet, respectively. Both wells are 16-inch gravel-packed wells with 8-inch diameter inner casings and screens. Well No. 6 is equipped with 19 feet of No. 60 (0.060 inch) slot Johnson Everdur screen.

Upon completion, Well No. 7 yielded 100 gpm for 1 hour with 8.5 feet of drawdown from a nonpumping water level 9 feet below land surface (specific capacity = 12 gpm/ft of drawdown). Wells 6 and 7 are equipped with vertical turbine pumps rated at 170 and 140 gpm, respectively.

Average daily pumpage is reported to be 55,000 gallons.

Analyses of water samples from the wells show the water to have the following mineral constituents in parts per million (ppm):

Well No.	Hardness	Iron	dissolved minerals
6	304	1.2	380
7	319	2.1	405

Total

The water is not treated.

<u>Roberts</u>

The village of Roberts (population 504) uses two wells (Nos. 5 and 6), finished in the lower glacial deposits, as a source of municipal water supply. Four earlier wells (Nos. 1, 2, 3, and 4) have been abandoned and filled.

The older well (No. 5) was drilled in 1950 by J. Bolliger and Sons, Fairbury, to a depth of 226 feet below land surface. It is an 8-inch well with 9 feet of continuous slot screen exposed to the water-bearing formation. The upper 3 feet has No. 10 (0.010 inch) slot openings and the lower 6 feet has No. 20 (0.020 inch) slot openings.

Upon completion the well was pumped at rates varying from 75 to 105 gpm for about 4 hours with 34.6 feet of drawdown from a nonpumping water level 81 feet below land surface (final specific capacity = 3 gpm/ft of drawdown). The well is equipped with a 105-gpm vertical turbine pump.

The other well (No. 6) was drilled in 1960 by J. Bolliger and Sons, Fairbury, to a depth of 228 feet below land surface. It is an 8-inch well with 13 feet of No. 16 (0.016 inch) slot Johnson Everdur screen. Upon completion, this well produced 128 gpm for 5 hours with a drawdown of 19.8 feet from a nonpumping water level of 86.6 feet from land surface (specific capacity = 6.5 gpm/ft of drawdown). The well is equipped with a 130-gpm submersible turbine pump.

Average daily pumpage is estimated to be 20,000 gallons.

Analyses of water samples from the wells show the water to have the following mineral constituents in parts per million (ppm) :

Well No.	Hardness	Iron	Total dissolved minerals
5	446	1.6	685
6	426	1.2	681

The water is treated with a chlorinated solution of polyphosphate to sequester the iron (hold it in solution) and is continuously chlorinated for bacterial control.

Sibley

The village of Sibley (population 386) uses one well (No. 1), finished in the upper glacial formation, as a source of municipal water supply. It was

constructed in 1907 by Otto Stiegman, Roberts, to a depth of 117 feet. It is an 8-inch well with 8.5 feet of enlarged No. 10 (0.010 inch) slot Cook screen. The well is equipped with a 58-gpm vertical turbine pump.

Analysis of a sample (appendix B, Lab. No. 116216) showed the water to have a hardness of 273 ppm, total dissolved minerals of 310 ppm, and an iron content of 0.8 ppm.

The water is not treated.

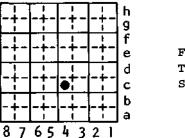
Stokely Van Camp Canning Co. (Gibson City)

The Stokely Van Camp Canning Co. uses three wells (Nos. 2, 3, and 4), all finished in the upper glacial deposits, as a source of water. One earlier well (No. 1) has been abandoned and sealed. Wells No. 2, 3, and 4 were drilled by L. F. Swanson and Sons, Gibson City, in 1932, 1951, and 1967 to depths of 47, 58, and 59 feet, respectively. Wells No. 2 and 3 are 6 and 8 inches in diameter, have 15~foot long screens, and are equipped with vertical turbine pumps capable of pumping about 400 gpm. Well No. 4 is an 8-inch well, is equipped with a total of 20 feet of No. 30 and 50 (0.030 and 0.050 inch) slot screen, and has a submersible turbine pump rated at about 600 gpm. Upon completion, the well reportedly produced 569 gpm for 4 hours with 2 feet of drawdown from a nonpumping water level 10.5 feet below ground level (specific capacity = 284.5 gpm/ft of drawdown).

No average pumpage data are available. However, peak usage during the canning season may approach as much as 750,000 gpd.

Water used in the processing plant is continuously chlorinated for bacterial control.

EXAMPLE USE OF MATERIALS


The following brief discussion illustrates how the tables and maps in this circular may be used to evaluate the groundwater conditions at any given location in the county. Assume that a well is desired for a dependable farm water supply (5 to 10 gpm) in the Southeast corner of Section 31, Township 25 North, Range 9 East, Wall Township, Ford County (FRD 25N9E-31.1a).

A quick search of the data tabulated in appendix A shows three wells located in the section of interest. Two of these wells tap the upper glacial deposits at depths of 101 and 120 feet and one has a reported nonpumping water level about 90 feet below ground level. The third well is finished in the lower glacial deposits at a depth of 222 feet below ground level and also has a nonpumping water level 90 feet below ground level. Records of 28 additional wells located in the adjoining sections (24N8E-1, 24N9E-5 & 6, 25N8E-25 & 36, and 25N9E-29, 30, S 32) are also tabulated in appendix A. Twenty of these wells tap the upper deposits between depths of 60 and 143 feet and have reported nonpumping water levels from 50 to 96 feet below ground level. The remaining eight wells are finished in the lower deposits at depths from 210 to 260 feet and have reported nonpumping water levels from 75 to 156 feet below ground level. No records of wells tapping the underlying bedrock formations are recorded in the general area of interest.

Most of the wells near this location are 2 or 4 inches in diameter and are equipped with lengths of commercially made screen designed to hold back the aquifer materials yet permit free entry of water into the well. Available information suggests that 3 or more feet of water-bearing sand (and screen) are normally required to insure an adequate farm supply. Although many of the wells now in use in Ford County are 2 inches in diameter, increased water usage and ease of pump maintenance make 4- or 6-inch wells more desirable.

The chemical quality of water from each aquifer is illustrated in appendix B. Water from the upper glacial deposits in the area of interest contains 3.5 ppm iron, 290 ppm hardness, and 488 ppm total dissolved minerals (Lab. No. 172369). Analysis of a sample (Lab. No. 116241) shows water from the lower deposits to have 0.6 ppm iron, 335 ppm hardness, and 427 ppm total dissolved minerals.

Maps in the text indicate that a satisfactory farm well can probably be developed from either the upper or lower glacial formations. A drilled well less than about 100 feet deep (figure 6) with a nonpumping water level near 90 feet below ground level (figure 7a) should be obtainable from the upper deposits. Total dissolved minerals would be expected to range between 400 and 500 ppm (figure 8b) with a hardness content between 300 and 400 ppm (figure 8c). Providing no deposits worthy of development are encountered at these depths, drilling into the lower deposits is recommended. A well tapping these materials should be less than about 240 feet deep (figure 9) with a nonpumping water level of about 90 feet below ground level (figure 10a). Total dissolved minerals and hardness content would be expected to range between 400 and 500 ppm and 300 and 400 ppm, respectively (figures 11b and c). The well-numbering system used in this report is based on the location of the well, and uses the township, range, and section for identification. The well number consists of five parts: county abbreviation (FRD), township (T), range (R), section, and coordinate within the section. Sections are divided into rows of 1/8-mile squares. Each 1/8-mile square contains 10 acres and corresponds to a quarter of a quarter of a quarter section. A normal section of 1 square mile contains 8 rows of 1/8-mile squares; an odd-sized section contains more or fewer rows. Rows are numbered from east to west and lettered from south to north as shown in the diagram.

Ford County T23N, R7E Section 23

The number of the well shown is FRD 23N7E-23.4c. Where there is more than one well in a 10-acre square they are identified by arabic numbers after the lower case letter in the well number. Any number assigned to the well by the owner is shown in parentheses after the location well number.

In the listing of wells owned by municipalities, the placename is followed by V, T, or C in parentheses to indicate whether it is a village, town, or city, except where the word City is part of the place-name.

Owners are listed according to the most current information available -- the 1969 plat book and recent well records for Ford County.

Symbols and abbreviations shown indicate the following:

= constructed before year given, exact
 date unknown

- * = test hole not developed as well
- ** = abandoned well
- drv = driven well
- drl = drilled well
- bor = bored well
- drl-GP = drilled well, gravel packed

The types of wells and methods of construction used in Ford County, their susceptibility to surface contamination, and methods of disinfection are discussed in the text of this report.

will							•		Land	Non-					Water-bearing formation	
		Tear	we we		Diam-		Screen Diam-	\$101	surface elevation	pumping water	Draw-	Pumping	Observed specific	of	and	
Well <u>oumber</u> T23N, A7E	Denie r	con- structed	Түре	Depth (ft)	etar (im)	Length {fe}	eter (in)	(in)	(ft above mel)	level (ft)	dawn (ft)	rate (gpm)	tapacity [gpm/fi]	test (kr)	depth (ft)	Driller
1.20	Lillie Ogg	1920	40)	75	2				781	40					Sand at 75	
1.8a 1.8e	Helen Berger** Helen Berger	1918 1918	dr) drt	55 80	3				765	26			 +-		Sand at 55 Sand at 60	Swanson
2	Gibson City	+1922	drl	34	6				792	30					Sand & gravel.et 34	Swenson
2	Aquatic Assn. Gibson City	-1923	drl	37										36		••
-	Aquatic Assn.											110		30		••
2.3a	Gibson City	1949	drl	60					758						*Sand, 27+35; sand # gravel, 35-59	Layne-
2.461 2.462	Dr. R. H. Lane Gibson City	+1916 1949	drv drl	20 58	6	5	6		755 755	20.5	19.3	 74	3.0	5	*Sand, 22-30; sand a gravel, 30-58; line-	Vestern Layne-
2.463	Gibson City	1949	drl	55	••				755						stone at 58 *Sand, 25+50; line-	Vestern Layne-
Z.464	Gibson City	1949	de l	50					755	••					stone, 50-55 MSand & gravel, 25-47	Western Layne-
2.465(3)	Gibson City	1949	dr) - 6P	50	30-18	19-5	18	. 130	755	19.7 17.5	17.9 26.5	400	22.3	8 	Sand, 22-30; sand & gravel, 35+58	Western Layne- Western
2.80	Cardie Ogg**	1913	dr)	30	1.25			**	742	26.4	13.9			3	Sand at 30	
2.8e	Archie Fox Lain Foster##	1913	dru dru	40	1.25		1.25		755	10-13		**			Sand at 40	
3,441 3,442	Lain Foster	1932	drl	31	1.25			**	754 754	¹⁰					Send, 30.5-31 Sand	Johnson
3.41	Helen F. Kally	1963	drl	65	2	÷	2	++ ++	752							Swanson
1.2e 1.2f	W. J. McClure W. J. McClure	1931	47] 47]	44 45	2		.	-+	762 764	20					Sand at 44 Sand at 45	Swanson Aiblet
4.Sel	Rutkowski Bros.44		4c)	62	1.25		::	**	770	iş 🛛				5	Send et 42	
4.5e2 4.8d1	Rutkowski Bros. W. E. McKeever**	1923	dr] dr]	65 61	2				770 790	30					Sand at 65 Sand at 61	Ribles
4.842	W. E. McKeever	1964	det	90-95	- E		•		792							Taylor
5.46 5.5e	Rutkowski Bros.#* Narvey Tjardes	1914	drt drt	70 90	2		4		780 802	30					Sand at 70	Swanson
6. Id	Aubert S. McCornick	1925	drl	87	3				805	25					Sand at 87	Swanson
6.5e) 6.5e2	Robert S. McCornick Robert S. McCornick		dri dri	135	1	4.5	3.75	.014	822 822	50 60					Send at 135	Swanson Swanson
6.6=1	Robert S. McCornick		drl	120	3		6		825	55			**		Send at 120	**
6.6e2 7.3a	Robert S. McCormick Walter L. Taylor	1960 1918	dri dri	103	ž		•	.025	825 835	65 45	2	25	8.3	2	Send & grevel, 98-103 Send at 90	Swanson Riblet
7.8f	Stephen McCormick		dr I	110	- E				850	65			••		Sand at 110	
8.lg 8.4d	Emily Meson Lawrence Ropp	1908	dr i dr i	75 90	4		i.		765 800	30				**	Sand at 75	Riblet Tipsord
8.541	Lawrence Ropp		del	85	÷		*		802					**	••	Fipsord
0.5d2 0.8g	Lawrence Ropp ⁴⁴ trene Johnson ⁴⁴	1941	dri dri	72 96	2		1.25	.015	802 820	29 60-65					Sand, 61-68, 69-72 Sand at 96	Swanson
9.30	A. Gerling, et al	1890	drl	25	1.25				750	3.5+2.5		-+			Sand at 25	Swanson
9.7e 10.1c	Merjorie Nagle** Cargili, Hac.	1912 1968	dr) dr]	32 29	2		5.75	.014	760 740	15 5.68	3	37	<u>.</u>	5	Sand at 32 Sand, 26-29	Riblet Swanson
10.5f	Eleanor Onken#*	1919	dr 1	32	1.25	::	•••		744	3-4	<i>.</i>	·		<i>.</i>	Sand at 32	Anderson
30.8a 81	Haybelle Barr Dr. Otto Fikenscher	+1878	dry dug	20	2				743					::	Dirty send & gravel	'
	Charles Condia	-1908	dry					••							at 20	
#	Charles Condit Dr. Otto Fikenscher	+1908	drv	32 30											Dirty sand at 32 Sand & gravel, 20-23	
11	Stokely Van Camp	-1933		25				••							**	
11 (5)	Cenning Co.** Central Soya	1947	dug	34	60			*-		10					Sand 6 gravel at 34	
11.3hi	Co., inc. Gibson Elty**	+1911	dr)	55	6			sinted								
-	•			••		5		pipe	760						Sand 6 gravel, 47-55	
01.3h2 11.9c	Gibson City## A. H. Bernhart	+1918 +1908	dri bor	55 18	15	10		.006	760	10-25					-	Swanson
0.60	Gibson City	1927	dr I -GP	sê	38-24	10	24		745 750	13.6	14.0	450	30.4	40	Sand & gravel at 18 Sand, 38-58	American
									14	13.5	20		**	5		Water Corp.
										18.9	15.7 13.6	322 303	20.5 22.3	3		
().4h2 ().5h(2)	Gibson City Gibson City	1939 1939	dr) dr1-GP	61 56	30-18	20	18		758			•-		••	*Send, 21-61	Hayes 6 Sime
11.30(4/	010300 0109	1233	0,1-0-		J 0**00	40			750	15-5	22 17.5	500 375	22.7	\$	Sand 6 gravel, 17-30; sand, 31-56	Layne- Western
11.691	Stokely Van Camp	1929	drt	45	6		••		a / -	12.5	20					
-	Canning Co.44			-					745	12						Swanson
11.692(2)	Stokely Van Camp Canning Co.	1932	der 1	47	6	15	6		745						Sand at 47	Swanson
	Stokely Van Camp Canning Co.	1951	drl	58	+	15	8	••	745	8		315		Û	Sand & gravel, 16-33:	Swanson
11.6g4(4)	Stokely Van Camp	1967	drl	59	8	20	8	.030+.050	745	10.5	2	569	284.5	4	sand, 33-56 Sand & gravel, 17-62	Swanson
11.6hl	Canning Co. Wabash RA		dr1	54	8	9	8	••							-	
11.6h2 11.6h3	Gibson City Gibson City		dr] dr]	60 55	.	÷	:- :-		748 748 748		2			::	Sand & gravel, 15+47.5 *Sand & gravel, 12-60 *Sand & gravel, 12+25;	Swenson Swenson Swenson
															send, 25-30; sand & gravel, 30-35; sand, 35-42; sand & gravel,	
11.78(4)	Central Soya	1947	dr I	552	12-10-7				745	76		120	2.0	30	42-55	e
	to., Inc.									75 64	59 72	120	2.0	30 39		Swanson
11.76	6lbson City		drl	47.5	••	**			747					·	ASand, 38-40; sand 6	Swanson
11.8c1	Central Soya	1940	drl	31	6	7	6	.040	742	9	16		•-	29	gravet, 40-47.5 Sand, 25-31	Swanson
13.8c2())	Co., inc.** Central Soya	1947	drl	33	6	6	••	.060	742	••			••			
	Co., Inc.##								-							Swanson
11.Bal (2)	Central Soya Co., Inc.**	1944	de l	385	6		••		744	45 76	90 74	100 35-40	1.4	24	Sand, 125-127; sand 6 gravel, 352-161; lime,	Swanson
11.842(3)	Central Soya Co., Inc.**	1947	dr I	400	12-10				744	57 60	180 75	30 80			161-385 Lime, 162-233, 234-400	Swenson
12.80	Mary Hischell 6		drl	42	2		••		748							e
	Anna Hessett 🕞 👻															Swanson
12.891	Mary Mitchell 6 Anna Hessett		drl	40-50	2		2		755	20					Sand at 40-50	

)	n	t	Ir	ſ	u	e	d)

									Land	Non-					Water-bearing	
		Year		1	01		Screen_	\$100	surface elevation	pumping water	Draw	Pumping	specific	Length of	formation	
Well	former f	600 *	Type	Depth (fs)	eter (in)		eter (in)	size (in)	(ft above mel)	level (ft)	down (/11)	rnte (gpm)	cepacity (gpm/ft)	test (ኢዮ)	depth (ft)	Driller
Ausber	Owner (Continued)	51106184	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	40	(Int)		(144)	100						<u> </u>		
(1)4, 6)5									756	15	**				Send at 50	Ribles
12.0g2	Mary Mitchell & Ance Hessett	1919	del	50	1.25										Sand at 40	
13.14	Raymond Reiners Clarance Goodrich	1590± 1945	dug dri	40 47	36	ï	3.75	.030	752 764	25 30	9	RÎ -	1.2	8	Dirty sand, 30-37; sand,	Swanson
13.5e	CITATION CONTICU	1343		-7	•	•									37-42; send & gravel, 42-47	
13.59	Hervey Reemussen	1912	dug f	80	36-2		••		770	16	+-			**	Sand at 80	Swenson
14	Bul Rancho Notel	1950	dr) dr)	30	6			.020		3	17	30	1.8	,	Sand & gravel, 18-21;	Swanson
16.66			drl	20	1.25		1.25	**	738	6		••	••		sand, 25-30 Sand at 20	••
14.7d1	W. C. DeWall, Jr. William Anderson		dug	26	40		**	••	731 730	. 7.4 50	20	20	1.0		Sand, 27.5-28 Sand & gravel, 175-178;	Swanson
14.742	W())lan Anderson	••	drl	312	6-4			••		~					limestone, 178-260; lime, 275-285, 288-312	
15. le	Forn Courts	1906	drl	38	1.25				731	3		••	**	••	Sand & gravel at 38	Sumason
15.29	S. V. Schroeder	1966	drl drv	33 42	6		6		734 734	8-10					Send at 42	Swanson
15.3f 15.5e	G. W. Schroeder William Holland		dug	20		**	<u> </u>		734 745			••			Sand at 35	Swattson
15.851 15.852	Evan Eminger Evan Eminger	1905	dr) drl	35 32	1.25		1.25		745	••				••	Sand at 32	Swenson No 7m
16.1f 16.4e	Wellace Oflimen** Wellace Oflimen	1898	drv dri	30 24	2 2	3	ï		758 737	12 		••			Sand at 30	Svanson
16.5+	Vallace Dillman**	••	drl	30	i.25				740 752	10 +2					Sand at 30 Sand at 30	
16.871 16.872	Wallace Dillman** Wallace Dillman		dr.) drv	30	2				752	10					Send at 2)	
17.16 17.5e1	W. S. Muston Est. Goorge Rainers	1910 +1919	dr) dug	23 15	1.25				755 752	.0 			••	**		
17.5+2	George Reiners	1966	dr i drv	27	1.25		1.25		752 752	.0	••			÷-	send at 27	Smenson
17.6a 17.86	George Reiners Schertz Service	1915	dri	20	2		**	••	791 762	30 3					Sand at 70 Sand at 26	
18.1a 18.4g	H. A. Schroeder** Walter Taylor	••	drv drl	28 120	1.25		3		\$0 0					••		
16.5h	Clarence Bradd, Te	. 1922	drv	110	2		<u>.</u>		832 758	60-65 1.2					Send at 110	Anderson
19.29 19.4a	Maude Yetes Maude Yetes		dug dr 1		- 14				752 765	12-15					Send at 45	Ribles
19.4g 20.16	Maude Yates** Doris M. Tjørdes	(93)	dr) dr)	45 35	1.25				740	**	••				Send at 35 Send at 32	Ríðlet
20.2h 20.8f1	Elanr Helson George Reiners	1925	dr) dr)	32 30	2 2		1		750 752	14					Send at 30	
20, 6f2	George Reiners	**	del	29	1.25	3	1.25		752	6.9		::			Send at 29 Send at 28	Ziqpernan
21.1d	Elmer Melson	1891	dug ¢ drv	28	36-1.25	••	1.25		740						Sand at 22.6	
21.5a 21.7h	flore Helmick V. S. Huston Est.		dug drì	22.4 27	36		:		741	13.6				••	**	Skenson
22.3h	Harry Nartio		dri	30	1.25	••			734 732	50	140	6.5	1	5	Sand at 30 Line, 160-171, 172-237	Riblet Swanson
22.5h 22.7a	Harry Martin Vandel J. Whitten	1945 1942	dri dri	237 30	- 2	2	ï	slatted		16		2.5		.	Sand & gravel, 22-24	Swenson
23. ihi	James Thompson**	1921	dr)	16	1.25		**	pipe	745	4.					Sand at 16	Seranson
23. IM2 23.5d	James Theopson®s Raymond Green	1959	drt drl	16 80	2				745 737						Sand at 80	Swanson Swanson
23.79	P. L. Nyars	1932	del	60	1		2		735	15			Ξ		Sand, 59-60	Riblet
23.7h 24.2hi	P. L. Hyers Glens Reynolds	1909	dri dri	24 38	1.25		1		735 752	18	**		••	••	Sand at 28 Sand at 38	Ribler
24.2h2 24.4c	Glens Reynolds Elizabeth McCalles	1967 1953	dr1 dr1	60 335	6				752 740						Send at 60 Send, 112-114; 11me,	Swanson Swanson
24.50			drt						738		3	6	2.0		279-304, 320-335 Sand, 15-19	Swenzon
24.8h	Elizabeth McCall Walter Jordan Est.		del	19 16	1.25	\$	ī.25	.030	745	10			••		Sand 6 graval at 16	**
25.2d 25.4h	T. B. E A. A. Gay" Losi Helmick	1930	dug drì	35 64	36 2				732 735	20 40					Send at 35 Send & gravel, 80-86	Riblet
26.46 26.4d	Weldo Roth Corn Belt Watchery	1940 1964	dri dri	40 84	4	4	*	.014	732 731	15				3	. Send at 40 Send, 33-36; dirty send,	Swanson Swanson
		-		•••		_			732			5	••		36-78; sand, 78-84	Sweeton
26.4g 26.5c	Raymond Grean H. 5 E. Roth##	1950	dr1 dug \$	21 27	42-4	3	4	.014	732	15			••	3	Sand & gravel, 69-71 Sand at 27	Swanson
26.5h	Herbert Green	1933	dri dri	15	1.25		••		734	10		••			Send, 10-15	Green
27.34 27.69	Lester Hoody Nabel Data 144	1914	de1 de1	50	2				730 732	25 11					Sand at 50 Sand, 28.5-40	Swanson
27.80	Rebelle Ferlin	••	dr1	35	1.25	**			740 733		••		••	••	Send at 35	 Ziameraen
28.1h 28,24	L. A. Cross## John Hooney	1915 1921	dug drì	28 52					740	20					Sand, 27-5-28 Sand at 52	Tipsord
28.86 29.1f	Nery H. Cox** Florence T. Alch	1949	dug de1	26 27	46		**	slotted	740 735	10 3.5	2	•	4.5	ĩ	Sand at 26 Sand, 18-20, 22-25	Swanson
		+1904						6 (be	742		••			-+	Sand at 35	••
29.361 29.362	Leonard Cross Leonard Cross		dr i dr i	35	1.25		**		742							
29,6h 50,24i	August Peters Joe Sucer	1930	dri Gug	27 31	1.25 36	*	1.25		742 745 746	7 2.5					Sand, 20-22, 24-27	Peters
30.2h2 30.3a1	Joe Suter E. C. Conrad ^{ae}	1914	dri dri	31	4 1.25		4		740	"					Send at 31 Send at 25	Budoff Swanson
30.3a2	E. C. Conrad	1908	dug	25 26	36		••		740							
30.8+1 30.8+2	Willia Sommer Villia Sommer	1950	drl drl	198	÷.	5-6	6 3.75	.016	760	25.5	4.5	20	4.4	•	Sand & gravel, 25.5-30;	Swenson
31.10	C. Phillips**	1895	drl	78	2	••			760	13					sand, 37-47 Sand, 27-28	Suprison
31.161 31.162	Nazine Arends Nazine Arends	1965	dug dri	27.6	ų	3.75	 3.75	.016	740 740	4.2	,	15	1.7		Sand & gravel, 18-20,	Sweetson
										<i></i>	, 	-	•••		61-66	
31,2d 32,2e	H. Hizorak, et al George Tjardes	1969 1886	drv drl	25 28	2 2	- * -	2	**	750 738					3	Send & gravel, 18-25 Send at 28	•• ·
32.56 32.60	George Tjardes George Tjardes	1928 1918	dri dri	20 38	1.25				740 740	10 10					Sand, 16-20 Sand at 38	Aiblet Niblet
33.86	Ganeva Campbell		drl	25	2	••			732	12			••	••	Send at 25	Sugnaon
34.3F 34.66	Bernice Dekalt**	1922	dry dr1	12	1.25		::		735 738	15	••				Sand at 32 Sand & gravel, 33-45	Budoff
35.1f 35.2c1	Waldo Roth Waldo Roth	1920	drv dug	17 30	42				733 725	7					Sand, 16-17 Send at 30	Riblet
35.2c2 35.4c	Weldo Roth Weldo Roth**	1966 1890	drl drl	52	4		1	••	725 722	15					Send at 52 Sand at 35	Swenson Swenson
35.541	John Summershi	1900	dug	35 35	42				725	1	••	••	•-		Sand at 35	

				•11			Screen		.Land surface	Non- pumping			Observed		Vater-bearing - formation	
		Year con+		Septh	01am-	Lengch	Diam- eter	si at	elevation (f# above	level	Oraie- down	Pumping rete	specific cepacity	of test	end depth	
<u>eter</u> 4. R7E	(Continued)	structed	Түрө	<u>(ji)</u>	<u>(in)</u>	(f‡)	<u>(în)</u>	<u>(in)</u>	møl)	_ <u>(f*)</u>	<u>()*)</u>	<u>(gpm)</u>	(gp=/ft)	(hr)	<u>(ft)</u>	<u>Drijter</u>
542 54	John Summers William Day Est.**	1925 1928	de l de l	65 24	2 1.25	::	2		725 725	1) 12	::		:	::	Sand at 65 . Sand, 22.5+24	Swafisan Ribiet
N, AĐE																
2g	E. D. Cameron Evalyn McClure	1928 1914	471	185 200	2	••			748	70			••		Sand at 185	
6e 5a	Stokely Van Camp Canning Co.	1939	drt 	90	3				750 765		••				Send at 200	Stiegnan ••
76	Stokely Van Camp Canning Co.	••	dr)	110	2				770	50					Sand at 110	
8F8 8F2 Ih	H. B. & L. Shertz ^a H. B. & L. Shertz Rey Holler	* · 1916 1953 1904	dri dri dri	92 156 80	2 2 2				760 760	33					Sand at 92	Sweeson Veburg
4 f	Gertha Ulfers Granvilla Brewer	1919	dri dri	110	2				760 768 7 78	40 35-40 60-70					Send at 80 Send at 110 Sand at 110	Swenson
	Eva Jones Mrs. C. Bonnen**	1915	del	95	2		••		782 790	50 55					Sand at 95 Sand at 110	Swamson
h2	Mrs. C. Bonnen Floyd Mathews 6	1941	dr) dr)	105	1 2	5	3.75	.020	790 781	70 50	15	10	2	2	Sand, 101-105 Sand at 70	Swanson Swanson
1	Florence Walters L. S. Wissmiller Fred Witz	1930	dr) dr)	\$0 100	2				800	18	••		••	••	Sand at 50	Stiegnen
9	Hie Buhs Anna P. Carrick		dri dri	85	2				790 790	60 20-25 35-80	••• 				Sand at 100 Sand at 85 Sand at 60	**
	L. L. Ogg W. G. McGulre	1894	dri dri	90 80	22				755 - 775 780	35-40 45					Sand at 60 Sand at 90 Sand at 80	
	Elmer Halo Helson Sommer	1909	dr) dri	112	2 2				780 790 760	45 50 65-70					Send at 80 Send at 882 Send at 825	Anderson
	Pearl Sawyer J. B. Christie	1932	de i dr i	206 110	2 2			••	802 768	40 40		**			Sand at 206 Sand at 110	Stlegman Stlegman
•	Hartha Puske Roy Formen		dri dri	239 180	4	8		,058012	770	401	ŧ	17	4.3		Sand, 105-121, 220-239 Sand at 180	Swanson
/1 (1) /2 (2)	Elliott (V) Elliott (V)	1911 1950	dri dri	120	6	6	ð 	.080	770 770	69.8		120	2.2	5	Sand, 105-114, 117-126	aa Bolliger /
•	Thomas Scots Silas Hill	1920 1930	del	194 186	32		::				••				Sand at 194 Sand at 186	Stlegnen Stlegnen
•	Rena WFlus Earl Anderson	1925	dr1 dr1	104	2	-			772 772	60± 60	::		<u></u>		Send at 103	Stiegnan
	Robert Little Kermit Hustedt Agnes Berger	1968 1970	dr] dr] dr]	162 120 118	1	1	1	.015	780	18. 94	61 1	15 15	-9 15.0	1	Send, 152-162 Send, 94-120	Weburg Weburg
	isabelle Aenolds Violet Jones	1919	dri dri	126	2	-			789 790	90 46					Send at 118 Send at 126	Anderson
	Henry Horsch Alva Osman	1916 1890	dri dri	150	2				790 820 802	40-45 75 35-40			-		Sand at 118 Sand at 150 Sand at 75	Ander son Swanson
	Ella Speedia V. S. NcCall Est.	1899	dr) dr)	75 85 75	2		 1.25	.012	765 774	40				15	Sand at 85 Sand, 60-62, 73-75	Wilson Sventon
	W. S. HcCall Est.* Pearl Gordon		dr) dri	75 80 27	2		'		775 761	45 15-18		2	**	•••	Send at 80 Send at 27	Riblet -
17	Pearl Gordon Pearl Sawyer	1965 1884	drl drl	62 65	4		4	.018	761 768	40 20		15			Sand 6 gravel, 55-62 Sand at 65	Stiegnen
}	Fannte Spry Gene Rankin	1900	drl Grl	80 55	2				762	45 12-15			••		Sand at 80 Sand at 55	
	Kerrit Kerchenfaut Lucille Comming	1959	drl drl	70 120	2				745 750 765	25 50-60					Send at 70 Send at 100	Aibtet Vool len
	Nove Rankin John Havens	1926	dr) dr)	65	3				801 761	70 50	::	:-			Send at 109 Send at 85	Swanson
	Warfleid & Punke Kenneth Grendorff	1890	dr) dr)	180 140 120	1.5 2 2				801 770	15 50					Send at 180 Sund at 140	
	W. A. Krietzer W. A. Krietzer Redeline Pugh	1918 1933	dri dri dri	185	2 2				770 795 782	50 80					Sand at 120 Sand at 185	Gimble
	Anderson & Hanson Hayna Song	1921 1913	dr) dr)	210	2			••	800	70 60-65		••• ••• 	**		Sand at 200 Sand at 210	Stiegnen
	Fred Nennenge	1944	4rl	121	4	•	3.75	.018	805 815	80		8		••	Send at 115 Dirty sand, 63-117.5: sand, 117.5-121	Anderson Swenson
	Ruth A. Anderson J. H. K. Holand	1931	de i de i	120	2				795 780	50 16		••	••		Sand at 120 Sand at 105	Gimble
	Florence P. Johnso Melter Barnes	1929	dr i dr i	140	2 2	••			780 772	20-25 50					Sand at 115 Sand at 140	 Skansen
!	Donovan & Young Florence T. Nich** Florence T. Nich	1913	dri dri	90 125	3				750 772	35 30	-				Sand at 90 Sand at 125	Stiegnen'
2 1	C. W. Christie Nota Nelson	1927	dr1 dr1 dr1	149 180 70	2	*	3.75	.014	772 720	75 25 40	21.5	20		5	Sand, 88-100, 139-149 Sand at 180	Swanson Swanson
2	Nole Helson B. D. Syverson**	1953 1939	dr I dr I	141.5	4	3.5		.010	752 752 732	40 25		 			Sand at 70 Sand, 61-69; dirty sand 6 gravel at 69; sand, 69-76, 78-02.5, 85.3-	Swanson Swanson
	¥. 6 5. Brown**	1000	4.1	14	•				740						95.5; dirty send, 95.5- 110; send, 137-141.5	
	V. 6 S. Brown®# William Dey Est. P. H. Kerchenfaut	1903	dr 1 	72 24 40	2 2 2				745 742 731	15 12 15			~		Send at 72 Send at 24 Sand at 40	Swanson
	Ney E. Reynolds Alton R. Zahr#4	1913 1944	dri dri dri	40 55	ź		••		725 730	20			-		Sand at 40 Sand at 40 Sand, 51-55	Suenson .
1	S. E. Leonardes S. E. Leonard	1921 1964	dr1 dr1	75 170	3			.008	735 735	24 24s					Send at 75	Swenson Swenson Weburg
•	Grece Elkins Ezra Johnson	1918	dri dri	80 86	į				750 750	35 10					Sand at 80 Sand, 81-86	Anderson Riblet
1	Lela Utterbeck	1910 1965	dr) dri	20 35	2 2	**			730 730	12			••		Sand et 20	Swenson Weburg
	Anna B. Kidd Paar! Sawyar	1927	dri dri	140 80	2			**	773 735	35-40 35	••				Sand at 140 Sand at 80	Stiegnen Swenson
	Ed Farmer Bito Burwash	1932 1905	dr) drl	87 120	2 2		:		755 780	50 35	**				Sand at 87 Sand at 120	Swenson
	Mehlon J. Cender Ruth A. Anderson	1893	dr] dr]	157 185	2 2				631 794 760	50			••		Send at 157 Sand at 185	Swanson
	Peerle Swanstrom	1913	de 1	213	2	••	••		780	20-25	••	••			Send at 213	Stiegmen

							Screen		Land surface	Non- pumping			Observed	Length		
Vell <u>oumber</u> T23N, 395	Orner	Year con- structed	Тура	Depth (/t)	Diam- etef (in)	Length {ft}	blen- ster (in)	\$10t \$12# (in)	elevation (fs above 	water level (fc)	dawn (f/t)	fumping rate (gpm)	specific capacity (gpm/f#)	of test (hr)	and depth (ft)	<u>Driller</u>
1.1f 1.2a 1.7a 2.1f	Charles Palmer Anne M. Johnson Hildred Siddens Willlem Plackett	1967 1908	dri dri dri dri	105 128 93 104	2 2 2	•	1	.050	771 790 780 776	60 116 85 90	5	10 	2.0	1	Sand, 80-105, 220-235 Sand at 104	Beck Stiegman Stiegnen Stiegnen
2.5e 2.8g 3.1g 3.5e	Rhoda Holtzman Roland Selbring Paul E. Johnson Paul E. Johnson	1927 1968 1925 1922	drl drl drl drl drl	98 96 105 53 58	2 2 2 2	>	-	.018	782 750 750 750 750	92 74 30 70 83	5	15).0 	1	Sand & gravel at 98 Sand & gravel, 84-96 Sand at 805 	Schuler Stiegmen Weburg Stiegmen Stiegmen Stiegmen
3,56 4,3a 4,7a 5,3a1 5,3a2 6,1c	Paul E. Johnson R. & K. Humphroy Robert Short Edward Bosheil Edward Bosheil Hrs. Lewis Grow		dri dri dri dri dri	102 104 102 190	2222				775 770 765 765 750	30 30	 		** ** ** **		Send & grevel at 102 	Rardin Veburg
6.4h 6.6c 7.2h 7.4h	Sadie Elliott** Hezel L. Martin V. Johnson & M. M. Stevens Est. V. Johnson & M. M. Stevens Est.	1940 1940 1965	drl drl drl drl	198 192 203 101	2 4 4 2		2.5 4	.012 .016	750 751 745 750	90 50 73	15	10 18	1.2 	1	Sand, 76-75, 185-192 Sand, 130-132; sand 6 grave1, 186-203	Stingmen Svenson Veburg
8.5c 8,8a 9,2d 9,2h1 9,2h2	Russell S. Foster Merschel Keal Perduc Elevator Ade H. Durwesh Ade H. Durwesh		drl drl drl drl drl drl	83 90 101 109 100	2 2 2 2 2 2	*			743 761 765 775 775	80 102			 		 ++	 Rerdin Weburg
9,3d 10,2b 10,4h 10,5e 11,1e	Carson Farm Account N. M. Komp Est.** Dorothy Branken V. F. Judkies Henry Albers	1919	dr1 dr1 dr1 dr1 dr3	92 100 98 148 135 545	2 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4				762 750 762 745 780	82 70 95 110	 	 			sand 6 gravel at 100	Stiegnan Smanson Stiegnan
11.26 ·	Paxton (C) H. H. Kamp Est.	1956 1896	dr1 dr1	945 108 114	1				760 768	 32 60					*Dirty sand & gravel, 68.5-102.5; sand & gravel, 150-105, 205- 213.5, 236-330 Sand at 108	Rayes Rard In
12.1h1 12.1h2 12.2g	Edward Gestafson Edward Gestafson Paxton (C)	1913 1969 1956	dr] dr] dr]	246 415	-	-	•.	.015	785 785 795	¥ 	1 	20	10.0	1	Sand, 116-126; s11cy sand, 126-156; sand, 228-248 *Sand & gravel, 120-150, 170-180, 188-197,	Stiegnan Weburg Heyes
									742	58					262.5-270, 275+291, 324-345; dirty sand, 345-365; sand & gravel, 365-376, 378.5-385, 395-413.8	
12.44 12.44 13.24 13.44	Klass Hinrichs Edwin Rosendahi Karry Watkins Paxton (C)	1919 1962 1955	dri dri dri dri	92 128 65 339	3				792 810 780 760	10 				 	Sand at 92 ** *\$end, 55-65; sand & gravel, 75-130; sand, 165-190; sand & gravel,	Stiegman Stiegman Veburg % Køyes
13.46 13.77 14 14.16	8. Yaxetinh Carl Hanson, Jr. Dr. J. F. White Nerold Tribbey Paston (C)	1916 1924 +1929 1926 1959	dri dri dri dri dri-Q	85 115 15 108 7 340	1 1 2 34-16				790 770 760 765	60 110mn 63		4 3.5 			200-225; sand, 230-320 Sand at 115 Sand & gravel at 15 Sand & gravel at 15 Sand & gravel at 108 Sand & gravel, 165-193;	Stlegmen Stlegmen Stlegmen Hiller
14.1g(6) 14.2g1	Paxton (C)	1956	dr1	339				-	758					-	sand, 235-245; sand 6 gravel, 245-340 *Dirty sand 8 gravel, 34-61, 72-02; sand 6 gravel, 84-123, 150-	Neyes
14.2g2 14.2g3(7) 14.6g	Howard Thomas	1956 1956	dr1 dr1-Q dr1	125 340 90 85	20-10 36-16 2	10 100	10 16		758 758 750 748	65 65.5 68 75		400 1000 1000	11.4 158.7 500.0	1	160, 201-225, 227-339 Sand & gravel at 125 Sand & gravel, 85-130, 160-190, 206-340 Sand at \$0 Sand at \$5	Niller Niller Stlegen
14.8ř 15.3c 15.3f 15.4h1 15.4h2	Ed Carlson** Marian Siven V. F. Judkins Lucille Johnson Dorothy Judkins	1943 1943 1964	dr] dr] dug de]	71 66 18 123	2	2.5 	1 	.050	740 745 745	48 16 60		 30	 		Sand, 81-62; sand 6 graval, 62-71 ** Sand, 87-91, 99-123	Stiegman Stiegman Swanson
16.2h1 16.2h2 16.6h 17.14 17.16	Elsie Humilton ⁴⁴ Elsie Humilton Jamas Jarboe Harry Gustafson Joe H. Volden O'Mere E Anderson	1899 1924 1917 1918	drl drl drl drl drl drl	82 85 120 95 66	24 2 2 2 2				750 750 758 758 745 745	74 30 35 76	 	 3.5			 Sand at 85 Sand 6 gravel at 95	tardin Kardin Stiegnen
17.80 18.20 18.301 18.302 18.80 19.10	Valcer Helson ^a Viillam Dacker Viillam Dacker J. S T. Tombiln Virginia Narmecka	1889 1924 1969 1889	dri dri dri dri dri	103 102 112 160 145	2 2 4 2.5 2		2 4 2 2 2 2	 810.	775 775 775 782	32 28 45 100	;	4 12 3.5	4.0 	2	Sand at 103 Sand at 102 Sand 5 gravel, 92-112 Sand at 160	Stingman Fredrickson Stingman Weburg Swanson
(9,17 19,54 19,66 20,75 20,87 21,1d1 21,1d2	Hilford Skog E. J. Slebring Lillion Houzel Emily Flayd Est, J. O. Rolsland Helen Henderson th Helen Henderson	1910 1920 1969 1915 1942	dri dri dri dri dri dri dri	160 145 185 96 212 66 90	2 2 2 4 2 2 4 2 2	5 4 4 2,5	222	.050	792 782 805 812 785 785 765 765	55 112 120 93 56 70		4 9.5 15 3.5			Sand at 160 Sand at 145 Sand at 185 Sand, at 36 Sand, 203-212 Sand & gravel at 66 Dirty sand & gravel, 70-74; sand, 74-76;	Shahhson Stiegman Stiegman Weburg Williard Stiegman
21.1p 21.7a 21.3p 22.2a 22.7h 23.1a 23.6a1 23.6a1	Lennes Younggteen E. Engelbrecht Hilo Hensen Homer L. Brooks Richerd Livingston Hrs. John Haloney E. K. Kene	1898	dr1 dr1 dr1 dr1 dr1 dr1 dr1	130 145 84 76 118 130 88	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				758 778 760 750 752 741 750	90 106 35 64		3.5 5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		tand & gravel, 85-90 Send at 130 Send 4 gravel at 145 Sand at 84 Sand 5 gravel at 76 	
23,6a2	E, K. Kane	1952	dr1	ed	2	••			750	••						Heburg ,

• 1	o	n	Iτ	11	ſ	u	e	a)	

									Land	Non-					Water-bearing	
		Year		l1	0iam-		Screen Dien-	Slot	surface elevation	pumping water	0 raw-	Pumping	Observed specific	Length of	formet lon and	
Well number 'r	Owner	con- structed	Туре	Oepth (ft)	eter (in)	Length (ft)	eter (in)	size (in)	(ft above mel)	level (fz)	dawn (fs)	rete (gpa)	capacity (gpm/ft)	test (hr)	depth (ft)	Driiler
T238, 89E	(Concinued)					<u> </u>	_				<u> </u>				<u> </u>	
24.38	Nelen Sandstedt		dr 1	85	2				741							
24. 7d 24, 7e	P. E. Larson Est.** Mrs. W. B. Collins	1892 1947±	drv dr1	48 90-100	2			**	739 745	35				**	Sand & gravel at 48	Aardin
25, 16 25, 4h	Samuel Baird Trova Sadler	1917	dr I dr I	83 85	2				730							
26.la	Lille Bucklund	1914	drl	90	2	-+			261 748	45 50 64					Sand 6 gravel at 85 Sand 6 gravel at 90	Stiegman Stiegman
26.7» 26.8f	Lawis Thompson William A. Anderson		dri dri ,	100 78	2	-			765 750	64 60					Send at 100	Lunde Stilegmen
27.1h 27.6h	Mervin Gritton Dorothy Judkins	1916 1949	dri	140 90	2				748 761	35					Send & grave) et 140	
28.1h 28.6h	Auth Flanlgam G. L. Anderson		45) 47)	192	2				760 777	90 [°] .	**	4.5			Sand & gravel at 112	Stiognan
27.3h 30.1h	Nartha Punke Seine Skog	1915	dr] dr]	80	2 2		;		788	••		<u>*</u>		••	Sand & gravel at 106	Thompson
31.16	George E. Burton	**	dr)	••	2			••	800 830	¹⁰⁵					Sand at 145 Sand	Stiegnen Back
32.1d 33.4h	Roneld Apland** Lele Subrmester	1939	dr I dr I	155	2 2	*	2		815 800	125		4.5			Sand at 155	Swanzon Stiegnen
34.16 34.44	Trene Grove Any Emerican	1891	dri dri	90-100 125-130	2	2.5		.012	767 792	85 ^{°°}						
34.8h 35.7h	Lawrence Selp Mabel Apland Est.	1967	dr1 dr1	95 112	2 6.25	6	Ĩ.	.014	787 767	85				••		
35.86 35.8h	Charles Rydell Est. Mabet Apland Est.		dr 1	60	2	-	-		770		10	14	1.4	·	Send & gravel, 94-112	- Weburg
36.4h)	Arthur Stevenson**	1917	dr1 dr1	104 84	4		••		767 750	93 31	••				 Send & gravel at 84	Stlegmen Stlegmen
36.4h2 36.8h	Arthur Stevenson John Stevenson##	1966 1884::	dri dri	104.2 81	* 2	9.3	3.75	.012+.014	750 748	61.1 30					Sand, 64-104	Swenson
					-					34					Sand 6 gravel at 81	
123N, Alo	£															
1.241	E. T. Chapin** E. T. Chapin	1965	47 I	102 126	2 2	::	••	.008	782 782						Sand at 102	RardIn
1.242 1.3h	Elmer Ballinger		dr) dr]	70	2				753	62				••	Send at 70	Veborg Stlagman
1.70	Mabel Tibby Dr. S. S. Fuller	1879 +1914	del dug	124 20	2				785	23		••			Sand & gravel at 124	Congram
2.4el 2.4e2	Alinnie Frederick** Alinnie Frederick**	1925	dri dri	158 161	2	2.5	1	.050	790 790	100 131	2			::	 Dirty sand & gravel,	Stlegnan
				1346					780						131+150; send, 155-161	Stiegenn
2.6a 2.8h	Raymond Schemer Raymond Schemer	1926	drf drl	158	2 2	-	••		788	106 100±			••		Send et 136	Stiegmen
3.la 3.3h	Elmer Ballingor Elmer Peterson		dri dri	122	2				785 781	102		••				Stliegmen
3.5a 3.8e	Polly White Adelle Hoffett	1911	dr1 dr1	102	2 2				790 785	44	::	<u></u>		••	Sand at 102	Stlegman
4.7e	C. C. Brocksaith**	1910	drl	154	2				790	104	••	••	••		÷-	Stiegnan
4.71 4.8a	C. C. Brocksmith Ethel White	1939 1928	dr) dri	157	2	6 1-	**		790 790	100± 101					Sand & gravel at 157 Sand at 155	Stiegmen Stiegmen
5.1e2	Edward Brockswith Edward Brockswith	1909	dug drt	23.2	2				792 792	6 102		÷.				Stlegmen
5.5d	Ford County Nursing Nome	1940	del	165.5	4		3		779	92	8	16	2.0		Send, 92-105; [15-138;	
															sand 6 gravel, 140- 165.5	
6.1gl 6.1g2	George Carter George Carter	1924	dr) dr)	120	2	-		::	790 790 781	107		3			Sand at 120	Stlegman
6.4a 6.7a	C. & H. Schreder Ellen Anderson	1885	dr] dr]	115 125	2 2				781 782	100						
7.1b1 7.1b2	Paxton (C)** Paxton (C)**	1875	dr) dr)	2673.5		16			794 794	38						
7.163	Paston (C)**		drl	140						100			**			Ebert
7.164(3)	Paxton (C)**	1917 1922	dr1	151	ě	14 20	8	.012	794 794	100					Sand 6 gravel, 130-151	Husson St.legmen
7.165(2)	Paxton (C)++	1923	dr1	150	e	16			794	107					••	Johnson
7.1e(4) 7.1d1	Paxton (C)** Paxton (C)	1930	del del	150	10	21	10	••	793 790	110	28	180	6.4	7	Send, 130-148	Johnson
7.142(5)	Pexton (C)	1945	dr 1	149.7	8	23	ŧ	.040	790	101	u.	155	J1.9	ī	*Sand, 110-145 Sand & gravel, 109-116,	Woollen Woollen
										106 102					117-135; sand, 135-149	
7.3d(6)	Peston (C)	1950	drl	153	10	21	10	.030025- .018	790	102	20.2	200	9.5	4	Sand, 102-157.5	Hayes & Sime
8 8.2a	Dr. A. Cottingham M. Carlson	+1917 1912	dup dr)	17 98	,	6		••	790	6 91					Sand 6 gravel at 17	
8.2a 8.8e 8.8a1	Guy Kenney** Pexton (C)**	+1912	de i de l	98 107 142	į	<u>6</u>	=		782 795	91 91		3			Sand 6 gravel et 107	Vi thcher
8.8e2	Patton (C)** Patton (C)**	+1912	drl	148	5				795					•••		
8.8e3(1) 8.8c	S. S. Fuller	+1912 +1907	drl dug drl	25	••		••		795 790						Sand & gravel at 25	
8,8d	Pexton (C)	1953	4r I	403	+ •				788	••		••			*Dirty sand, 165-120; sand 6 gravel, 125-151; sand, 200-237; sand 6	Heyes
															gravel, 240-290, 310-	
8.8e 9.4e	S. S. fuller Melvin Coulter	+1908	đug dri	25 158	2				785					••	360	
9.4h1	John Flannery ⁴⁸	1920	drt	142	2		**		785 782	40			::		Sand at 142	Stlegmen Stlegmen
9.4h2 9.5h	John Flennery Luther Sustafson	1967 1920	dr 1 dr 1	97	2				782 782	30				::	Sand & gravel at 97	Weburg Stlegmen
10.3a1 10,3a2	Mes. L. E. Rust** Mes. L. E. Rust	1966	dri dri	153 145	2				784 784	190 		**				Beck
10.3h 10.8a	Elmer Elmernen Julius Resmus	1929	dr I dr I	177	2 2				790 784				••		Send at 177	Stiegmen
10.80	Loren N. Allen		drl	160	2	**		••	785	70 30-40		••				Rardin
15,14 17,17	Alvin Knerr Hervin Goold**	1926	dr 1 dr 1	126 120	2				785 790	90-100 110					Sand at 120	stlegnen
11.2h 11.4m	Marvin Goold Horace Fredrick	1968	dr) dr)	130 134	6 2	*	<u>+</u>	.015	789	96 100	3	15	5.0	1.5	Sand 6 gravel, 97-130	Back Stiegman
12.1c 12.1f	Russell Larimer Elizabeth Chapin ^{##}	1940 1907	drl drl	95 102	2				790 780 780	70±		~•				Voturg
12.3h	Elizabeth Chapin	1924	del	90 80	2		*-		780	80					Send at 102 Send at 90	Rardin Stiegnan
13.16 13.66	Laura E. Adklos J. P. Schrader		dri dri	104	1				792 789	60 35		3			Send at 80	
13.8a 13.8h	William Lee Guy Gilbert	1914	dr1 dr1	102 123	2				798 789	64					Sand at 123	Stiegnen
				-						•••			- 2			

Vell		Year con-	Ve	11 Depth	Diam- ecer	Length	Screen Diem- eter	Slot size	Land surface elevelion (ft above	Non- pumping water leve)	Draw- down	Pumping	Observed specific capacity	Longth of test	Water-bearing formation and depth	,
Aumber	Owner	structed	Type	(ft)	<u>(ćn)</u>	(fi)	(in)	(in)	mst)	(11)	<u>(ft)</u>	(₁ 779)	(gpm/ft)	(hr)	(f2)	Driller
723W, R10E	(Continued)															
14.1c 14.2h	Arthur Magnuson Ray Hizer	1920	dri dri	106 115	2 2		::		795	92 18-20					••	Stiegman Stiegman
14.4h	Delmar Burton**	1908	dr I	128	2				789	106					••	Stiegaan
14.7e 15.2h	Grace Karr Daniel Kupferschmid		dri dri	145	2		••		800 785							Stiegnan
15.4a 16.1a	C. D. Maulding Donald Cleary		dri dri	109+	2 2			.050	605 605						 Sand, 124-159	Beck
16.2h 16.5a	Charles Coulter Hellie H. Neal		drl drl	145	2				785 780	†25 80						Randin Thompson
17 17,8f	Dr. S. A. Lundgran Pakton (C)	-1909 1945	dug dr i	20 146	6	12	6	.060	790	30					 *Sand & gravel, 120-131	Wacilen
18.3c	Paxton (C)	1954	dr 1	375			•	••	760			•-			<pre>*Dirty sand 6 gravel, 85-120; sand 6 gravel, 280-310</pre>	Sims
18,4f 18,6el	Olson Bros. Richard Leider	1941	dr) dr)	104 80	1			-040	780 758						Sand at 104	Stiegman
18.8a2 18.8g	Edward Carlson John 0. Schuldt	1968 1924	de i de i	118 120	4 2	4	4	.015	780 790	76 90	5	10	2.0	2	Sand, 68-118 Sand at 120	Weburg Stiegmen
19. le	Robert Rasmus	i969	drl	120	ā.	4	4	.015	745	53	5	15	3.0	2	Sand & gravel, 53-65: sand, 65-120	Weburg
19.8F	Pollack Est.		dr i	83	2			••	748	76					••	Stiegman
19.6g 20.1c	Milton Schofield Elmer Woodworth	1917	dr i dr i	96 85	2 2				755 765	30				•-	Sand & gravel at 96	Stiegman Stiegman
20.1f 20.8e1	Roger Haulding George Bauer	1919	dr i dr i	65 98	2				760 748	66		i.				Stiegman
20.8=2	George Bauer	1969	dr I	118	4		4	.020	748	63	10	15	1.5	2	Sand, 64-86; sand & gravel, 112-118	Weburg
20.8f 21.4h	George Baver D. & P. Schaefer	••	dri dri	90 110	2	::			752	80 98		:		.:	Sand at 90	Rerdin
21.8a	Charles Shaw		dr)	104	2				175 760	96					Sand & gravel at 104	
22.2n 22.8a	Ella Swanson Cecil Haycraft	1919	dr i dr i	124	2				803 760	105 112	·	3.5			Sand & gravel at 134	Stiegman
22.8g 23.4c	E. H. Canavan W. W. Atkins		dr) dr)	116	2				810 792	86 22		4.5			Sand & gravel at 65	
23.5F 24.14	H. Peter Larson, Jr Leo A. Carlson, Sr.		dr) dri	138	3				803 782	95					••	Stiegman Stiegman
24.4h	Leo R. Carlson, Sr.		dr I dr I	105	2		::		789						 Sand 6 gravel at 70	Stiegman Stiegman
24.8a 24.8h	Ray Bowen L. P. Lovell, et al	193)	dri	150	2				750 7 96	25		••		•-	Sand at 150	Stiegnan
26.ic 25.5a	Mrs. Jessie Mueller Clark Corbly	1930	• drl drl	68	2				747 732	18 43						
27.8g 28,2h	Orville Lafschner Clarence Thompson	1923	dr i dr i	123	2				761 770	96 86		4				Stiegman
28.84 28.85	Bruno B. Glazik Robert Glazik	1915	dr i dr i	98 106	2	••			740 760	70 80		4			Sand 6 gravel at 98 Sand 6 gravel at 106	Stiegmon
29.161	L. 6 A. Carlson		de l	96	į				740			3.5				
29.162 29.5c	L. 6 A. Carlson Leon foster	1966	drl drl	20	2				740 731	20						Beck
29.6c 29.86	Leon Foster Chuck Condit	1968	dr I dr I	96 160	4	4	<u>.</u>	.015	730 731	40	20	25	1.3	2	Sand, 58-63, 60-96	Beck
30.le 30,3h	Robert Ouffin John Roisland		dr) dr)	78	2				732 739	63					••	Weburg Stiegman
30.7al	Albert Quivey	1967	drl	107	6	•	4	.014	740	50	6	16	2.7	2	Sand, 83-90; sand 6 grave1, 90-107	Weburg
30.7a2 31.3c	Floyd Birkey Paul Cleary	1968	dr I dr I	107 87	4 2	۰ 	4	.018 	740 745	48	10	15	1.5	2	Dirty sand, 78-98; sand 6 gravel, 98-107	Heburg
31.1h 31.8h	Eilt Johnson LeHigh Paving Co.	1967	dir I dir I	70-80 78	2		i	.012	730 741	50	5	;	î.4	2	Sand, 66-78	Beck
32	E. E. Hester	1879	dug	F6	•		÷					<u>.</u>		-	Sand & gravel at 18	
32 32.19	Dr. S. A. Fuller J. Johnson, Heirs	+1907 1921	dug drì	6 104	2				730	1.5		4			Sand at 6 Sand 6 gravel at 104	Stlegman
32.6h 32.8h	Sadie Ingold Bloomquist Est.		dri dri	100	2 2				735 730							
33.2h 33.3b	Willard Unzleker Horner, Helrs	1913	dri dri	98 80:	2		::		745 725	⁸⁰		3.5			Sand & grave) at 98	Stiegman
33.8a 33.8e	Arlin Roy N. C. & R. J. Clark	1914	dri dri	98 98	2				743 740	68 81		4.5			Sand 6 gravel at 98 Sand 6 gravel at 98	 Stiegman
34.3a 34.66	J. & E. Speck Jarome O'Donnell		dr) dri	81 76	1				745 732	15					Sand & gravel at 76	
34.6e	Access & Wesslund Marrin Lewis	-1915	dr I dr I	70 70	2				732	55		4.5				
35.2f 35.3f	III. Wesleyan Univ.	1896	drl	40	2		••		730 730	7.1 20					Sand & grave) at 40	•-
35.5a 35.6a	Ars. W. B. Collins Allie Collins 6		dr 1 dr 1	90± 48	2	**			741 740	28					Sand at 48	
36.3a	Martin Hanson, Tr. Welby Adkins	1949	dr)	40	2	-			720	18						Stiegman
• -												•				
123W, Alle	E _															
1,14	Alvin Roemer		dr 1 dr 1	65	2				783	40	 				 	Rardin
12.5c 13.5c	C. Johnson, Heirs Allie Collins	1908 1930	dr) dr)	120	2				780 789	50					Rock, 112-120	Bouyer
13.5e 24.1h	Chester Sommer Selke Farm Account	1932	dr) dri	116	2 2				783 785	90 93						Stiegman
24.5a	Joseph Branner 6 Nary Harper		dr i	92	2		••	•	770	80	••	4			Sand at 92	
25.3h 25.5b	George Mabry Hary Sandquist		dr) dr)	94 73	2 2				775	88 65						 Stiegman
36.16	E. E. Evans		dr 1	60	2				764 725	65 					· · ·	
36. Id	James Goodwin		dr I	52	\$			••	738	37				-		Thompson
T23N, RI41	4															
4.1#	News]] Johnson	1912	dr I	86	3				730	71					Sand 6 gravel at 86	Stiegman
4.3a 4.8f	O. S R. Blackford Delbert Nelson	1908	dr I dr I	72	ź				722	60					Sand 6 gravel at 72	Stiegman
5. Ibi	Fred Wessels**		del	95	2				732 742	40					Sand & graver at 95	 Bolliger
5.162 5.4h	Fred Wessels Ida Tribby	1958	dr I dr I	994 146	2	-			742 730	110		6 				Stiegman
5.7a	R. Hutchison, Agt.	1917	411	104	3	•-			751	92					Sand 6 gravel at 104	Stiegnan

			L				Screen		Land surface	Non- eureing			Observed	Length	Water+bearing formation	
Weil		Year con-		Depth	Diam-	Longih	01em-	\$1ot	elevation (ft above	water level	Draw- down	Pumping rate	specific	of	and depth	
number	Owner	structed	Type	(11)	(in)	(ft)	<u>((n)</u>	<u>((n)</u>	met)	(/1)	(/+)	(gpm)	(gpm/ft)	(14)	(n)	Oriller
\$230, RI4	(Continued)															•
6.5h	N. Sunders**	1924	dr)	106	2				750	38					Sand at 106	Herrington
6.85 6.861	A. M. Gullek Est. Mildrad Konnaw	1918	dr I dr I	112 80	2		••• •••		790 749	95 <u>.</u>		<u>+</u> ·			Sand at 112	Stiegnen
6.8h2 7.16	Wildred Kennaw W. T. Norrison Est.	1674	dug dri	32.4	36				749 770	9.8					Send at 32.4 Rock	•• Swartz
7.24	Malter Congram	**	411	106	2		**		765 770	60 55					Sand # gravel at 106 Sand at 87.5	Rardin Shelanburger
7.20 7.5h	t. Shelonburger Fred Henzke	1883 1958	de l de l	87.5	2		••		770			••	••			**
7.6a 8.2a	J. A. Johnson Est. Doris V. Johnson	1921	de i de i	106 115 98	2 2				773 750	50			•••		Sand & gravel at 115	Rerdin
8.3h 8.8h	Lewrence Virich R. R. Hutchison	1917	dri dri	98 90	2				750 750	75					Sand 6 gravel at 90	Weburg Stlegkan
9.3+1 9.3+2	Hery J. Peterson ⁴⁴ Hery J. Peterson ⁴⁴	1894 1894	bor	21 80	10 10				743 743	14	\$	••			Sand 6 gravel st 21 Sand 6 gravel at 80	NcCornfek NcCornfek
9.601 9.642	Ed Brocksmith Ed Brocksmith		dr l dr l	124	2	••			740 740	¥0	÷.	••	••			Peck
9.8g	Elater Klef	1944	drl	135	2				742	70-80		*-			Send at 135	Sharp 4
16. Ja	Nugh Barr		dr I	80	2				751	50	••				Sand at 80	Stlegmen
16.3a 16.9g	Cherles Rydell Est. Lois Weaver	1915 1913	dri dri	96 176	3				753 745	76 50	••				Sand 4 grave) at 96 Sand at 176	Stlegmen Swertz
16.8a 17.8d	R. Gordon Murrey Charles H. Kenner	1918	dr I dr I	80- 106	÷ .				761 780	50 72 90		ĩ			Send at 106	
17.6h	L. Kirkpatrick Est.	1690	dri	104	1		•••		767 780	NQ 82					Send at 104	Rardin
18.1d 18.7a	Alberte Berquist Edward W. Carlson		dr I dr I	90 120+	4		••		780	80-90		••			••	
19.2h) 19.2h2	V. Rinkenberger** V. Rinkenberger		dugi dri	40 66	48				763 763	15 70		••		••		
19.44	Fool & Taylor - Gordon Person	1952	dr) dr]	60 75	2			••	770 760	60-70 60				**		Sharp &
20.84	Andrew Riggleman	1909	dr1	40	2				760	50					Sand at 90	Meburg Rardin
21.24	Dr. V. L. Kenn R. S. H. Rocracken	1919	de1	níi –	ā.				760 762	\$8.6					Sand at 111 Sand at 123	5 til egman
28. lh	Stocy Fairchild	1931 1911	de) drt	123 90	2				741 745	45					Sand & gravel at 90	Stlegnen
28.5a 28.8e	Robert Johnson C. J. Bevington	••	dr) dr)	28 66	1	=	:		760	10					Sand at 28	Stiegnan
29.6d 29.8f	Noll Orr Nell Orr	1541	dr i dr i	122	ļ				770 780	107	::					Stiegnen
29.8g	Rervin Levis	1940	dr 1	110	i	•	••		780 775	50 50	**				Sand at 110 Sand 6 gravel at 106	Stiegman
29.8h 30.1=	Harvin Lewista David Patton	1903	dr] dr]	106 112	i	**	••		778	<u>98</u>					Sand 6 gravel at 112	Oroll Stiegnen
30.1e 31.4c	James flagg Joseph Van Ham		dr1 dr1	112 88	1	**	••		782 750	70 73		<u>.</u>			Sand et 112 Sand 6 gravel at 88	Stlegman
31.8a 32.1a	William Hocd Ruth Cade	1928	drl drl	74 90	2		••		730 750	49 80					Sand 6 gravel at 74	Stiegnan Johur
32.1f 32.8h	Hergarette Corbly Phyliss Althoff	1912	dr l dr l	90 104	2		::		77	60 89			••		Sand & gravel at 90 Sand & gravel at 104	Stiegnen Stiegnen
33.4h	Frances Wilson		dr1	60	2	-	••		745 770	16 50		4			Sand at 60	
33.8e	Eugene Clark	1934	dr1		-	••	••	••	100	30						-
T2M, A7E																
1,16	Hires Sibley	1957	drl	279	10-0		**		#h2	80	••			••	Sand & gravel, 110-220;	Zink
															sand, 225-240, 250-260; sand 6 gravel, 260-279	
1.46 1.741	Louise Seith Corp. Urling S. Iselin	1895 1899	dr i dr i	6 PO 120	2 2		ł		850 650	45-50					Sand at \$10 Sand at \$20	Swanson Swanson
1.742	Uriing S. Iselin	1963	dri	283	i -	•	4	.008012	850	85 189	42	15			Dirty sand, 149-275; sand, 275-283	Swanzon
1.761	Louise Smith Corp.	1904	drl	100	2		2		\$15	45	••			••	Sand at 100	SHEASOA
1.7h2 2.3h	Louise Smith Corp. Ist Netional Bank,	1957 1921	drl drl	100	2		<u>.</u>		845 630	45					Sand at 100	Swarson Swarson
2.69	Champaign, Tr. 44 Ist National Bank,		drl	100	2		2		\$10	50			**		Send at 100	Swanson
3.14	Champelon, Tr. Anne Sibley	1915	drl	100					\$20	70	••			+-	Sand at 100	Swanson
3.8.	Anne Sibley	1490	, del 👘	104	1		i i	••	820 785	55	**				Sand at 104 Sand at 18	Searcson
4.1g 4.3al	Oscar A. Yentes Susanna Stroh Est.	1594	dr) dug	18 35	48		4		802	29	**			**	Send at 35	
4.3a2 4.7a1	Susanne Stroh Est. F. G. Bleifeldt ^{as}	1893	drî drl	35-40 35	1	1	2		802 792	12					Sand at 40 Sand at 35	Swenson
4.742	F. G. Biulfoldt	1948	dr1	31.5	•	••	••		792	13	5	14	2.6	3	Dirty sand 6 gravel, 20- 29; sand 6 gravel, 29-	SWARSON
4.703	F. G. Ølalfeldt	1964	drl	52	6		6	••	792	*				••	31.5 Sand at 52	Taylor
5.5e 6.1b	Louise Smith Corp. C. Morris	1905	471 471	18 195	2		Ĩ		775 780	5				••	Sand at 18 Sand at 195	Swanson
6.If1	James S. Watson, Jr	, 1910 -	dri	16	2	3	2	••	772	5	••			••	Send, 15-16	Swanson
6.172	James S. Watson, Jr	, 1962	drl	140	4		4	slotted pipe	172		••			••	Sand at 140	Taylor
7.2a 7.4h	Don & Cary Busing Welton & Betes ^{an}	1930	drl' drl	90 192	2	••	2		788 772	15 10					Sand et 90 Sand et 192	 Swanson
7.8e	Louis Strok	1916	dr I	29 80	2		2		760	2		••	••		Sand at 29	Anderson
8.1e 8.1f	Esther Vahrs Barthe Devidson	1951 1894	dri dri	108	2	**	2	.014	£10 792	40 25	15	15	1.0	••	Sand, 40-45, 76-80 Sand at 108	Swanson
8.7h1 8.7h2	Claribel Fretty Claribel Fretty ^{an}	1931	dr I dr I	19	:	÷	:		780 780	17.6 10					Sand at 19 Sand at 12	Kaffer
9.5h 9.8c	Harold Shappelman Norman 8. Ashley	1895 1895	dri dri	45 90	2	••	2		791	15 20				::	Sand at 45 Sand at 90	-
10.1a 10.1h	H. 6 E. Munsell Ist National Bank,	+1900	dr) dr)	125	2 2		2		833 830	65 65	••	•••	**		Sand at 125 Sand at 150	Swanson Swanson
10.5h	Champelgn, Tr.				4				-			18				Swinson
10. Sh	Louise Smith Corp.	1950	478	96.5	•			.018	820	52	21	10	.9	2	Send 6 gravel, 74-94; sand, 94-96.5	9-4130n
10.86	1	1000						•				_	_		4	•
41.15	Lowise Smith Corp. Utling 5. 1selin	1933 1948	dr] dr]	103 130 138	1			<u></u>	831 831	55 84	10	8		4	Send et 103 Send, 117-130	Swanson Swanson
18,66 81.87	Louise Smith Corp.* Louise Smith Corp.	•••	dri dri	138	2 2				832 833	40 25					Send at 138 Send at 100	Şənərison Şənərison
							-									

We Fi		Year	-	nii	01 am-		Screen Diam-	Slot	Land surface elevation	Hon- pumping water	0 rave	Pumping	Observed specific	of	Mater-bearing formation and	
number	Owner	con- structed	Түре	Depth (ft)	eter (in)	Length (ft)	0107 [źn]	size (in)	(ft above mal)	level (ft)	dawn (ft)	rate (gpm)	capacity (gpm/ft)	test (fir)	depth (ft)	Driller
724H, A7E	(Continued)							—								
11.8h	toulse Smith Corp.	.** 1957	de l	485	10- 8				629	80			 ,		Sand 4 gravel, 110-185, 238-294, 300-350; 11mm stone, 358-405	
12 12.25	James Watson, Jr.4 Hiram \$[bley	+1913	drl drl	100	·		Т,		850		·				Sand & gravel at 100	
12.85	Uriling S. Iselin	1957	dri	127	- 4	8	- i		840						Sand at 127	Swanson
13.96 13.1f	Edna Ulfers Hilton R. Bell	1941	drl drl	147		ï	3.75	.025	850 850	66					Sand Sand, 344-147	Swanson
13.8a	Shaner implement Co., inc.**	tgoh	dr1	100	2	4			êi s	25		**			Sand at 100	
14.1g	írene Fíckeller	1907	dri dri	115	2	4	2		831	60					Sand at 195	Swanson
14,20 14.8g	Raiph Borchers H. 6 L. Borchers	1916	ért	120	ż		2	•-	815 831	50					Sand at 115	Swanson
15.1e 15.5e	Frank Tranger Denwy Smith		dri dri	115 90	2		2		825 810	40 30					Sand at 115 Sand at 90	SHERSON
15.8g 16.1d	Herbert Brucker Francis Ashley	1914 1897	dr I dr I	102 90	2		2 2		818	25	•••	++	••		Sand at 102	Anderson
16.64	Core E. Glascock		drl		4			••	812 851	30					Sand at 90	Willson
17.16 17.8d	Ciyde Ashley Laura S, Ashley	1892 1918	dri dri	90 88	2	÷	ž		850 822	65 35					Sand at 90 Sand at 88	Wilson Swenson
18.17 18.8c1	Mae Clutts Eunice Caylord	1913	11b 11b	106	2	•	2	**	820 792	20					Sand at 106	Swanson
18.8c2 18.8h	Eunice Gaylord** Leo Kilter	1918 1926	dri dri	60 30	2	••	2		792	25					Sand at 60	Kaffer
19. ta	Mrs. John Erp	1916	drl	110	i	4	2		782	5 30					Sand at 30 Sand at 110	Kerber
19.8d 20.161	Susanna Stroh** G. Champion, Tr.	1914	dr1 dr1	110 130	2	.	2		830 812	40				::	Sand at 110 Sand at 110	Anderson Taylor
20. jb2 20. 3gi	G. Champion, Tr.ªs G. Champion, Tr.	·	dr 1 dr 1	64 128	2	•	2		812 540	15 65					Send at 64	
20.392	6. Champion, Tr.	1960	dri	118	- Ā	3	2		840						Sand at 128 Sand at 118	Taylor
21.16 21.16	Theodore Auteman Beulah Locher	1894	dug dri	68 115	48		ž		785 800	40 57		5			Sand at 68 Sand at 115	
21.6e) 21.6e2	H. J. Seathoff++ H. J. Seathoff	2941 1950	dri dri	189 229					812	57	13			30	Sand, 186-189 Sand at 229	Swinson
22.141 22.142	Ramp Farms, Inc. Kamp Farms, Inc.	1884	dr1 dr1	110 123.5	2 6	5	2 5.75	.014	805	30 48	••		••		Sand at 110	••
22.8h	Kemp Farms, Inc.44	191)	del del	134	2	, 	2		805	20-30)7 	10 	.3 	4.5 	Sand & gravel, 89-92; sand, 118-123.5 Sand at 134	Swanson
23.20 23.70	Paul Elkin George Stolz	1908 1920	dr1	95 101	1	- N	ż		840 810	50 40-45					Sand ac 95 Sand ac 101	Swanson Swanson
23.8g 24.8c	James Longmire William W. Woolsey	1910	dri dri	45 150	1		2		800 812	20 80					Sand at 45 Sand at 150	Swanson Keffer
24.8c 25.7e	Catherine Woolsey Ernest L. deecher	1890 1926	dr I dr I	100+	2		2		820	30					Sand at 100+	
26.1e1	Fred Gilmore	1908	drl	90	2		1	**	810 787	65 45	••				Sand at 120 Sand at 90	Svanson Svanson
26.1e2 26.1h	Fred Gilmore E. D. Radliffett	1952 1899	dri dri	83	i	5	3.75	.012	767 828	35 60		15	1.1	7.5	Sand, BO-83 Sand at 100	Swenson
27.54 27.561	Arthur Gilaore Arthur Gilaore	1940 1884	dri dri	59 60	2	4	1	.020	780 795	40 30					Sand at 59 Sand at 60	Swan son Swanson
27.562 27.74	Arthur Gilmore Arthur Gilmore	1940 1942	dr I dr I	45.5 77	1	3.5		.014 .025	795	22	20	15	.8	•	Send, 58-65.5	5100500
20. UBI	Emma J. Shirley	1929	drl	89	2	•	ż		790 802	35 35 46					Sand, 74-77 Sand at 89	Swanson Riblet
28.162 28.8e	Emma J. Shirley 1st Hetfonal Bank,	1953	dr1 dr1	86 110	1	5	3-75 2	.029	802 825	46 70					Send & gravel, 74-86 Sand at 110	Swanalon
28.8r1	Gibson Elty L. 6 J. Tompkins	1684	471	5.	2	2 6.5	2 3.75	.016	815	20-40		16	•••	•••	Sand at 95 Sand, 89-95.5	 Svenson
28.8r2 29.3h1	L. 6 J. Tompkins Grace Anderson	1965	dr I dr I	95.5	ź	•-	2		815 820	55					Sand	
29.362 29.8f	Grece Anderson** Gesine Helson	1904	dug dri	12 96	10 2	ï	1		820 832	6~10 20		?			Send at 32 Send at 96	Swanson
30.6e 31.2g	Mary Voelker Herry Diehl	1952	dr 1 dr 1	165 114.5	2	5	2 3.75	.018	830 810	55 63	3	15	5.0		Send at 165 Send, 96-114.5	Swanson
31.2h 32.2c1	Herry Dichi Herry Dichi	1924	dr) dr I	97 \$5	1				820	40 50	-			2	Sand at 97 Sand at 85	Swanson
32.2c2	Harry Diahi	1957	drl		6		6	••	810 810						Sand	Swanson
32.2g 33.16	J. S.H. L. Fox Rey Ropp		dr I dr I	86 85	2				830 794	40-45 20					Sand at 86 Sand at 85	Ander son Svanson
33.7» 34.5h	Ray Ropp J. S. Foster Est.	1949	dr1 dr1	93 70	4	<u>.</u>	<u>.</u>	.014	820 770	65 40-45		6.5		3	Sand. 88-93 Sand at 70	Śwansóń
35.171	Ento Shirley** Exma Shirley	1898 1947	de l de l	90 75-5	2		3.75	.020	782 782	50 37	nī.	15	ī.4	6	Sand at 67 Sand, 70-76	Swanson Swanson
35.8el	Harlan K. Hills	1900	dug	40	42			••	760	28	10	20	2.0	ŝ	Sand at 40 Sand 6 gravel, 42-47	Swanson
35.8=2 36,4m	Marian K. Hills Emma Shiriay	1945	dr] dr]	47 67	2	:	3.75	.025	760 800	21 30	-+	20		÷-	Send at 67	Swinson
36.861 36.862	W. S. Sumaringen W. S. Sumaringen	1918 1949	dr1 dr1	80 85	2	4.9	3.75	.018	800 800	40 18	6	20	3.3	3	Sand at 80 Sand, 19-21, 50-52;	Riblet Swanson
36.84	Emma Shirley##	1905	dr i	54			••		785	25	••				sand & gravel, 77-85 Sand ac 54	Riblez
1240, ABE					•											
1(1) 1,66	Melvin (V)++ Ronald Buchholz	1908	drl drl	282 125	, ,				310	80-65	•••		••		Sand at 125	
1.7+1(2)	Nelvin (V)**	1913	dc1	245	ē 8-6	19.5	6	.010	810	156	40					
1,702(3) 7,703(4)	Helvin (Y) Helvin (Y)	1923 1954	dr] dr]	265 260	8	25 20	8	.012	810 819	811	43	60 153	1.5 N.Ø	š.5	Sand, 230-260	Johnson Bolliger
2.161 2.162	F. Dison Est.** F. Dison Est.	1953	dri dri	110	2.5				805 805	9 0					Sand at 180	Gladul≢ Sçiaganan
3,1#1 3,1#2	L. & E. DeVall L. & E. DeVall	1894 1965	dr1 de1	84 92	2	::	3.75	::	772 772	25-30					Sand at 84 Sand, 50-52, 82-92	Riblet
3.16	5. 4 H. Sfazzs		del	60	2				759	25					Sand at 60	Gimble
4,1a 4,16	George Arends George Arenda	1963 1911	drl 4rl	58 75 63	3	.		-015	760 762	25 35		25			Send at 75	Stieghen
4.44 4.5	Pauline Lippincoff A. D. Aronds	r 1948 1915	dr] dr]	63 80	4			.018	765 771	15 30	5	15	3.0	4.5	Sand & gravel, 55-63 Sand at 80	Swanson Glable
4,8e 5.1e	A. B. Arends Walt Arends	1894 1953	dr1 dr1	65 85	2	ŝ	3.75	.014	772	30 35	,	20	2.9	5	Sand at 65 Sand, 77-85	Swamson
5.3h	Gilberg Arends		drl	55	ż	-	**		701	30			••		Send at 55	<u>C</u> (mble
5.8a 6.2h)	Nary Brucker Weldon Conger	1946	dr I dr I	94 85	2	••	3.75	.025	805 812	50 45	5.5	20	3.6	15	Send, 61-63, 85-94 Sand at 85	Swanson
6,2h2	Weldon Conger	1969	drl	107	4	•	4	.012	8(2	60	16	14	.0	1.5	Dirty sand 6 gravel, 90- 102; sand 6 gravel,	Stiegnan
															102-107	

							_		Land	Nan-					Water-bearing	
Well		Year		Depth	0ian-		Of an-	Slat	surface alavation	pumping water İsvel	Draw- dawn	Pumping		oŤ	formation	
number	Owne r	STRUCTED	Type	(ft)	(in)	Longth (f2)	eter (in)	sl 20 (12)	(f: above mei)	(ft)	(ft)	(gpm)	capacity (gpm/jz)	(est (hr)	depth (ft)	Driller
TZAN, ABE	(Contioued)															
6.4a	Louise Salth Corp.		dr1	115	2				820	55					Send at 115	
7.15 7.8g1	Louise Smith Corp. Louise Smith Corp.	1929	dr) dr1	90 134	3				810 842	50 65					Sand at 90 Sand at 134	Swanson Swanson
7.8g2	Louise Smith Corp.	1946	drl	125	•	•-		**	842	••					Sand, 80-85, 100-105; sand 6 gravel, 120-125	Swanson & Larson
8.14 8.76	- R. E. & D. J. Ulfa - H. ∓ L. Halmig	1943	dr] dr]	85 95	4	4.5	 3.75	.025	780 795	35 55					Sand at 85 Sand, 85-89, 91-95	Swanson
9.14 9.1d	Grace Bubon A. T. Arends		drl đrl	80 105	²				760 760	20				••	Sand at 80 ASand 6 gravel, 80-105	Gimble Larson`4
10.14	Roneld Buchholz	1963	drl	74	4			.014	758	29	.5	10	20.0	3	Sand, 49-52, 69-74	Swanson Swanson
10.11 10.16	Fulton & Frost L. & E. DeWall	1931	dr) dr)	80 92	1		3.75		772 768	35-40		40			Sand & gravel at 80 Sand, 50-52, 82-92	Roberts Swenson
10.6a 10.8F	Danial Arends Harry Stralluf	1899	dr) dr)	60 60	2		••		755 760	20 25			••		Sand at 60 Sand at 60	Gimble .
0.1d 0.3h	Edith Benson Clarence Brinkman	1899 1904	dr I dr I	100	2				79i 790	75					Sand at 105 Sand at 100	Roberts
11.7h 12.1c	Fred G. Arends Emerson Busick	1909 1884	dr) dr)	86 110	2				780 800	30 70					Sand at 86 Sand at 110	Gimble
12.5e 12.7bi	Nrs. C. Spellmeyer John V. Paol		dri dri	120	2				601 800	-80 106					Sand at 120 Sand at 128	Gimble Gimble
12.7h2 13.1gt	John V. Pool Roy V. Otto##	1966	drl drl	112	٠ <u>ــ</u>	<u>*</u>	<u>+</u>	.012	800 790	80 		20-25			Sand 4 gravel at 112	Stlegsan
13.192 13.193	Roy M. Otto Roy M. Otto	1922 1960	del del	117	2	÷	÷	.010	790	87 75		20			Send at 117	Roberts Stlegman
13.4a 13.5a	C. J. Ringler, Tr. Holen Otto	1908 1943	dr) dr)	80 90	2	ï	1.25	.015	762 762	60 45					Sand at BO Sand, 87.5-90	Roberts Swenson
14.2h 14.7h	Eerl Thackery Bond Farmak	1916 1916	dr1 dr1	102 65	2				775 762	72					Sand at 102 Sand at 65	Gimble Phillips
15.1c 15.7a	R. & L. Dafries Ida Bond	1896	dr) dr)	ផ	1	::			750 754	20 19					Sand at 68 Sand at 71	Bond Bond
16.1c 16.8h1	Peech Orchard School Peech Orchard School	1 1922	drt drl	163 92	1				760 780	25 40	::	••		**	Sand at 163 Sand at 92	Gimble Bond
16.8h2 17.6a	Peach Orchard School Hrs. A. V. Johnson		dr1 dr1	120 83	2		1.25	••	780	50 35-40		10			Sand at 83	Stlegman Gimble
17.0h	E. D. Andliff R. C H. Hiller	1925	dri dri	90 110	1				802 812	55 70					Sand at 110	Giodale
18.20 18.60	H. Flupatrick	1927	dr1 dr1	135	ž				825	105 65-70			••		Sand at 135 Sand at 135	Ginble
19. lel	Louise Walters C. A. Hedlundse	1928	dr1	135	i		*-		820	105			.8		Sand at 125	61mble Swanson
19.1c2 19.2b	C. A. Hedlund C. A. Hedlund	1953	dri dri	132	<u>.</u>	<u>•</u>	3.75	.016	820 830	"	13	10		5.5	Sand, 119-132 4Sand, 85-90, 120-132	Swanson
19.2g 20.16	Cells Anderson ^{an} Relph Dueringer	1690	drl drl	810 80	2				824 782	30 25-30		••• •••			Sand at \$10 Sand at \$0	G Imb i e
21.lg 21.3p	Lule Cothern Narry Hall	1922	del dr1	62 70.5					754 763	20-25 35		6.6		8	Send, 69-70.5	Stiegnan Swanson
21.74 22.3h	G. 6 E. Duoringer Helen Freshillen	1854	dr1 dr1	80 20	1			ï	780 750	40 35	••				Sand at 70	Glabia
22.7f 22.8e	Jaos Est.44 Jaos Est.44		drl drl	ði 75	2				755	¢		••			Sand & gravel, 76-81 Sand at 75	Swanson
23. lh 23. 7h	Habel Spellmeyer Freshill & Haloney	1894	drl drl	65 65	1		:	••	754 751	20-25 35					Sand at 65 Sand at 65	Gimble
24.8c1 24.8c2	Hanna Shilts** Hanna Shilts	1931 1963	dr] dr]	190 197	;		1.25	.012	745 745	20-25 60		15			Sand at 190	Roberts Stleggen
25.141 25.142	Letitia Bromwellen Letitia Bromwell	1989 1965	dr) dr)	190 219	1				750 750	20-25					Sand at 190	Stlegman Weburg
26.3h 26.8h	Cherles L. Sharp John Benson##	1918 1930	dr I dr I	200 90	2.5				745 751	20 20					Sand at 200 Sand at 90	Roberts Stlegman
27.1e 27.8h	S. E. Comeron Releigh Underwood	1904 1894	drl drl	80 70	2				750 760	20 25					Sand at 80 Sand at 70	Gimble
28.16 28.3h	Emme Ventes R. & Q. Ulfers	1962	dri dri	76 260	3		::		762 770	10			::		Sand at 76 Sand at 156 4 at 260	Swenson
28.8c 23	Joos Est. 6. H. Schuttee	1926 1950	dr) dr)	95 210	ł.	5.4	3.75	.010	781	60 65	20	15		5	Sand at 95 Sand E gravel, 75-79:	Riblet Swanson
29	Charles Schuttee	1952	drt	112		5	3.75	.025		62		17		5.5	sand, 198-210 Sand & gravel, 88-90;	Śwanson
29	W. S. Brown	1965	dr1	105		6.5	3.75	.016	••	65	••	16			sand, 105-112 Sand, 60-83, 101-105	Swenson
29.1d 29.50	Clif Augsberger Kathleen AcDougel	1930	dr) dr)	100 58	3				772 795	36-40 40			**		Sand at 100 Sand at 98	Swanson
29.701	H. W. Underwood	1943	del	107	•	4.5	3.75	.025	805	60	••	••			Sand & grøvel, 86-88, 105-107	Swanson
29.7×2 29.7×3	Suthrie Elevator Walter Borchar	1962 1962	drl drl	90 87	2		1.25	,012 	800 800	70 65		12				Stiegman Stiegman
30. le	Ora Reynolds#*	1873	dug i drì	105	48-2	••		••	820	75	**		•-		Sand at 105	
30.71	Hrs, lvan Grucker		dug 6 drì	120	36-1			••	805	70					Sand at 120	
31.86 31.86	Etmer C. Asher** Charles Steinberg	1921 1894	drl drl	137 75	2	••			812 793	50 20-25					Sand at 137 Sand 6 gravel at 75	Albiet Riblet
31.8h 32.8a	Elmer C. Asher J. V. Swmaringen	1948	drl drl	122	1			.014	800 612	78 55 40	**	7.5	5	2	Sand, 117-122 Sand at 135	Swanson
33.la 33.Whi	Ernest Romors Ernest Romors**	1926 1920	dr I dr I	90 123	2				763 770	40 45					Sand at 90 Sand at 123	Swan son Swan son
33.4h2	Ernest Remors Ownr Leathers	1947 1928	de i de i	225	1	5	.	.014	770	75	50	7.5		6	Sand, 91-98, 190-225 Sand at \10	Swanson Stlegman
33.8g 34.5h 34.8c	George J. Arends Econe Qadielson	1913	dri dri	60 52	2		::	::	755 765	30-35 55		::			Sand at 60 Sand at 92	
35.14	Paul Cameron Florence Stephens	1929	drl drl	210 85	1				750 752	30-35 55 96 40					Send at 210 Sand at 85	Stiegnan Swanson
35.8g 36.4h	Leticia Promieil	1920	del	193	i	••			745	75			••	••	Sand at 193	Stlegmen
T24H, 89E																
1.14	Richard Voorhoes	1916	dri	206	2				767	85					**	Rober ts
1.8N 2.4a1	D. Henricks John Sheppelmen		dri dug	200	1 36				742	80 25		<u>*</u>				Houtzel
2.4a2 3.1e	John Sheppelman V. S.A. Greenlee	1953 1912	dri dri	110	2				780 761	76		 3.5				Stlegman Roberts
3.lh 3.8e	H. E. & A. Hinch Fred Reifstech	1964 1916	dr) dr1	146	į	!	1	.018	770 771	85 82	::	-			**	St legent
3.80	Margarat Kendrick	1916	drl	205	i	~	••		772	80		4.5				Roberts

			¥:	±0			Sereen		Land Surface	Kon- pumping	_	_	Observed		Water-bearing formation	
We)		Year con-		Depth	01 amr	Length	Diam- eler	5 lot 5 i 2e	elevation (ft above	weter level	Or aw-	Fumping	specific capacity	of test	and depth	
number		structed	түре	(/*)	<u>(in)</u>	(n)	(fn)	<u>(in)</u>	mgl}	<u>(/t)</u>	<u>(fe)</u>	(gpm)	(gpm/ft)	(hp)	<u>(ft)</u>	Oriller
T24#, M9E	(Continued)															
4.5a	V. Alcorn & O'Bane	1916	dr I	233	2				775	86		4.5	••	••	••	Stlegnan
5.5h 6.4b	M. J. Kandrick Minnie Muchlenpfort	1901 1964	dri dri	60 107	2	4	Ň	.012	772 780	50 85		20				Stlegman Stlegman
6.4h	Reymond Steinmen	1967	dri	210	4	4	4	.010	760	95	5	10	2.0	2	Dirty sand, 180-200; sand, 200-210	Stiegman
6.6h	Arends Bros.		dr I	112	2	**			790	90			**		**	Stlegman
6.8h	Farms, inc. L. Stubblefield	1900	drl	140	2				800	90		••			Sand at 140	Philips
7.1h 7.3e	Faye Sackett George Dodd	1916	dri dri	105 103	2 2			**	780 785	86 80		1		••		Roberts
7.8h 8.3h	Gus Otto Marguerita Kendrick	1965	dr i dr i	1) Î 98	4	*	4	.015	788 764	90 35		20-25				Sciegman
8.75	Harvey Branzt	1915	del	106	ż			••	771	78		4.5			••	Roberts
8.8d 9,161	Charles Weber Leo Kietzman**	1917 1921	dr i dr i	197	2 2				775 780	80 65	••	1				Roberts Roberts
9.152 10.3a	Leo Kietzman Roy Reifsteck	1950 1916	dri dri	230 165	2 2				780 771	65 74				••	••	Stiegman Roberts
10.75 11.66	Thomas Eheart Clarence Reifsteck	1919	dri dri	215	2				771 764	80 98						Roberts
12.76	J. G. Currie, Helrs	1931	drl	208	2	**	••		780	105		4			Sand at 208	Roberts Stlegman
12.7g? 12.7g2	Lindsay & Price Lindsay & Price**	1911	dr) dr)	272 210	2 2				763 763	80 80		Ϋ́,			••	Roberts
13.1a 13.6a	N. F. Labolle Est. Paul E. Nicewander	1919	dr I dr I	110 127	2 2 2				770 770	90 90	••	4				Střegman Acterts
13.6h 13.8d	William Bratherst	1930	dr I dr I	108 225	2		::		770	78		3.5		••		Roberts
13.6e	Roy Hicewander Roy Nicewander	1968	drl	278	Ă.			.018	770 770	96 75	10	3,5 20	2	2	Sand, 163-170, 200-228	Roberts Weburg
)4.5h 14.6b	R. 6 R. Stanford	1916	dr) drv	233 110	2 2				770 760	80 76	••	3.5 3.5				Roberts Roberts
15.161 15.162	M. J. Weaver M. J. Weaver	1960	dri dri	160	2	8			780 760	80 91		4.5				Roberts Swanson
15.7g	Arthur Currie**	1912	del	222 820	2 2			••	790	60		3.5				Roberts
16.1a 16.8d	Eva Spellmoyor E. 6 G. Kietzman	1961	drl drl	126	í.	4	4	.020	780 770	70	ā	15	 1.9	4.5	Sand, 116-123; sand 6	Swanson
18.34	Wayne Niewold	1919	dr I	105	2	••			755	80		4.5			grave1, 123-128	Roberts
18.5h 18.7e	Holiver Gale Emerson Busick	1900	dr) dr)	125	2				792 752	78 64	•••			**		Roberts Phillps
18,6d	Emerson Busick	1933	dri	102	2				765			- i				Gimble
19. fa 19. lh	Rachel Shaw A. G. G L. Peters	1919	dr) dr)	235 103	2	••			802 761	50 96 79		3.5			••	Roberts
19. Jai 19. Jai	Werren Albers Warren Albers	1924 1968	drl drl	236 230	2 4			.014	782 782	96 83	15	4 20	1.3	2		Stlegman Veburg-
19.85	John Malonay E		451	90	2					-	-		-		gravel, 156-230	-
	Helen Frechill								755	60	••	••			••	Phillips
20.3e 20.7h	Charles Sharp H. W. Payne	1966 1918	dr1 dr1	152 101	2		<u>*</u>	.018	780 780	81 80		20 4			Sand & gravel, 145-150	Stiegman Roberts
20.8a 21.4+1	H. W. Payne W. C. Cooper	1906	drl drl	236 103	2				801 770	96 90		4				Stiegman Roberts
21.4a2 21.6c	W. C. Cooper Robert E. Kenny	1967 1924	de i de i	110	6 2				779	80.5	ß	16	2.0	2	Send & gravel, 8015-110	
22. Idl	E. S J. Lind#*	•-	dr1	96	2	••	**		773 785	105		3			Sand at 133	
22.142	€. & J. Lind	••	dr l	220	2	2.5	•	.050	785	96	••		+•	••	Dirty sand, 100-112; sand 5 lime, 214-216;	Stiegnan
22.5	Ardmon Andrews	1914	dr)	253	2		••		785	96		•			sand, 216-220	Roberts
22.8s 22.8s	John F. Kenney Ardeon Andrews	1922	dr1 drv	103 200	3	••			760	80		1				Roberts
24.1+	B. Anderson, et al		drl	90	2		••		778 771	80					Sand at 200 Sand at 90	Stiegman
24,1h 24,5e	 Anderson, et al Harry Payne 	1965	dri dri	108 235	2 2.5	11	1.25	.010	765 780	94 75		3,5 IQ			Sand, 83-85, 220-235	Swanson
24.6a 25.3a	Herry Payne Melter Overstreat**		dri dri	85 112	2 2				772 785	80 80		3.5	••			Roberts
25.3h 25.4a	L. 5 B. Bechman Walter Overstreet		dr l dr l	106 120	2			••	780	70 80		Ă.				Roberts
25.4h	L. & B. Bachman	1969	del	106	ā,	<u>*</u>	<u>*</u>	.020	790 775	83	2	10	5.0	2	Sand & gravel, 83-106	Stlegmon Weburg
25.5a 25.8h	Audrey Gray Leona Plicher	1920	dr) dr)	150 75	2				785 776	80 60		3.5			••	Roberts Roberts
26.16 26.1g	Or, A. W. Peterson Rey Aukland	1916 1918	dr I dr I	242 158	2				790	72 120		4			Sand at 158	Stiegman Stiegman
26.5h	Harry Payne	1948	del	241	4			.012	781	92	17	6	-4	6.5	Sand & gravel, 105-137;	Swenson
															sand, 137-142; sand 4 gravel, 142-167, 173-	
26.6s	Narry Payne	1926	dr 1	114	2		•••		781	100		4	••	••	101; sand, 201-241 Sand at 114	Střegnan
26.6h 27.1e	Narry Paynets Florence Wright	1916 1950	dr) dr)	106	2	5.2	3.75	.014	781 770	80 97	17	4	,	ĵ	Send, 215+245	Roberts Swanson
27.191 27.192	Victor Burklund Victor Burklund	1917 1970	dr1 dr1	166	2			.015	778	80	10	3.5			Sand, 158-175	Roberts
27.2a	Florence Wright		dri	104	2	÷	-		778 774	83 96	**	15	1.5	2	Sand at 104	Weburg
27.5+ 28.54	Relph Kelly Alice Burklund		dr) dr)	104 120	2		**	••	761 783	⁶⁰		3				stlegran
29.161	Adrianne Burklund**	1945	drl	235	•	•	2.5	.01B	780	84	6	15	2.5	5	Sand, 130-132, 182-184, 187-235	Swanson
29.1#2	Advience Burklund	1961 1918	dr 1 dr 1	196 216	2		1		780	90 98		10		**	**	Stlegman
29.4a1 29.4a2	Casper Cramer Casper Cramer	1951	dri	267	`	7		.010	795 795	90 120	40	4.5 15	4		Sand, 130-152; dirty	Stiegman Swanson
															sand, 209-220; sand, 220-267	
29.8h 29.8a	A. B. Loudy Cesper Cremer		dri dri	242 216	2	5.4	3.75	.018	783 772	115		15		<u>*</u>	Sand, 210-242	Swanson Gimbie
30.291 30.292	Franklin Sharp** Franklin Sharp	1920 1964	dr l dr l	225	2	;	Ň	.010	791 791	96		4 15		·		Stlegmon
30.6a1	William Reitz ^{èn}	1920	drl	224		•-		••	755	90 96		e	••	••	••	Stlegmon Stlegmon
30.6a2 30.7e	Villian Reitz Villian Reitz	1940 1968	dr I dr I	190.1 210	2 6	i.	Π.	.010	755 755	95.6 75	15	15	1.0	2	 Sand, 198-204; send &	Weburg
31.16	Anna Strange	1916	**1	212	2	••		••	770	85			••		gravel, 204+210	Stagnen
32,4h 32,6h1	Carson Farm Account Maloney & Freehill		Jr 1	224	2				790 778	96 85						Stieghen
32.6h2	Maloney & Freehill	1925	drl	140					778	••	••	••				Stiegmen Gimble
32. Go	Bates Willis	1949	drì	197	•	••		-014	758	63	•	15	15.0	4	Sand & gravel, 80+85, 110-115; sand, 185-197	Swanson

				<u>ell</u>			Screen		Land surface	Non- pumping				Length	Water-bearing formation	
Vell number	Owner	Tear con- structed	Туре	Depth (ft)	Diam- eter (in)	Length (ft)	Diam- eter (in)	Slot size (in)	elevation (ft above mel)	water level (ft)	down (ft)	Pumping race (gpm)	specific capacity (gpm/ft)	of test (hr)	and depth ([s)	
	(Continued)				<u> </u>			<u></u>			4.1	40.0	196-01-01			Oriller
33. Wh	Mrs. E. J. Pacey	1917	drļ	150	2	**			763	76						Robeřzs
33.5h1 33.5h2	Howard Burklund Howard Burklund	1917	dr) dr]	225 217	2				783 783	96 96						Roberts Weburg
33.8h 34.1f	Howard Burklund E. Clark Karr	1923	dr) dr)	230 74	2				780 758	96 68		3.5 3	••		Sand 6 grave) at 74	Roberts
34.5h 35.17	Mrs. F. Abrahamson Alton J. Little	1884±	dug dug	40 45	48 96				760 766	30 30		5				
35.0 1 36.1h	Wijllam 9. Burkjun John H. Brokate		dr) dr]	98 98	2				761 783	83 92		3.5 3.5			Sand & gravel at 90 Sand & gravel at 98	Rardin
36.4h 36.5h1	Wendell Siddens Wendell Siddens	1962	dr) dr)	225 104	4				789 780	96 96		4.5	**		Sand & gravet at 704	Stiegman
36.Sh2	Wendell Siddens	1969	drl	245	4	6	•	.015	780	9B	10	100	10.0	2	Sand 6 gravel, 98-105; sand, 220-245	Neburg Neburg
T25N, R7E																
19.1c 19.7g	Grace Moberly Delmar Huppers	1917 1904	dri dri	75 97	:				804 781	30 20			:		Send at 75 Send at 97	Cook Cook
20.141 20.142	James W. Liddle James W. Liddle	1894 1941	dug dri	14	42 4	••			790 790	7	13	6		30	Sand at 14 Sand, 786+189	Swanson
20.8a 20.8h	Fred Brucker, Heir: Bethel Armstrong		dr) dr)	101 48	4				613 777	40 11		**			Send at 101	Bolliger
21.1d1 21.1d2	Elven Richardson Elven Richardson	1905	dr1 dr1	145	2		2		812	50			+-		Sand at 48 Sand at 145	Cook Swanson
21.2h1 21.2h2	Harold Heil	1909	drf	45	2		2		812 791	30			Ξ.		Sand at 120 Sand at 45	Taylor Swenson
	Harold Hell	1951	đr]	42.5				slotted pipe	791	50 20	5	40	8.0	Û	Send 6 gravel, 40+42.5	Swanson
22.3al 22.3a2	Louise Smith Corp. Louise Smith Corp.	1955	dr) dr)	101	2		,		830 830	50	**				Sand at 101 Sand at 150	Swanson Swanson
22.5e 22.6f	Louise Smith Corp. Louise Smith Corp.	1961 1915	dr) dri	2)0 95	2	51	4 2		830 810	55					Sand at 240 Sand at 95	Swanson
23.4h 23.8al	J. 6 L. Benway Elsia Valters ^A *	+1906	dr i dug	80 30	٠		•-		805 830	6 6		::		::	Sand at 80	
23.6a2 23.8a3	Elsie Valters** Elsie Valters	+1906 1961	dr) dr)	75	<u>م</u>	ŝ	ų.	.010	830	 70		20		••	Sand at 75	**
24.6h	Theodore Mayer	1924	dr)	110	2		2		810	50					Sand at 108 Sand at 110	Stlegnan Cook
24.8a 25.19	Edna Hueller L. H. Kerrick	1914	dr1 dr1	127	2	4	2		835 830	40 60					Sand at 127 Sand at 115	Stiegnan
25.5a 26.3h	Genevieve Rudolph Anne Koehler		dr] dr]	166 135	4		1		822 850	55-60 60					Sand at 186 Sand at 136	••
26.4a 27	Sibley Estate Sibley Estate	1946	dri dri	117 80	2				B10 	50					Sand at \$17 *Sand, 60-80	Larson &
27.14	Willard Erb		dr f					**	632							Swanson
27.861 27.842	Louise Smith Corp. Louise Smith Corp.	1890 1958	dr t dr l	105 BQ	2		2		622 622	45					Sand at 100 Sand at 80	Swanson
27.Bh	Willard Erb	1957	dr I	285	10	15	10		610	225			••	,	Send, 225+285; lime, 504-517, 550-568; sand- stone, 568-575; lime, 575-605	2104
20.86	Willerd Erb	1895	dr i	96	2		2		821 805	35 50					Sand at 90 Sand at 96	Swanson Swanson
29.1a 29.2h	E. A. Steinberg Fred Sheppleman	1898	dr i dr i	98 47					812 785	55 20			••		Sand at 98 Sand at 47	Bolliger
30.16 30.7c1	Elvin Berker Hary Brucker	1913 1913	dr I dr I	88 63	6				780 775	12					Sand & greve) at 88 Sand at 63	Cook Cook
30.7c2 30.7h	Nary Drucker D. & M. Estague	1961 1915	dri dri	20.5 90-95	1	*	.		775 805	9 40		20			Sand at 90-95	Stiegnen Kaffer
31.te 32.2e	James Watson, Jr. James Watson, Jr.**	1958	dri dri	118	4	*			780 790	10-26 25		50		7	Sand at 125	
31.6h1 31.6h2	Louise Smith Corp. Louise Smith Corp.	1914 1952	dr) dr)	70 193	2				777	40-45	••				Sand at 40-45 Sand, 188-192	Swenson
32.143 32.142	Louise Smith Corp.	1890	dr i dr i	140	ż	4	2		777 790	21 20	18	15	.8 	2.5	Sand at 140	Swanson
32.142	Louise Smith Corp.			21.5				•-	790					**	*Send, 30-40, 50-70, 185-205, Limestone,	Larson & Swanson
32.5h	Ur)ing 5. Ise)in**	1910	drl	65	2		2		788	40		••	•-		220-225 Sand at 65	Swamson
32.84	Urling S. Iselin	1957	de l	335	10-7	10	7	slotted pipe	775	25					Sand 4 gravel, 25-290; l(me, 290-296; l(me- stone, 359-367; sand- stone, 367-412; l(me- stone, 551-575, 603-633	Zink
32.8d 33.16	- Urbing S. Iselin James Watson, Jr.⇔	1894	dug dri	24 25	36				781 785	18		?	7.0	24	Send at 24 Sand at 25	
33. le 33.59	James Watson, Jr. James Watson, Jr.	1957	dr I đr I	320	10	15	10	slotted pipe	788	80					Sand, 80-160; sand E graval, 185-215, 238- 265; limattone, 480- 496, 533-547; limestone 4 dolomite, 585-625	
34.100	James Watson, Jr.	1930 1963	dri dri	85	2		2		830 810	40-45					Sand at 85	Swanson
34. ld2	James Watson, Jr.	1303	471		•		9		810						Send	Teylor
34.261 34.262	Ozark Pipe Line Co.44 Sheli Pipe Line	1926 1929	də i də i	221 174	8 8		 8		802 802			10 	 	••	sand, 173-174	Johnson Woollen
34.35	Neve J. Rohrer	1965	dri	71	ĩ	6.5	3.75	.010	805	39	19	12	.6		Sand & gravel, 56-58; sand, 64-71	Swanson
34.6h 35	James Watson, Jr. Siblay (V)	1908	dr) dr)	70 120	2		2		815	40					Sand at 70 *Sand, 100-103	Swanson
35.31 35.61	Louise Smith Corp. Dtto Fikenscher	1950 ≁ 1906	dr i dr i	90 96	4		*		811 810	45		::			Sand at 90	Swanson
35.7g1(1)		1907	drl	117		8.5	7.75	.010	814	46 50		35			Sand, 106-118	Stilegman
35.792(2)	Sibley (V)**	1925	dr I	108	4				814 810	300 45-50					 Sand at 90	 Swanson
35.86 36.14	Elmo Meiners** James Watson, Jr.		drl	90 115	2			::	830	55					Sand at 115 Sand at 103	Swanson
36.3h	Ist Trust & Savings Bank of Taylorvill	•	drl	103	2		2		832	55		••			Sand at 125	5/10/100
36.70	Hiram Sibley	1909	drl	125	2		2		840	80						

				10			Screen		Land surface	Non- pumping			Observed	Length	Water-bearing formation	
Well		Year con+		Qepth	Diam- eter	Length	blam- star	\$lot size	elevation (ft above	watar level	Orau- down	Pumping Cate	specific capacity	of test	and depth	
number	Owner	structed	Type	(ft)	(in)	(/#)	(in)	<u>(in)</u>	((ft)	<u>(f1)</u>	(gpm)	(gpm/ft)	<u>(hr)</u>	(71)	Driller
T25H, RØE			4-4			•									A	
19.8a 19.8h	George Brucker Wade Acres Est.	1906 1922	dr] dr]	120	2				832 824	8 70					Sand at 114 Sand at 120	Stéagaan Swanson
20.2e 20.2h	Herman Johnson McKinley Koshler	1892	drl drl	40 96	2				775 782	15					Send at 40 Send at 96	
20.8d 20.8h	Lowell Överinger Arthur Brucker	1925 1904	dr I dr I	75 70	1				794 600	40					Send at 75 Send at 70	Swan son Swan son
21.1a1 21.1a2	Detaur Lee Detaur Lee	1890	dr I dr I	48 61	1			••	762 762	20 20					Sand at 48	Gimble Swanson
29. Ig	Nenry Ficken	1961	drl	63.8	•	5.5	3.5	.010.	765			30		41	Sand, 54-63.8	Swanson
21.79 21.89	L. 6 M. Dunahoe L. 6 M. Dunahae	1904 1958	dr1 dr1	55 60	i		2	.012	780 780	20 30	••	20			Sand at 55	Johnson Stiegnan
22. h 22.4a	Clyde & Rose Day** J. W. Arther	1951	dr I dr I	85 72	2	ŝ	2.75	.010	785 765	55 15	47	5		2	Sand at 85 Sand 4 gravel, 67+72	Glabfe Swanson
22.6a 23.1a	Nora Cennedy Anne Gaines	1899	drl drl	62 100	2 2				765 792	12 30					Sand at 62 Sand at 100	Glado de Glado de
23.3a 23.8c	Earl Kresin Frank Traeger	1944 1922	dri dri	70 195	*	.	3.75	.018	768 772	\$5 50	20	8			Sand, 54-70 Sand at 195	Swanson Stiegman
24.1g 24.2e	Albert T. Arends Richard Shreve	1916	dri dri	97 105	2				782	47 80					Send at 97 Sand at 105	Gimble Roberts
25.tc	WIIIIam Arenda	1930	dr i dr i	240	2				792	75 78					Sand at 240 Sand at 116	Roberts Glable
25.50 25.5h	L. N. Hleswander Grotchen Wiegel	1944	drl	121	·	••			805	·~				••	Sand, 103-109; dirty sand, 115-117.5; sand,	Swartson
										••					187.5-821	
25.7h 26.3a	L. D. Hleswander S. C H. Siems	1930	dr I dr I	46	2			**	790 772	80 23				••	Sand at 110 Sand at 46	Roberts Gimble
26.56	Lloyd A. Falck	1963	drl	103	•	••		.014+.025	765	43		75		**	Dirty sand 4 gravel, 43- 88; sand, 88-103	Swanson
26.6h 26.8d1	Lloyd A. Faich Charles &. Nielson	1894 1914	dra dra	96 63	2 2				765 762	45 30					Send et 96	
26.842	Charles A. Nielson	1984	drl	54	ż				762	30	••				Sand at 63 Sand at 84	Roberts Roberts
26.843	Charles R. Wimison		dr)	142	•	4	3.75		762	54	11	18	1,6	. 6	Sand & gravel, 65-89; sand, 89-142	Swanson
27.2h 27.5a	9. J. Genz Fred G. Acends	1915 +f904	dri dri	60 57	2				76) 755	20 16					Send at 60 Send at 57	Simolle Giaobte
28.1d 28.8e	ive Johnson Dorothy Enlager	1930	dri dri	47 76	2				763 780	20 56					Sand at 47 Sand at 76	Glable Roberts
28.8h 29.2a	Lyle A. Srucker J. 6 5. Lanz	1952	dr I dr I	69.5 70	Ĩ,	5	3.75	.014	772 782	18 30	12	20	1.7	4.5	Sand, 60-69.5	Swanson
30.If	Charles Brucker, S	c. 1921	drl	100	•			••	785	45	••	**	**		Sand at 70 Sand at 100	Stiegman
30.4m 31.3h	Arnold E. Brucker Robert V. Eckert	1914	dr) dr)	42 90	i	**			810 800	50 45-50					Sand at 82 Sand at 90	swamson
31.4a 32.86	Jemms Wetson, Jr. Robert Brucker	1915	drl drl	75 85 18	3			••	815 811	45 60					Send at 75 Send at 85	Swenson
33.4h1 33.4h2	William R. Curtis William R. Curtis		dug dug	18 · 22	48-24 48-24				768 768	ş					Sand & gravel at 18 Sand & gravel at 22	
33.6a 33.8e	Veles Maber Remus Curtis	1908 1954	dri dri	65 58	2			.030	770 781	40 18		50			Send at 65 Sand, 53-58	Gimble
34.16 34.34	John Goggins, et a Francis Susaringen	1 1894	dr) dr)	60 40	į	=	::		760 755	25	•-	••	••		Sand at 60	Bolliger Gimble
14.8f	Asbury Theological		drl	50	:			••	760	25 10					Sand at 60 Sand at 50	Gimble Gimble
35.191	Sominary Elder Underwood	1895	drl	80	1				780	40			-	••	Send at 80	Gimble
35.192	Elmr Underwood	1968	drl	151	4	4	3.75	.018	780	52	23	40	1.7	1	Dirty sand, 85-98; sand, 131-151	5
35.2a 35.6a	Edna Arands Roger Arands	1915 1899	del del	77 70	2				780 770	50 45					Sand at 77 Sand at 70	Gimble Gimble
36.4a 36.57	John Pagi Trana Thompson		dr I dr I	120 236	2				810 801	75 110			::		Sand at 120 Sand at 235	Ginble Ginble
															-	
T25N, R9E																
1.1h 1.6e	Vernon Stoeckmen Petrick Cleary	1933 1965	dr I dr I	115	3		1.25		700 720	12 40		12	••	••		Roberts Stiegnag
1.61 1.7p	C. & D. Gayles Harlan Kehle	1906 1930	drl drl	136 80 115	ļ				700	15					••	Stlegman
F,8h	Betourne & Elck	1952	dug dri	50	36	5			700	25		••	••	••		Stiegman Asey
2.3c 2.4i	Minnie Hachie	1884	dug	196 64	36		3.75	,025	712 712	35 25	35	15	*	.	Sand, 177-196	Swanson Asey
2.81 2.6p	Kenneth Carmony Guy Davis		drl drl	145 140	2 2				720 718	40					•• ••	Vitson
3.1d 3.1h	Clatus & Mary Day L. V. Orr	1930 1972	dri dri	195 158	2				731 727	60 25					Sand at 158	Roberts Stiegman
3.1) 3.1p	Nilhelmina Higgina Bob Yena		drl drl	160	2	-	<u></u>		725 722	25 60					**	Roberts
3.70	Lloyd Orres	1908	drl	115	2	••			728	40 1	*-					Stlegman
3.8a 3.81	Helen Otto## A. E. Bradbury	~1923	det det	90 165	2				750						Sand at 90	
4.0	Nerbert Kohler	1928	dr I	204	i i				738 735 762	70 NO				•••		Stiogmen
4.7h 4.8e	A. B. Kohler L. C. & F. Heringe		dr) dr)	150	2	-			770	80 80		••	••			Stiegman
4.8m 5.14	V. F V. Hewthorne Clarance Sturm		drl drl	115 218	2				754 766	••	**					Havner Stiegman
5.27	H. 4 W. Stormonth Barney Sturm Est.	1964	dri dri	100 198	2		1	.010	774 795 780 782 785 785	80 90 82		12			Send at 100	Navner Stiegman
5.6p 6.1d	K. Newthorne Est. W. W. Shembrook	1933	dr I dr I	112	1	**			790 782	60					Send at 119	Stlegman Roberts
6.3h1 6.3h2	Margaret Stahmer** Margaret Stahmer		drl drl	108 120	1				785 786	78						Roberts
6.13	Dale E. Shambrook	-334	dr)	125	2				790 790	80			••			Roberts
6.10 6.8h	Floyd Shembrook James Philops		d7] 47]	118 101	2				790	ŞÓ	••				* - * -	
6.8j 7.2a	Herlen Kahte A. 6 J. Hickey S	**	drl drl	120 235	1				790 781	80 90						Roberts Stlegman
7.50	J. Morris D. 6 V. Martenson	1963	drl	218	2	•-	1		780	85		10	••			Stiegman
7.8e 8.1e1	Elyde Wesver Wilfred Colteaux		de 1 dug	113	2				786 780	7.7						
8.1u2 8.4u	Wilfred Coltagua 8. ¢ F. Grieves**	1906	dr i dr i	205	2			::	780 787	80 100	3	••			Sand at 111 Sand at 205	Roberts
9	A. HcDone1dA±	+1924	dug t dr1	120							••				Sand, 100-120	**
			ar i													

				.)(Screen		Land Surface	Non- pumping			Observed	Langth	Water-bearing formation	
Mail 1		Year con-	_	Depth	01am- eter	Length	eter	Slot Size	elevation (ft above	veter level	Draw- down	Pumping	specific capacity	of Lest	and depth	
aumber T254, R9E	(Continued)	structed	Туре	<u>(ft)</u>	<u>(in)</u>	(ft)	<u>(in)</u>	<u>(in)</u>	()	(ft)	<u>(ft)</u>	(gpm)	(gpm/ft)	(hr)	(ft)	Driller
9.70	Helen & Floyd Otto		dri	100	2				773	80	••					Roberts
9.8g	Seward Arnold	1920	dri dri	108	2 2				770 742	86 45			••			Roberts Stlegmen
10.1f 10.2a	Nary Wright Ida Bleich**	1909 1930	drl	80	2				720	75						Stlegnen
10.3a 10.6a	Derrell Townsend Wilbert Schumecher	1904	dr l dr l	80 220	2				751	80						Stiegmen
81.IN 11.3c	Alfred Joerger Herle Flessner	1950	dr) dr)	85	2 2				721 725	30						Stlegman
≬1.54 ≹1.8g	Regaret forster** Reg & Leonard Rock	t906 1924	drl drl	80 118	2		••		732 741	70 45						Stiegman Stiegman
12.1c 12.1h	Artle Whitson Peter Olson Est.	1902	drl drl	50	3				700 689	15					Sand at 50	Střegman
12.8e 12.8f	George A. Fuoss C. & A. Fuoss	1922	del drl	70 127	2 2	**	••		720 711	60 20					Sand at 70	Střegman Střegman
13.16 13.29	F. 6 V. Vest Louise Arnold	1959 1931	dr] dr]	130	2		2		711 702	35 26		12			•• 	Stlegman Stlegman
14.6a 14.8h	Rathew Rock Dr. V. Reudabaugh	1900	dri dri	70 70	2				740 730	40 40						Havner
IS.Sh	Darrell Townsend	1930 1960	del	224 202	2				742 750	80 62.1		50			 Dirty sand, 100-180;	Stiegsaan Bolliger
15.6c	Hicks Grain Terminals, Inc.		del		\$.015	760	65	15	20	1.3	10.5	send, 160-202	
15.8e 16.1d	Nicksgas Thomas Talbot*A	1953 1909	dri dri	135 145	4	5	3.75	.018							Sand 6 gravel, 70-83; sand, 128+135	Swanson
16.Je	Viola Allison	1924	drt	160	2		**		758 758	80 						Roberts
16.261 16.262	Thomas Talbot** Thomas Talbot	1961	dr I dr I	106 206	2	4	1.25	••	771 771	80 85		15				Roberts Stiegman
16.7h 17.16	F. J. Musson Earl & Lucille Day	1924 1958	dr i dr i	224 110	2 2.5		1.25	.014	780 780	80 75		15				Stlegman Stlegman
17.1e 17.5e	Hosher Est. Nery Nethercon	1894	drl drl	100	2 2				780 783	80 90					Sand at 160	Roberts Houtzel
18.3g 18.8a	Allce Hickey Robert D. Boundy	1906 1920	dri dri	160	2 2				780 780	90.7 80						Stlegmon Stlegmon
19. ini 19. ihz	Joe Ales Joe Ales		dug bor	20.8 13.7	48 24				780 780	12.6					•• ••	
19.5al 19.5a2	Helen E. Otto Helen E. Otto**	1894	dr1 dr3	160 90	2				780	75-80						
19.5h 20.16	H. Speers, et al#A Sylvia Seng*A	1894	dr I dr I	112 114	2		**		780 774	80 85		••	++	••		Ebert Ebert
20.1e	Joe Rock	••	del	111	2				780 781	82 80					 	Roberts
20,69 21	Opal King J. A. Colteaux	1929 +1984	dr I drv	96 200	2				783	82 						Roberts
21(1) 21.3a1(2)	Roberts (¥)** Roberts (¥)**	1890£ 1516	dri dri	216 220	3	10 10	3	.010	780 780	⁹⁵					Sand & gravel at 216 Sand & gravel, 110-135;	Sciegnan
21.362(3)	Roberts (V)4*	1917	dr)	225	3	10	3	.010	780						sand, 210-213, 215-218	Roberts
21.3e3(4) 21.5g1(5)	Roberts (V)#A Roberts (V)	1940 1950	drl drl	232 226		10	<u>.</u>	.014	780 775	86 81.1	34	40 105	3.1	3	Sand, 104-130, 208-232 Dirty sand, 210-215;	Ebert Bolliger
21.592(6)		1960	drl	228		- 6 12		.020	775	54					sand, 215-226 Dirty sand, 102-108;	Bolliger
21.7f	Hemle Seng		drl	110	,					86.6	19.8	128	6.5	5	sand, 140-145, 188-229	-
22.1¢	R. & L. Rock James Rock		dr I dr I	96 135	1 2			••	778 751	64						Aoberts
22. W h	James Rock	1884	drl drl	129	2	-			745 752	82 60					Sand at 135	Abberts
23.lg 23.6h	June Hiles Hathew Rock		drl	92.1 80	2	••	*-		720 739	19.6 50						Roberts
23.8d 24.1d	Rey Rock Paul f. Benz	1957	dr I dr I	139.1 90	2		<u>!</u>		747 730	70		12				Stiegman Stiegman
24.8e 25.2h	Eugene Belllie 6. 8. 5 H. Furby	1905	dri dri	72	3		:		725 730	40 68			••		•• ••	Stlegmen
26.1h 26.8b	ðr. S. M. Furby M. & K. McCorkle	1924 1922	dr1 dr1	110 112	2 2				746 765	80 82						Houtzel Roberts
27.161 27.162	Vernon Veatch Vernon Veatch	1916 1965	¢r] ¢r]	234 163.3	2	ï	÷	.015	770 770	92 90.1		30		::	Send at 234	Sciegman Sciegman
27.1h 27.8e	Mrs. V. Ventches R. 6 L. Rock	1924 1922	dr1 dr1	140 238	2 2	-	÷.		748	80 80-85			••		Send at 238	Roberts Stiegnan
27.8d 27.8g	K. Bernes & R. Kile Leonard Rock		dr1 dr1	110	23	÷			771 782	80	**				Sand at 160	Houtzel
28.1e	Emerson Seng & A. Trimmer	1930	dri	235	ź				779 782	80 83			••		Send et 235	Aoberts Roberts
28, 3h	George Seng Est.	1960	dri	225	3	••	2	.010	778	90		15				Stieners
28.5n 28.8a 28.8g	Wilfred E. Killip F. J. Musson	1916	dri dri	110 108	2			.010	771 780	82 81					Sand at 110	Stiegman Roberts
29. In	Naomi Howa		del	106	ž		**		780	80					Sand at 108 Sand at 106	Stiegman Stiegman
29.6a 30.4a	Oliver Williams Nildred Kottke	1894	drl drl	120	2	••			780 778	80 96						Philips
30.7d 30.8g1	Hildred Kottke F. G. Arends	1950 1899	drl drl	120 110	2				788 785	80					••	Stiegman Stiegman
30.8g2 31.1e	F. G. Arends** R. H. Horgan	1916	dr I dr I	115	2 2				785 773	82				••		Houtzel
31.861 31.862	Reiph Roberts Reiph Roberts	1895	dri dri	120 222	2 2		 1		792 792	90 90 80		10	:-	::		Philips Stiegman
32.1e 32.1d	Ellis Flaids Hezel Melcolm		dr) dr]	109	4 2				776 773	80 90						Roberts Roberts
32.5m 32.7h	Ted Kendrick Dick Pelle	1962	4r 4r	99.6 90	4	*	<u>*</u>	.010	770 773	70.1		20-25				Stlegeon
32.8el 32.8e2	Ted Rendrick Ted Kendrick	1930 1968	dr 1 dr 1	230 143	i	ĩ		**	772	80 76.2	ï	20	6.7		Sand as 230	Gimble
				112		•	3.75	.015	772		,	20	6. <i>7</i>	3	Hud sand, 98-106; sand & gravel, 137-143	Swenson
33.1g 33.7h	Katherine Stemm Severd Arnold	1929 1958	dr) dr)	190	2	- h	1.25		770 771	82 85		10			•• 	Stiegman Stiegman
34.1d 34.161	E. & H. Herris A. Detrymple Est.**		dr) dri	90 230	2				770 761	80 80					Sand at 230	Roberts Stiegmen
34.1h2 34.5a	A. Datrymple Est. R. Kenword Est.**		dri dri	170 110	4 2	5	3.75	.018	761 760	80 90 80		15		*	Sand, 125-132, 153+170	Swenson Navner
35.1d 35.1g	Roy W. Otto H. Roeder & Son	1919	drl drl	110 110	2		::		750 745	35						Roberts
35.8c 35.8g	Dick Peile H. Roeder & Son ⁴⁴	1906 1920	drl drl	235 118	3				765 760	90 30	<u></u>		::			Stlegman Roberts
36.1) 36.64	Don Ploletti Eerl Evans	1906	dri dri	173	2				730 750	70 40-45	::					Sclegmen
	ST. LEWIS				•				. 34							

Well number T26H, R9E	Dena r	Year con- structed	 Туре	0epth ((ft)	Diam- eter (in)	Length (/z)	Screen Dian- eler (in)	Stot size (in)	tend surface alevation (ft above msl)	Non- pumping water level (fr)	Draw- down (ft)	Pumping cate (gpm)	Observed specific capacity (gpm/ft)	Length of test (hr)	Water-bearing formation end depth (ft)	Driller
1.3h 1.4a 1.6e 2.1f1 2.1f2 2.3a 2.6h 3.1h 3.8d 4	Lola B. Ferrella# Julius Boma John Ark Dara Johnson Est, Dara Johnson Est, Ada ChasebroAm Otto Kaever D, 4 M. murray Robert D. Jansen Piper City (V)Am	1913 1914 1964 1905 1951 1924 1927 1913	drl drl drl drl drl drl drl drl drl drl	90 98 110 60+ 78+ 65 50 68 70 70	1.25 2 1.25 2 2 2 1.5 2 8	 8			663 665 664 664 665 664 664 664	+1 flows flows flows flows +0 +.5 +1 +1			 		Sand at 90 Sand at 110 Sand at 65 Sand at 68 Sand at 68	Roberts Wilson Hitchens Westerhausen Townselts Park
	Piper City (V)** Piper City (V)**	1913 1913	dri dri	70 70	6 6	12 Ø				.0	27	60 	2.2	.25	••	Townsell & Park Townsell &
4 4,2f1(3)	Piper City (V)AA Piper City (V)A+	-1918 1944	dr I dr I-EP	80 78.5	8 16-8	15.7	 6.6	.060	670	3.2	11.5	 90.\$	7.9	1.5	Sand at 60 Sand 6 gravel, 34-38;	Park Heyes 6 Sims
4.2f2(6) 4.3f(2)	Piper City (V) Piper City (V)4x	1944 1942	dr)-GP drì	90 79	16-8 8	19 6	8	. 060 . 020	670 670	4.5	10.8	63 40	7.7 3.7	, 	dirty sand, 57-78.5 Sand 6 gravel, 30-38;	Hayes & Sims Bolliger
$\begin{array}{c} 4, 4 + 1 \\ 4, 5 + 7 \\ 5, 1 + 1 \\ 5, 1 + 1 \\ 5, 1 + 1 \\ 5, 1 + 1 \\ 5, 1 + 1 \\ 5, 1 + 1 \\ 5, 2$	Tolado, Peoria, 4 Mestern RR Priper City (V)** Producers Seed Co. Priper City (V) Ray Koefe Ray Koefe Rom NcCoy John Keefe R. 4 N. Bradbury Hervin Kaeding D. M. A. Bradbury Hervin Kaeding D. M. A. Bradbury Plassner Est. Ancon Gerdes L. 5 L. Flessner Lyman Brown Fr Ancon Gerdes Lyman Brown Fourte Kurtenbach Lyman Brown Edward Rebhols Nobert Kurtenbach Lyman Brown Edward Rebhols Nobert Kurtenbach Lyman Brown Edward Rebhols Nobert Kurtenbach Lyman Brown Fiper City (V)** Vera Campion** Usya	+1912 +1912 -1953 1955 1955 -1955 1955 	art 	24 774 25 224 222 227 755 880 372 339 3260 368					672 678 679 679 679 679 679 679 679 679 679 679	flows 	· · · · · · · · · · · · · · · · · · ·	12 12 15 15			sand, 58-79 Sand 6 gravel at 168 ''' Sand, 98-127 Sand at 24 ''' ''' Sand at 24 ''' Sand at 24 ''' Sand at 22 Sand at 22 Sand at 22 Sand at 22 Sand at 27 Sand at 22 Sand at 72 Sand at 72 Sand at 17 Sand at 17 Sand at 18 ''' ''''''''''''''''''''''''''''''''	 Hayes 6 Sims Westerhausen Hitchens Stiagman Stiagman Bennett -
10, 4n 10, 2f 11, 2h 11, 7d 12, 2f 12, 2f 13, 2g 13, 2g 13, 2g 13, 2g 13, 2g 13, 2g 13, 5g 14, 5h 14, 5h 15, 5g	Auchtaugh Est. Robert Heikla Catherine Moolsey Orville Pennicook L. E. Jackson, Jr. Narren Nanna Dierouff & Nanne Nrs. John Best Agnes Neber Goorge Weber Nrs. John Best Mrs. John Best Mrs. Rea Cribbet Alues Kefer*	1943 1918 1918 1874 1950 1946 1900 1890 1966	dri dri dri dri dri dri dri dri dri dri	60 30-40 85 90 94 95 85 102 79 155 65 10 126	1.25 4 2 1.25 1.25 1.25 2 2 2 2 1.5 36 4			.020	668 672 666 670 665 647 649 671 672 671 672 671 649 682 682 669 688	flows flows flows flows flows flows flows flows flows flows it	72	7			 Sand at 85 Sand at 90 Sand at 94 Sand at 90 Sand at 85 	Wilson
15,8e 15,8n 16	Anna Willett Lillie B. Dunn** F. 6 G. Rebholz	1965 1869 1948	dri dri dri	98 25 86	1 3 4	• 	•	.010 .018	699 689	35 6 °	52	25 12	 .2	;; ;;	Send at 25 Send & graval, 10-15;	Stiegman Dunn Swanson
(4, 1 e 5, 5, 5, 1 17, 1, 9 18, 15, 1, 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	Bertha Arands Tucker & Harrison Lems Seguiller Edvin Bork Elizabeth Mahloy John Kronenburger Joseph P., Kratz Ousne Wagner Henry Kurtenbach dobn A., Rebholz Clarenca Relsing#* Clarenca Relsing#* Clarenca Relsing# John L., Kurtenbach Lems Seegniller Roy Sismm Roy Sismm F., Gurley & S. Fel D. & J. Reinglie Clartst.	1926 1960 1924 1924 1924 1925 1955 1955 1955 1964 1964 1955 1964 1964 1964 1965 1964 1964 1965 1964 1964 1966 1966 1966 1966 1966 1966	dri dri dri dri dri dri dri dri dri dri	75 113 105 80 720 73 967 106 180 105 165 95 62 95 62 95 62 95 62 95 62 95 62 95 62 95 62 95 62 95 62 95 62 95 62 95 62 95 62 95 62 95 62 95 62 95 62 95 63 95 65 75 65 75 65 75 65 75 75 75 75 75 75 75 75 75 75 75 75 75	4 2 f f f f f f f f f f f f f f f f f f		1.75 1.75		700 705 700 719 719 725 750 750 750 750 750 750 750 750 750 75	35 40 40 57 56 56 55 56 56 56 56 57 42 46 61 17 2-3 56 18.6	23		· · · · · · · · · · · · · · · · · · ·		sand, 74-86 Sand at 113 Sand at 32 Sand at 32 Sand at 35 Sand at 105 Sand at 58 Sand at 60 Sand at 73 Sand at 67 Sand at 67 Sand at 180 Sand at 180 Sand at 165 	Westerhausen
22.94 23.2c 23.3el	Mable Grossenback June Jones Leland Eshiemen	1949	dri dri dri	120 120	2 3 2		ī	::	682 692	16.6 30 16			::		Sand at 120	Schunk 4 Stiegnen Wilson

Well number 16W, R9E (Co		Year con- trutted		0epth (ft)	Diam- ater {in}	Length (ft)	Sareen Diam- eter (in)	Slat Siza {in}	Land surface elevation (ff above mal)	Hon- pumping water level (ft)	0ram- down (fz)	Pumping rate (gpm)	Observed specific cepacity (gpm/ft)	Longth of test (hr)	Water-bearing formation and depth (ft)	Deiller
	eland Éshleman Iva Hylcraine	1959 1913	dr) dr)	120	2	::	1		692 680	16 11	• •				send at 75	Wilson Roberts
24.3f1 E.	. C. Rasmussen**	1894	dr I	75 28	1.25			-+	675	;					Sand at 28	Lovett
24,373 1.	. C. Resmussen . C. Resmussen		dr] dug	96 8.8	2 49				675 675	5.8		••	••• ••			Vilson
25.tc Hi	ilford Hildenbrand arkin Copes	1957 1907	dri dri	38 45	3 1.25		2		682 680	10 filowop		20			Sand at 45	Stiagman Koritz
25.6h tr	ra Dingledine		drl	26	4				685	- 11					Sand at 26	
26.161 Ed 26.162 Ed	dward Fuoss, Sr. dward Fuoss, Sr.	1895	dri dug	125	2 60			••	695 695	7.9					Sand, 8-15.9	
26,2f Ha	ary Rallsback , Hildenbrand	1932	dri	137	2				691	15-18	••	••			Sand at 137	SLiegmer
27.1f Le	eo Gourley	1950	dr I dr I	65.5	2 2				692 701	18.2					Sand at 65.5	
	Isie Opperman . & F. Otto**	1901	del del	86 118	3 2				712 711	\$7 10-15					Sand at 118	s. Stlegman
28.Ia CI	lifford Bona	1941	del	78 87	3			**	720	20		••		2	•••,	Hanne I
28,1g Ca	ohn Plank, et al art Brauman	1932 1914	de l	140	2				721 720	40 14-16					Sand at 82	Stiegmei
28.6g C1	larence Grosenbach ertrude Breumen	1900	dr) dr)	158	2				730	45					Sand at 70	Veburg Stiegna
29.56 LI	loyd Kannetz		drl	98	2			••	770	64-46	•-	••		-+	**	
	ohn Kurtenbach loyd Kemnetz	1902	dr) dr]	164	2				750 760	08 004	•••				Sand 6 gravel at 164 Sand at 125	Roberts
29.7h He	enry Kurtenbach loyd Kønnetz		de)	89 90	4				245							Sciegman
30.5c1 LT	loyd Kannetz	1947	dr)	120	2				770 790	65 40					Sand at 120	Roberts
	loyd Kamnetz harles Laue	1968	del del	112 812	2	4	*	-018	790 760	84 95	5	12	2.4	3	Sand & gravel, 104-112 Sand at 112	Stiegma Keifer
30,6h2 CH	harles taue	1964	drl	102		•			760	80	*-	20+25				Stiegma
	rancis Shadbrook ames Phipps		drl drl	98-102 100	2 2				762 681	50					Sand at 100	Stiegma
31.ja Ge	ertrude Hoppler		dr 1	280	2			••	770		-+				 Sand at 85	••
	ouis Scherer nna Brauman		47) 47)	85 110-	6 2				751	35				**	5400 at 05	Roberts
32.5a Le	eroy Hawthorne . Montelius Est.	1930	dr) drl	119	2 2				790 770	82 40	::				Sand at 110	Noberts Western
53.1a Ro	oland Bork	1913	471	125	3	-+		*-	732	zó			**		Sand at 125	Stiegma
)].ón Da)].ôc Hy	on Richardson y W. Koritz		drl drl	110	2		••		735 761	35		::			Sand at 105	Roberts
14.1e 10	ouis Scharer		dr1 dr1	140	2	::			710		::				Sand at 95	
15.4a CI	elvin Ennen lyde Crawford	1914	de1	104	2			**	724 700	30 15-20			••		Sand at 104	Roberts
	onald E. Davis orrest Hildenbrand		dr 1 dz 1	65 120	4				701 690	16					Sand at 65	Stiegma
6.2h Pe	earl Hason	1927	drl	99 43	3-2	•-			682	5					Send at 99	Roberts
16.5a ¥e	eatch Est.	1909	dug £ dr]	4)	48-1.25				698	10-20					Send at 43 Sand, 130-122	Aflen Stiegme
「27 X , R9E																
	- & L. Stoller		drl		6				662							
	. 6 L. Stoller**		dug drì	8.4					662 661	5						
	lara Zulka		dug 6 drl	38	48-2	••			663	6.7	-+				Sand at 38	
1.8e Ev	va Karcher**		dug 6	35	36-1.25			••	660	6					Sand at 35	
2.5a Ro	oy Ackerman, Sr.	1940	dri dri	75-80					660		••					
2.8c Ro	oy Ackerman, Sr. africh Heirs	1918	dri dug	140 38	2 48	••	••		655 657	2		••		**	Rock, 120-140	Westerh
2.8#2 Wa	airich Heirs	1937	del	100+	6	~-			657						Rock	Hitchen
	birich Heirs** hillips Pipe	1939	de) del	40 200-250	1.25				655 658	<u>۶</u>			::		Sand at 40 Rock	
L	Line Co.			-					-							
3.8e Vi	illiam Pike	1890	dug £ drv	60.1	48-1.25	••	••		658	6.2		•-			Send et 60.1	
	es Arends		dug 4 drv dr)	55 [.] 40	36-1.25	•• ••			658 658	5.4				•• 	Send at 55	
-	es Arende	1850	dug 6 drl	69 13.5	48-1.25	••	••		658 658		7	8	ī.)	24	Sand at 69	Crandel
3.802 Le 4.1e Mr	es Arends rs. J. B. Walrich rs. 6. B. Walrich		dear		60	~-			658	7.7						
3.802 Le 4.1e Mr 4.1b Mr 4.1e Le	rs. J. B. Walrich rs. J. B. Walrich ester Overacker	1955	dug dri	100	2				660 660						•• ••	Western Vestern
3.802 Le 4.10 Mr 4.10 Mr 4.10 Le 4.30 Mr	rs. J. B. Walrich rs. J. B. Walrich ester Overacker rs. W. R. Crandall			100 50+ 50	2 3.5 3.5	••									Sand at 45	Vesterh
3.8e2 Le 4.1e Mr 4.1e Le 4.3a1 Mr 4.3a2 Hr 4.8a1 Ev	rs. J. B. Walrich rs. J. B. Walrich ester Overacker rs. W. R. Crandall rs. W. R. Crandall vermit: Thorndyke#m	1955 1919	dri dri drv dri	100 50+ 50 45	3.5 3.5 2	:-			658	4-5	••				Rock	Swanson
3.8e2 Le 4.1e Mr 4.1e Le 4.3a1 Mr 4.3a2 He 4.8a1 Ev 5 Mi	rs. J. B. Walrich rs. J. B. Walrich ester Overacker rs. W. R. Crandall rs. W. R. Crandall verett Thorndyket warett Thorndyke Innie Frieden	1955	dri dri drv	100 504 50 45 140~160 76	3.5 3.5 2	5			658	4-5 8.5	2.5	15	6.0	4.5	Sand, 69-76	Find 2 is
3.8e2 Le 4.1e Mr 4.1e Le 4.3a1 Mr 4.3a2 He 4.8a1 Ev 5 Mi	rs. J. B. Walrich ester Overacker rs. W. R. Crandall rs. W. R. Crandall veratt Thorndyke ⁴ warett Thorndyke	1955 1919 1919	dri dri drv dri dri dri dri	100 50+ 50 45 140-160	3.5 3.5 2				658	4-5					Sand, 69-76 Sand at 50	
3.8e2 Le 4.1e Mr 4.1b Mr 4.1b Mr 4.3e1 Mr 4.3e2 Hr 4.3e2 Hr 4.8e1 Ev 5 M1 5.3e Hr 5.6f Je	rs. J. B. Walrich rs. J. B. Walrich ester Overacker rs. W. R. Crandall rs. W. R. Crandall veratt Thorndyke Innie Prieden veratt Thorndyke innie Prieden vin Heins De Russell	1955 1919 1919 1959 1953	dri dri dri dri dri dei dug 6 dri dri	100 50+ 50 45 140-160 76 50 33	3.5 3.5 2 4 4 48-1.25	6	 3.75	.018	658 654 657	4-5 4.5 5.6	2.5	15	6.0 	4.5 	Sand at 50 Sand & gravel, 31-33	 French
3.8e2 Le 4.1e Mr 4.1e Mr 4.1a Kr 4.3a1 Mr 4.3a2 Mr 4.3a2 Kr 4.3a2 Ex 5 Mi 5.3a tr 5.6f Ja 6.1g Jo	rs, J. B. Walrich rs. J. B. Walrich ester Overacker rs. W. R. Crandall veralt Thorndyke ⁴⁴ veratt Thorndyke innie Frieden rvin Heins	1955 1919 1959 1953	dri drv dri dri dri dri dri dri dri dri	100 50+ 50 45 140+160 76 50 33 76 78	3.5 3.5 2 4 4 48-1.25	6	3.75 1	.018	658 654 657 660 658	4-5 8.5 5.6	2.5	15 15 20	6.0 	4.5 	Sand at 50	French Stiegma Vesterh
3.8e2 Le 4.1b Mr 4.1b Mr 4.3e2 He 4.3e2 He 4.3e2 He 4.8e1 Ev 5.3e Hi 5.3e f 5.6f Ja 6.1c Do 6.1g Jo 6.3e De	rs, J. B. Wairich rs, J. B. Wairich ester Overacter rs, M. R. Crandall rs, M. R. Crandall rs, M. R. Crandall rs, M. R. Crandyken wereit Thorndyke wereit Thorndyke overatt Thorndyke Innie Frieden rvin Heins ose Russell orothy Jehle ohn Harms ²⁴ s. Harms	1919 1955 1919 1959 1953 1965 1919 1904	dri drv dri dri dri dri dri dri dri dri dri dri	100 50+ 50 140~160 76 50 33 76 78 64	3.5 3.5 2 4 48-1.25 4 2 1.25			.018	658 654 657 660 658 658 659	4-5 8.5 5.6	2.5	15 20	6.0 	1.5 	Sand at 50 Sand & gravel, 31-33 Sand & gravel, 70-76 Sand at 78 Sand at 64	 Stiegma Westerh Westerf
3.8e2 Le 4.1e Mr 4.1b Mr 4.1e Le 4.3a2 Me 4.8a1 Ev 4.8a1 Ev 4.8a2 Ev 5 Mi 5.3a M 5.6f Ja 6.1g Ja 6.1g Ja 6.1g Ja	rs, J. B. Wairich rs, J. B. Wairich ester Overacker rs, M. R. Crandall rs, M. R. Crandall rs, M. R. Crandall rs, M. R. Crandyker waratt Thorndyke waratt Thorndyke waratt Thorndyker New Content the Friedman set New Science Sciences Scienc	1955 1919 1959 1953 1953	dri drv dri dri dri dri dri dri dri dri dri dri	100 50+ 50 45 140-160 76 50 33 76 78 64 34 11.3	3.5 3.5 2 4 48-1.25 48-1.25 4 1.25 4 2 2	6 		 840. 	658 654 655 660 658 659 659 659 659	4-5 8.5 5.6 9 1.5 2 3.3	2.5	15 20 	6.0 	1.5 1 - 1 - 1	Sand at 50 Sand a gravel, 31-33 Sand 6 gravel, 70-76 Sand at 78 Sand at 64 Sand at 34	French Stiegma Westerh Westerh Stiegma
3.8e2 Le 4.1e Mr 4.1e Le 4.3a2 Hr 4.3a2 Hr 4.8a1 Ev 5.3a ir 5.3a ir 5.3a ir 5.6 Le Do 6.1c Do 6.1c Do 6.1c Do 6.3a3 He 6.6 J.	rs. J. B. Wairich rs. J. B. Wairich coter Overacker rs. W. R. Crandall rs. W. R. Crandall rs. W. R. Crandall rwin. R. Crandall weratt Thorndyke werett Thorndyke werett Thorndyke werett Thorndyke rwin Heins or Russell orbit Jehle ohn Herns s. Harms s. Harms alwin 6. Herr	1955 1959 1959 1953 1965 1965 1919 1904	dri dri dri dri dei dri dri dri dri dri dri dri dri dri	100 50+ 50 45 140~160 76 50 33 76 78 64 34 11.3 50	3.5 3.5 2 4 48-1.25 4 2 1.25 4 27 27 2	6 			658 657 660 658 658 659 659 659 659 659	4-5 8.5 5.6 1.5 2 3.3 IQ	2.5	15 15 20	6.0 	4.5 	Sand at 50 Sand & gravel, 31-33 Sand & gravel, 70-76 Sand at 78 Sand at 64	 Stiegma Westerh Westerf
3.8m2 Le 4.16 Mr 4.16 Mr 4.18 Le 4.30 Mr 4.382 Hr 4.8a1 Ev 4.8a2 Ev 5.3a Hr 5.56f Ja 6.16 Ja 6.16 Ja 6.30 Mr 6.382 Mr 6.382 Mr 5.66 Ja 7.4a Ba	rs, J. B. Wairich rs, J. B. Wairich ester Overacker rs, M. R. Crandall rs, M. R. Crandall rs, M. R. Crandall rs, M. R. Crandyker waratt Thorndyke waratt Thorndyke waratt Thorndyker New Content the Friedman set New Science Sciences Scienc	1955 1919 1919 1959 1953 1953 1965 1919 1904 1960	dri dri dri dri dri dri dri dri dri dri	100 50+ 50 45 140-160 76 50 33 76 78 64 34 11.3	3.5 3.5 2 4 48-1.25 48-1.25 4 1.25 4 2 2			 840. 	658 654 655 660 658 659 659 659 659	4-5 8.5 5.6 9 1.5 2 3.3	2.5	15 120 11	6.0 	¥.5	Sand at 50 Sand a gravel, 31-33 Sand 6 gravel, 70-76 Sand at 78 Sand at 54 Sand at 34	French Stiegma Western Stiegma
3.8m2 Le 4.1e mr 4.1e Hr 4.3al Mr 4.3al X 4.8al Ev 4.8a2 Hr 4.8a2 Hr 4.8a2 Hr 5.3a Hr 5.3a Hr 5.3a Hr 5.3a Hr 5.3a Hr 6.1g Jo 6.1g Jo 6.3a2 Mr 6.3a2 Mr 6.3a2 Hr 6.3a2 Hr 6.3a3 Hr 6.3a	rs. J. B. Wairich rs. J. B. Wairich Scier Overacker rs. W. R. Crandall rs. W. R. Crandall rs. W. R. Crandall rs. W. R. Crandsker overatt Thorndyke naise fridan rvin tkins oe Russell orochy Jehle ohn Harms ³⁴ sci Herns Sci Herns Sci Herns Sci Herns Sci Herns Sci Ser. Jun Sci Ser. Jos Sci Ser.	1919 1955 1959 1959 1953 1965 1919 1904 1960	dri dri dri dri dri dri dri dri dri dri	100 50+ 50 45 140-160 76 50 33 76 64 34 11.3 50 12.7	3.5 3.5 2 4 48-1.25 4 2 1.25 4 27 23 36			.018 .018 .020. 	658 657 660 658 659 658 659 653 653 654	4-5 8.5 5.6 1.5 2 3.3 10 4.9	2.5	20	6.0 	1.5	Sand at 50 Sand a gravel, 31-33 Sand a gravel, 70-76 Sand at 54 Sand at 54 Sand at 50	French Stiegma Westerh Stiegma
3.8m2 Le 4.1e mr 4.1e Le 4.3a2 Hr 4.3a2 Hr 4.3a2 St 5.3a fr 5.3a fr 5.3a fr 5.3a fr 5.3a fr 5.3a dr 6.3a1 Ma 6.3a2 Ma 6.3a3 Ma 6.3a3 Ma 8.3a Ma 8.3a Ma 8.3a Al 8.3a Al 8.3a Al	rs. J. B. Wairich rs. J. B. Wairich Scher Overscher rs. W. R. Crandall veratt Thorndyke Indie Frieden rvin thins oe Russell oor Russell oon Harmsan Se Harms Se Harms Se Harms Se Harms Se Harms Jos Est. ichard D. Fagan Ifred Montellus obert Brucker	19955 19959 1959 1959 1953 1953 1955 1955	dri dri dri dri dri dri dri dri dri dri	100 504 50 45 140-160 33 76 50 33 76 34 34 11.3 50 12.7 68 90 60	3.5 3.5 48-1.25 48-1.25 4 1.25 1.25 36 60-1.25 4	•	3.75 *	.018	658 655 655 658 658 659 658 659 658 658 656 658 658 658	4-5 8.5 5.6 1.5 2 3.3 10 4.9 4 4 5	2.5	15 20 	6.0 	¥.5	Sand at 50 Sand a gravel, 31-33 Sand at 6 gravel, 70-76 Sand at 64 Sand at 54 Sand at 50 Sand at 50	French Stiegma Westerf Stiegma
3.8m2 Le 4.1e mr 4.1e Le 4.3a2 Hr 4.3a2 Hr 4.3a2 Hr 4.3a2 L 5.3a Hr 5.3a Hr 5.3a Hr 5.3a Hr 5.3a Hr 5.3a Hr 5.3a Hr 6.3a2 Ma 6.3a1 Mr 6.3a2 Ma 6.3a2 Ma 6.3a3 Mr 8.3a Mr 8.3a Hr 8.3a	rs, J. B. Wairich rs, J. B. Wairich Scher Overscher rs, W. R. Crandall verst: Thorndyke Insie Frieden rvin thins oe Russell oor Russell oor Russell oor Russell oor Russell oor Russell oor Russell oor Harms Bellens Bellens Bellens Bellens Bellens Bellens Bellens Ifred Montellus Dert Brucker obert Brucker obert Brucker are C. Andrews	1955 1959 1959 1959 1953 1953 1953 1955 1955	dri dri dri dri dri dri dri dri dri dug dri dug dri dri dri dri dri dri	100 504 550 180-160 76 50 33 76 64 38 11.3 50 68 90 60 68 90 60 66 40	3.5 3.5 2 4 48-1.25 48-1.25 4.25 4.25 4.25 4 1.25	6 	3.75 4 	.020	658 655 655 658 658 659 658 659 658 658 654 856 658 656 656 656 656 656	4-5 8.5 5.6 - 9.5 2 - 3.3 10 4.9 4	2.5	20 	6.0 	¥.5	Sand at 50 Sand a gravel, 31-33 Sand at gravel, 70-76 Sand at 54 Sand at 54 Sand at 50 Sand at 50 Sand at 68	Stiegma Westerh Stiegma Westerh Swenson Westerh
3.8m2 Le Mr 4.1a Mr 4.1a Le	rs, J. B. Walrich ester Overacter fr. W. R. Crandall rs. W. Action were the Thorndyke were the thory were the thory were the thory or Chy Jehle ohn Heresh es Harns es Har	1955 1919 1959 1959 1959 1955 1994 1960 1960 1960 1950 1950 1950 1950 1956 1950 1956	dri dri dri dri dri dug 6 dri dri dri dug 8 dri dug 8 dri dug 8 dri dri dri dri dri dri	100 504 55 14a-160 76 50 37 63 78 64 34 11.3 50 12.7 68 90 66 40 80	3.5 3.5 2 4 48-1.25 1.25 1.25 4 60-1.25 2 2 2 2 4 1.25 2	•	3.75 	.018 .020 .020 	658 657 660 658 659 659 658 659 658 658 658 658 658 658 658 658 659	4-5 8.5 5.6 9 1.5 2 3.3 10 4.9 4 5 1005 10 5 10 4.9 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10	2.5	15 10 11 11 11	6.0 6.0	4.5	Sand at 50 Sand a pravel, 31-33 Sand a pravel, 70-76 Sand at 78 Sand at 54 Sand at 50 Sand at 50 Sand at 50 Sand at 40	French Stiegma Westerh Stiegma Westerh Swanson Westerh Swanson
3.8m2 Le 4.1e Mr 4.1e Le 4.331 Ar, 4.342 Hr 4.342 Hr 4.342 Ev 5.31 f 5.31 f 5.35 f 3.6f J 5.35 Hr 6.32 Ma 6.32 Ma 7.32	rs, J. B. Wairich ester Overacter rs. J. B. Valrich ester Overact Rocradoll rs. M. R. Crandall rs. M. R. Crandall rs. M. R. Crandall rs. J. Crandyke weret Thorndyke weret Thorndyke ruin Heins or Chystell or Chystell or Chystell or Chystell or Chystell or Chystell or Chystell or Chystell or Chystell or Chystell of Chystello of Chystello of Chystello of Chystello of	1955 1919 1959 1959 1959 1953 1960 1950 1994 1960 1971 1894 1928 1932 1966 1884	dri dri dri dri dri dri dri dri dri dri	100 50+ 50 45 140-160 50 33 76 33 76 64 34 11.3 50 68 90 60 66 40 80 50 50	3.5 3.5 2 4 4 8-1.25 4 2 1.25 4 60-1.25 4 2 2 36 60-1.25 3 60-1.25	· · · · · · · · · · · · · · · · · · ·	3.75 	.018 .020 	653 655 650 655 653 655 655 655 656 656 656 656 656	4-5 3.5 5.6 9 1.5 2 3.3 10 4.9 h flows 13 2-3 6.3	2.5	15 20 	6.0 	1.5 	Sand at 50 Sand a gravel, 31-33 Sand a 7avel, 70-76 Sand at 78 Sand at 54 Sand at 50 Sand at 50 Sand at 68 Sand at 80 Sand at 80 Sand at 80	 French Stingma Westerf Stingma Stingma Steam Westerf Wilson Dick
3.8m2 Le 4.1b Arr 4.1b Arr 4.1b Le Le 4.3a2 Hr 4.3a2 Hr 4.8a1 Su 5.3a Hr 5.3a Hr 6.3a2 Ma 6.3a2 Ma 6.3a3 Ma 6.3a3 Ma 6.3a4 Ma 6.3a3 Ma 6.3	rs, J. B. Walrich rs, J. B. Walrich Scher Overscher rs, W. R. Crandall veratt Thorndyke Inie Frieden ruin thins oe Russell oe Russell oe Russell oe Russell oe Russell oe Russell oe Russell oe Russell oe Harms se Harms for Herr obert Brucker are C. Andrews Fs. Nerie Harford	1955 1919 1959 1959 1959 1955 1994 1960 1960 1960 1950 1950 1950 1950 1956 1950 1956	dri dri dri dri dri dri dri dri dri dri	100 504 55 14a-160 76 50 37 63 78 64 34 11.3 50 12.7 68 90 66 40 80	3.5 3.5 2 4 48-1.25 1.25 1.25 4 60-1.25 2 2 2 2 4 1.25 2	· · · · · · · · · · · · · · · · · · ·	3.75 4 	.018 .020 .020 	658 657 660 658 659 659 658 659 658 658 658 658 658 658 658 658 659	4-5 8.5 5.6 9 1.5 2 3.3 10 4.9 4 5 1005 10 5 10 4.9 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10	2.5	20 	6.0 	¥.5	Sand at 50 Sand at gravel, 31-33 Sand at 78 Sand at 78 Sand at 64 Sand at 50 Sand at 68 Sand at 50 Sand at 68 Sand at 68 Sand at 68 Sand at 50 Sand at 50 Sand at 50 Sand at 50 Sand at 50	French Stiegna Westerh Stiegna Westerh Swenson Westerh Wilson
3.8m2 Le 4.1b Hr H 4.1b Le Le 4.3a2 Hr 4.8a1 E 4.3a2 Hr 4.8a1 E 5.3a Hr 4.8a1 E 5.3a Hr 5.3a Hr 5.3a Hr 5.3a Hr 5.3a1 Hr 5.3a 6.1c Jac Jac Jac Jac Jac Jac Jac Jac Jac Ja	rs, J. B. Wairich ester Overacter rs. J. B. Valrich ester Overact Rocradoll rs. M. R. Crandall rs. M. R. Crandall rs. M. R. Crandall rs. J. Crandyke weret Thorndyke weret Thorndyke ruin Heins or Chystell or Chystell or Chystell or Chystell or Chystell or Chystell or Chystell or Chystell or Chystell or Chystell of Chystello of Chystello of Chystello of Chystello of	1955 1919 1959 1959 1959 1953 1960 1950 1994 1960 1971 1894 1928 1932 1966 1884	dri dri dri dri dri dri dri dri dri dri	100 504 504 45 140-160 76 50 376 78 54 34 34 1.3 50 68 90 60 40 850 43 43 40 50 43 43 40 50 45 43 45 50 45 50 45 50 45 50 45 50 45 50 45 50 45 50 45 50 45 50 50 50 50 50 50 50 50 50 5	3.5 3.5 2 4 4 8-1.25 2 1.25 4 2 2 2 3 6 0-1.25 4 1.25 2 3 5 2 3 5 2 2 3 5 2 2 2 2 3 5 2 4 4 8 1.25 2 4 4 8 1.25 2 4 4 8 1.25 2 4 4 8 1.25 2 4 4 8 1.25 2 4 4 8 1.25 2 4 4 8 1.25 2 4 4 8 1.25 2 4 4 8 1.25 2 4 4 8 1.25 2 4 4 8 1.25 2 4 4 8 1.25 2 4 4 8 1.25 2 4 4 8 1.25 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	······································		.018	658 6554 6554 6556 6558 6559 6559 6559 6559 6556 6556	4-5 8.5 5.6 9 1.5 2 9 1.5 2 4.9 4.9 4.9 4.9 5.3 10 5.3	2.5	15 20 18 12	6.0 	¥.5	Sand at 50 Sand a gravel, 31-33 Sand a 7avel, 70-76 Sand at 78 Sand at 54 Sand at 50 Sand at 50 Sand at 68 Sand at 80 Sand at 80 Sand at 80	French Stiegma Westerf Stiegna Westerf Swansor Westerf Westerf Swansor Westerf Swansor Swansor Swansor Stiegma

			¥e	11			Screen		Land Surface	Non- pumping			Observed	Length	Water-bearing formation	
Well		Year con-		Depth	Diam- eter	Langth	Diam- eter	Slot size	elevation (ft above	water Jevel	0 raw- down	Pumping Fate	specific capacity	of test	and depth	
nvmbe r	Owner	structed	Туре	(ft)	(in)	(ft)	(14)	<u>((n)</u>	l}	(ft)	(n)	(gpm)	(gpm/ft)	(11)	(ji)	Dr. 11ar
T27W, 89E	(Continued)															
10.le	Levin Helas	19612	bar	49.1	18				658	1.9	••		+-			
10, ig 1 10, ig 2	V. Essington W. Essington	1926	dug drì	24.1 79	72				660 660	6.2 8					Sand at 79	Quick
10.6h	Herry Arch	1956	dr t	110	ż		**	**	659	8-10						H) tchens Woodruff
10.8c. 11.16	Hary Carr Robert Read	1923 1960	dr I dr1	42 69	2				655 661						Send at 42	Hitchens
11.46 11.5g	Elmo Read Elmo Read**	1951 1918	dr1 dr1	56 80	1.25 Z		••		660 661	8 10					Sand at 80	Hitchens Westerhausen
11.8g	irvia Nelas		dr1	50±		••			660 658		••			:-		Westerhausen
12.8a 12.8h	Mrs. T. Read** Howard Road**	1930	dri dug £	96 38	2 42-2 ·				663	8-10					Sand at 58	**
13.44	Das Rios Manches	1906	dr] bor 6	58	24-2	••			659	2					**	
			dri	-	2				659							·
13.46 13.6h	Dos Rios Ranches C. T. Aylesbury		dri dug 6	65 ••	36-1				658	1.7				••		
1 3.8 4	C. T. Aylesbury**		dri dri	60	1.25	••			658	.0			••		Sand at 60	
14.1g	Clere Zulke		dug 6 dr 1	50	36-1.25				658	6					Sand at 50	
16.54	Ed Freelich	1948	dr I	51	2		••	••	655 658	2-3 5					Sand at \$1	Hitchens Westerhausen
14,8e 15.1a1	Elmer Aupperle nd Duroll White ^{en}		dr i drv	51 10	1.25				658	••	•-			••		**
15.142 15.143	Durall White Durall White	1884	dr 1 dr 1	38 45	2				658 658	3-4					Sand at 45	
15.8f1	Alex Weaksense		dri	65 ₩	1.25	**			658	6					Send at 65	Vilson
15.872 16.1e	Alex Weakean A. HcGuire Est.	1961	dri dri	40 60	3				658 658	6						
16.3a	Joseph Walle	1964	dr1	179	٠		••		657	29	13	15	1.2	••	Sand, 33-36; sand # graval, 50-52; dirty	Swaason
															sand, 52-141; 11me- scone, 141-179	
16.5e	Earl Gray##		bor 6	60	24-1.25	**			656	6		••			Sand at 60	
			dr1	40				••	652				••		**	
16.8e1 16.8e2	A. NCGuire Est. A. NCGuire Est.**	1919	dri dri	34 54	1.25	••			652	6				•-	Sand et 3B	Shunk
17.36	Joseph Welle John Blumenscheim	1854	dri dri	160	1.25 6-3		••		653 651	8 +3	**		22		Sand at 94 Sand at 100	,
10.la	Nevener Est. Grace Hevener	1957	drl	34. 90	2		1.25		659 659	flows					Sand at 30	Stiegman
18,3e 18,4h	Hertin F. Brown		drv			••			660	**				••		
18.8c 18.8e	E, & H. Harrington Glen Defma	1940	dr1 dev	98 78	2				659 653	.0					Sand at 78	Stiegnen Westerheusen
19.1m 19.7h	Vates Est. Nallia Dahm		471	98 14	1.25 36		••		660 660	1.7					Sand at 98	
19.8d	Florence Collins**		dug dr i	- 14	1.25	**			661	6					Sand at 14 Sand at 40	Bradbury
20. lg	Nippen Est.		dug 6 drv	40	36-2	**			651							of accory
20.3a 20.4e	Hannah Clark** Hunnah Clark	1961	dug dri	17 28.5	18		1.25		660 661	12	2	6 15	3.0		Sand at 17	St løgman
20. 5 d	Raria Kana	1964	dr1	40	2	**			66 I 659	·	**					Wilson -
20.8g 21.1a	Narie Call Ada Chesebro	1985	dr] dr]	90-100 45	2 4-3				658	flora				**	Send at 45	Vesterhausen
21.11	Ada Chesebro	1960	dr1	46	4	4	4	.012	660	7						Stiegman
21.8a 21,8u	R. V. Rosenboom Charles Parkinson	1933	dr) dr]	94 25	1.25				66 I 658	.0			**		Sand at 94	Heisenhelder
22.4e 22.5h	Q. & E. Q/bb Hilda Miller**		dri dri	49 60	1.25	••			659 658	f faus +1				••	Sand at 48 Sand at 60	 Westerheusen
22.6al	6. 4 E. 6156	1950	dri	190			••	••	659	••					Rock	French
22.6e2 22.8h	G. S E. Gibb Folla Toumhouse	1952	dri dri	63	i i	••		Ξ.	659 658					÷-		French
23.1e 23.1f	John P. Gallahua John P. Gallahua	1869 1955	dri dri	48.9 103	1.25				658 658	1.3					Sand at 48.9	Bolliger
23.5a	F. Cassidy Est.** Charles Purdum**	1909	drl	55	1.25				660	+					Sand at 55	
23.80			dug 6 dri	4	48-2				659	2.5	-				Send at 40	
23.8h 24.1al	Charles Purdum Roy Wahls		dr I drv	29.# 15	1.5		••		659 659	+.5 +1,1					Sand at 45	
24. la2 24. 2h	Roy Wahls John P. Gallahua	1963 1870	drl drl	55-58	4				659 660			1.5	**		**	
24.3f	John P. Gallahua	1917	del	56	2	••			660	+.5 +.5					Sand at 56	Taylor
24.3h1	John P. Gallahue	1904	bor 6 dri	60	24-2	**			660	flows		••				
24.3h2 24.5e	John P. Gallahue George Ficklin	1925 1 9 57	dr 1 drv	68 53-60	1		••		660 660	*1.5						2
24.6a	George Ficklin		471	60	ī.s				660	.0			Ξ.			 •
24.70 24.8h	George Ficklin D'Mera Sietors	1967 1920	drl drt	63 90	2	<u>.</u>	*	.012	660 660	flows flows	20	25	1.3	2	Send, 35-38, 57-63 Sand at 90	Swanson Taylor
25.3a 25.3h	N. F. Johnson Robert Docley, Tr.*	*	de I dev	68	1.5			••	663 660	flows						Willson
25.Sh	George Ficklin		drv -	78-80	1			·	660	+۱				**	··	
25.6h 25.8c	George Ficklin Hrs. H. H. Cossidy	1894 1906	drv drl	58-60 72	1.25				660 663	.0 flows	••			••	Sand at 60 Sand at 72	
26.1f 26.8e	James Stuckey Dreti Stuckey	1884 1918	dr I dr I	50 65-68	1.25				661 662	flows					Sand at \$0 Sand at 65-68	Lamb Westerhausen
26.8f	Howard Kentey**		drl	61	1.25				661 661	+1.5					Sand at 6) Sand at 58	Westerhausen
27.1f 27.8e1	Metson Hollee Ada Chesebro		drl drl	58 51	1.25		••	••	660	flows +1.5		**			Sand at SI	••
27.8e2 27.8e3	Ada Chesebro Ada Chesebro	1941	drl drl	46 57	4	*	*	.012	660 660	7 flows		15			*- **	Stisgman Bolliger
27.8e4 28.3g1	Ads Chesebro Frank Whitney	1957	dr1 dr1	91 32	4-2 2	••	!		660 657	•		12			Sand, 30-32	Stiegnan
20.302	Frank Whitney	1932	drl	60	2		••	••	657	+2				**	Sand at 80	Hitchens
28.561 28.562	Frank Drilling Frank Drilling	1947	dri dri	37 15	2 2				. 662 662		••				••• ••	
28.563 28.801	Frank Drilling Warren Hilos Est.	1947	dr I dug	15	1	••			662 664	<u>،</u>	2		4.0		Sand & gravel at \$2	
28.6u2	Werren Hilles Est.	1958	dri	62	4				664							Botsiger
29.1f 29.3p1	Paul Perkinson Nan Dowling	+1951 1920	dri dri	85 77	3	••			66) 670						**	Bolliger
29.3a2 29.6a	Hee Douling J. J. Lyons	1938.	dri dri	77 132	;				670 671						Sand at 132	Bolliger
			•••		-				.,.	4						

				11			Screen		Land Surface	Non- pumping			Observed	Labore	Nater-bearing formation	
well		Year		••	01.44**		Diam-	Slot	slevation	water	0.raw-	Pumplag	specific	of	and	
Nell number	Owne r	con- structed	Туре	Oepth (ft)	eter (in)	Length (ft)	eter (in)	size (în)	(fc above =u1)	level (ft)	dawn (ft)	race (gpm)	capacity (gpn/ft)	test (hr)	depth {/*)	Driller
T279, 89E	(Cant liqued)		<u> </u>													
29.80	Bob Sterresberg		dr I	90	2			••	674							
30.34	S. A. Weeden	1932	dr i	15.5	1.25			•-	671	2.5	• =		••		Sand at 15.5	Nesterhause
30.5el 30.5e2	D. \$ 5. Cooke** D. \$ 5. Cooke	1943	dr) dr)	18 85	1.25				670 670	*					Sand at 18 Sand, 22+25, 60+62,	Bolliger
30.6a		1962	4-1		2				680						80-85	•
30.8f	Rae Dowling Lynn Switzer	1962	dr i dr i	29 36	3	**	2	••	670	8 10		12	2			Stiegman Stiegman
31	John Arks		đri	120	4	••		**	••	3	35	10	-3	•	Sand, 75-77; dirty sand # gravel, 93-109; lime-	Swanson
															stone, 109-120	
31.161 31.162	Lavern Klehm Lavern Klehm	1920 1938	dri dri	54-60 52-54	1				682 682	16-20					Send at 54-60	Westerhousen
91.17 91.84	J. Richaró Ark Anña Lutson	1910	de i de i	50 93	2				680 685	17						<u>-</u> .
32.161	Flore King**	1890	dug	14 I	36				669	ió					Sand at 93 Sand at 16	Taylor ••
32.1¢2 32.1e	Flore King John Wilson		de i de i	90	2				669 665	1-2						**
32. IA	John Wilson Joseph Dowling##	1967 1904	dr 1 dr 1	24 36	1.5			**	664	7.9	••	**				Wilson
32.3hl 32.3h2	Joseph Dowling	1939	dr1	90+	2				668 668	10 7	••				Sand at 36	St lagnen
32.74 33	John Glumenschein Albert E. Dehm ^{eg}	1955	drl drv 6	85	2				672		••	••			Sand at 85	Stäegnen
	Hermine Zimmerman		ðri		2											
33.4e 33.5di	John Vilson**	1894	dr t bor	12	24	••		••	645 645	- .					Send at 12	
)].5d2]].8a	John Vilson Vilma Finch	1962	dr) dri	90 31	4				66 5	*						
34. ta	Res Cribbet	1.00	dr1	33.4	1.5	••		••	475 440	2.2			••			Stiegman
34.1g 34.4a1	Nildred Weber** Watson McKee	1955	dri dri	64 94	1.25				662 669	.0 1.5					Sand at 64	
34,4a2 34,5a1	V. H. Pennisaak Watson McKee	1955	dr) drl	2	1.5				664 664	f lows				•••	•-	•• ••
34.542	Watson Holine	1956	d#1	94 80	1.5	••	÷-		664	flaws +1.7				••	Sand at BO	**
35.14	6. Tucker 6 B. Herrison		dr 1	55	2	••	••		663	+.5	••	••		•••	Sand at 55	**
35.1#	Nellie Kally	1904	del	75					663	+!	••				Sand at 75	
36.1c 36.5hi	Robert Wrenn John P. Gellahue	1919 +1934	dr] dr]	78 63	1.25	••			663 662	flans +1.5					Sand at 78 Sand at 68	Hitchens
36.5h2	John P. Callahua	1937	dr 1	67	3		**	••	662	flows		3	•-			Taylor
T284, A9E																
1.1e 1.1g	H. C. Dyrby Fred Crene	1955	drl drl	200+ \$5	1			•-	702	36 NO		6			 Send at 85	Jonsen
1.3¢	M. C. Dyrby	1954	dr I	710	8				702	25-26			••	••	**	••
1.0a 2.1d	Alordan Est. Florence Schaub	1911	dr i bor	165 100.6	4-3			••	704	60 53		5	••	:	**	Farley
2,4g 2,6g	Minnis Deveragez Mrs. John AcKinley	1925	dr) dri	111	1				691				••		Sand & gravel at 111	Jensen
3.5h	Nenry Flassner44	1898	del	202	3				693 700	49 32		:			Apek	Hunger &
3.60	Avis Smith	+1947	de 1				••	••	685			-+				Burns
3.68 3.78	Henry Flessner Henry Flessner	1930 1932	dr i	300 160	i.			••	705	37					Limestone, 165-300	Jensen
4.1a	Thebas Falcerss	1958	dr) dr)	240	6	**			697 697	25		;			Sand at 160 Sandstone, 210-235	Jensen Bolilger
4.3M 4.6g	Lillion Allford Eula Farley	1912 1962	dr) dri	105	4				700 693	я	10	7.5	·.0	48	40(rty send, 40-45;	Stuard Naves
									***						dirty send & gravel,	
6.6nl	Colo Farley	1962	4 71	105	••	••		••	693				••	••	90-100 #0irty sand, 48-105	Hayes
4,6h2	Eula Farley	1962	dr1	135	••	••	••		693	••			••	••	*Dirty send, 84-85, 102- 107-5	•
4,6h3	Eula Farley	1962	de 1	126	••		••	••	693	••	**		••		ADING send & gravel.	Heyes
															83.5-85; dirty sand, 110-126	
4.684	Eula Farley	1962	drl	160				••	633	••	••		•-		*Sand & gravel, 106.5- 108; dirty same, 105-	Hayes
															117	
4.605	Eula Ferley	1962	drl	135		••			6 93		••	**			*0(rty send, 02-04.5, 106.5-123	Nayes
4.7s 4.8b	D. & O. Falter Lewis E. Farley	+1967	dri dri	285 450					682	30 80					Rock	
S.Ic	Kathryne Gerdner		drl		3	••		**	693 689	~. .		<u>•</u>			Apek.	**
5.2A 5.5A	D. Wright, et al#4 Nary J. Spires	1927	dri dri	339 327	•				700 710		••				Lime rock, 235-339	Jenson
5.8a 6.1c	Dora Brown E. 6 E. Freed	1930	drl	113	1		::		690	**	••	**			Sand & gravel at 113	Jessen
6,511(1)		1909	dr 1 d7 1	300+ 404					690 737	10		8-10			Rock Sand & gravel, 230-240;	**
6.5%2(2)	Kampton (V)	1931	471	238	8	10		.020030	737	80	100	110	1,1	••	rock, 285-404 Sand, 228-235; sand 6	Johnson
	•														grave1, 235-238	
6.5h)())	Kempton (V)**	1919	dr 1	386	8		**	••	737	100	210	12	,1	2	Sand & gravel, 245-250; sandstone, 250-255,	rrench
7.10	Nes. R. D. Scott		dug	68.8	17.5			·	700	16					328-380	
7.16	Dora Brown Nershel Bute		dr) –	200+	4	**			690 708	36	••					**
7.8e 8.2a	Quarte Downe		drt drt	203	1		**		708 686	10	:	3.5			Rock	**
0,Sh	Frank Scott	1953	drt .	205	4	••	••		687	19		9.5	**	••	Sand, 58-90; sand-	Bolliger
8.8.	Ide Douse		bor	65	18	••	••		685	ŧa		3		••	stone, 175-205	
8,8g 9.1a1	Stanley Falter		dri bor	39.4	36				687 676	6.3						
9.1a2 9.5a	Stanley Falter P. Scott Trusse		drl		36			••	676		••				*-	
9.64	P. Scott Trest	1942	bor 4r F	15 2%6	36 6				671 675	<u>د</u>	6	9		<u>!</u>	Sand rock, 210-216,	e. Bolliger
	Harold Kelley		dug	43.4	30	••	••		690	3.6					226-246	
IO. b1		1414	bor		30				690	33				÷-	Sand at 72.3	
10.162	Harold Kalley	1914		72.3					20 A							
	Harold Kalley Ed Krull Ed Krull Evan Paterson	1914	dr] dr] dr]	200	- 	••			680 680 681	80-90		::			*	

			-	:0			Screen		Land	Kon-			0hr-+	1	Water-bearing	
Well	Owner	Yeer con- structed	Туре	beath (ft)	Diam- eter , (in)	Length (ft)	Diamo	Slot size (ún)	surface elevation (ff above ()	pumping water ievel (fe)	Draw down (ft)	Pumping réte (gpm)	Observed specific capecity (gpm/jt)	Length of test (hr)	formation and depth (ft)	<u>Orlite</u> :
28N, R9E	(Continued)															
0.7h2	Ivan Peterson		dri		.4		••		681							
0.7n3 1.3n	lvan Peterson⇒≐ Louis Gualandi	1948	dug dr l	97	48 6				681 700	28	32	15	.5		 Sand, 9 5-97	 Balliger
1.6a 2.2d	Duane Conley John Bargan		bor de l	7).3 180+	24				675 665	10.6	·				Send at 71.3	
2.3h	H. E. Essington	1894	dr i	258	3-2.5				675	20		4			Rock Rock	Jensen Jensen
2.7a	Duane Donley & Lettic Kelly**		dr I	66	3		••		659	+2.3		7	••		••	
2.741	Kathryne Gardner		del		. 3				680							
2.7d2 3.4ml	Kathryne Gardner W. Kroll, Jr.98	1950	dr I bor	}80∙ 70	- 6 36				680 658	30 20					Sand at 70	
3.4a2 3.8a	W. Kroll, Jr. Andrew Heister	1940	dr) dr1	50.3 190	4				658 657	1.8			::		••	
4.4#1	John Thielmen	1921	dug	42	10 •				659	5					Rock	Jensen
4.4.2 4.46	Joho Thielman Robert Lewin	1960	dr) dug	190+ 60+	6 36				659 669						Rock	Sienfiel
4.6al	Howard HillsPh	1929	drl	82	3				659	10		4			Sand at 82	Bolliger
4.622 4.623	Howard Hjjjs** Howard Hills	1957 1966	dr) drl	186 220	6-5				659 659	15 4	\$16	10 14			Sand at 186 Dirty sand, 45-48; sand, 64-83; dirty sand, 83- 94: sand, 103-107; limestone, 152-220	Bolliger Solliger
4.8h) 4.8h2	Herlé Haley Herle Haley	1946	dr) dr]	59.9 2001	4				686 686	20.1 40					Rock	 Freach
4.8h3	Herle Haley	1966	drl	190	6				686	**	••				Rock	Bolliger
,8h4 ,1a	Merle Heley Soeman Bros.	1966 +1917	dr I dr I	400-	6 4				686 670	12					A Rock	Solliger
.8e .If	H. W. Kelley Henry Schoder	1922 1950±	dr I dr I	285 208	6				681 682	23.7	::				Rock gravel at 285	Jensen
.7h	Sue Tofte	1916	drl	240	Â.				680	30 10		4.5			Rock Rock	Boliiger Jensen
. B6 50	Dora Brown Oswald Keller, Sr.		dri dua	250+	4 36				690 690	40.3	+-' 					
Se i	Pearl Sucherland		bor	79.9	18				693	4.6	·	••			Sand ac 79.9	
.8e2 .16	Pearl Sutherland Donald Johnson	1919	dr i dug	285	6 24				693 700	60 		<u>+</u>			Rock	Jensen
.1g .8b	Nomia VanWicklin M. Bute 6 E. Vagne	1925	dri bor	205 86	18				690	27		5			Rock	Jensen
-85 - Ic	Merle Throne	·	dug 4	50 50	36-3				636 670	12		4.			Sand at 86 Sand at 60	
. 16	R, & C. Sengfiel		dri dri	108	4		••		692	18		4			Sand at 108	
.8c	J. & L. Riebe	••	dug 6 bor	45+ 300	54-7 4				693	17	••	4	••			
.la .la	Kenny Turner Howard Hills		dr I dr I	185	2				658 665	·					Rock Rock	a- Bolliger
.3h1	Clare Vatts Clara Vetts**		dr) dug	212 50+	6 34				690 690	3					Rock	
. 3h2 . Ba I	Howard Ferry		qu)		3				665	·••		+-	••		••	••
. Ba2 . Be	Noward Ferry Art Ramiente	8161 1916	dr) dr]	200 213	4 4-3.5				665 680	5 60		ş			Rock Limestone at 160	Bolliger Stuart
. Za	Frank Drendel	1919	dr 1	200	4				658		••	6			Rock, 180-200	Jensen
.3h .4a	Glen Anderson Ford County Farm	1966	drl drl	160 790	6 6				668 660	8	82	17	.2	5	Apck Shale, 168-190	 Bolliger
1.6n	Service, Inc. L. Drendel Est.#*		drl	235					670	5		5			Rock	-
.80	Louis Drendel	1919	drl	229	4	-+			665	3		5	••		Rock, 200-229	Jensen Jensen
.8f1 .8f2	Louis Drendel Louis Drendel	1966	d⊔g ¢ri	60 160	36 6		6	.020	680 680	12	28	25	.9		 Sand, 80-88; dirty sand,	Bolliger
					4										148-154; sand, 154-160	
. c . g	Villiam Malpin Ben Hvøller	1966	drl drl	135 215	6				659 661	18 6	52	15	· .)		Dirty sand 6 gravel. 80-95; dirty sand, 95- 100; sand, 140-143; limestone, 168-215	Bolliger
.25 .8d1	Ben Hueller≭≐ John Riebe		dr i dug	200	48				663 661	4.7		1		•-	Rock	Jensen
.842	John Riebe	1920	drÌ	206	6				661	4	.:	6			Rock.	Jensen Ballfaar
.2f ,4hl	Hexine Heeg Mrs. Arthur Remier		drl drl	196 60 68	4				650 660							Balliger
.4h2	Mrs. Arthur Ramier Russell Hills		4r1 8r1	68 200	4 6				660 660	1.5					Sand at 68 Rock	Roar Bolliger
.55 .8d	V, S E. Helpin		đug	40	36		-+		659	12		3.5				
. 16 , 4h	Haurice Helson** Danaid Read	1939	drl dug 6	51	48-24				657 658	2.5					Sand & gravel at 51 Sand at 62	Johnson
		1016	bor	150					657	30					Sand at 150	Jensen
.8a1 .8a2	E. 6 H. Haag** E. 5 H. Haag	1914 1953	dr i dr i	100					657	42		2		• •	Sand at 150 Sandstone, 87-100	Bolliger
6.1a 6.1f	T. B. McHatton Andrew Meister	1958	dri dri	63	4-3.5 6	6		.020	660 659	10		10			Sand, 50-63	 Bolliger
.42	T. B. McHatton		drl drl	63	6				659	10		4		·		
i.1h 5.8al	Harold Rhode Herman Elies**		dug S		48-4				657 658	ล		4				
.802	Herman Ellies	1948	del del	190	6				658						Rock	Jensen
.Be	R. H. Kaltenbach	1941	dr i	181	6				658		+-	**			Rock	
.8h .2a	Charles Chandler Martin Dietz	1912	dr) dr)	80	4	**			656 650	20		4			Sand at 80	Jensen
. 4h	Chris Walters		drl drl	65	6				658 658	5		4.5	**			
.6a1 .6a2	W. & L. Dohman W. & L. Dohman	1944	dr I	59.5	!		••		658			••			Sand at 65 Sand 6 gravel, 57-59.5	French
. Ici	E. Hang & L. Chandler		dr I	60	4				657	3		5			Sand at 60	••
3.1c2	E, Haag & L.		dr1	230					657					•+	-+	
. 163	Chandler E. Hang & L. Chendler		đ۳۱	203			••	**	657						Sand, 36-60; guicksand, 70-75; lime rock, 158-	Bolliger
8. INI	Alice Riebe		dug	12.7	36				657	5.7					203	
8. Ih2	Alice Riebe	1916	dri	199	5	÷-			657	10					Rock, 179-199	Jensen
8,8n 9,2hl	Howard McCracken (The Bigit	1921	dr I dr I	168	5				658 659	*					Nock	Jensen
			dug		48				659							
).2h2).2h3	irmə Alair Irmə Əlair	1956	dri	163	6				659			**			Rock	Bolliger

.

			We	u			Screen		Land surface	Non- pumping			Observed	Length	Nater-bearing formation	
Vel 1		Year con-		Depth	olan-	Length	Diam- eter	Slot	elevation (f‡ abope	water level	Or aver down	Pumping rate	specific capacity	of test	and depth	
outber	Owner	structed	Түре	(/1)	(1.1)	(11)	(î n)	<u>(in)</u>		(/2)	(f*)	[gpm]	(gp=v/ft)	(hr)	(ft)	Orilter
728H, A9E	(Continued)															
29.662	Charles Riaba	1964	drl	164	6			.020	657	1.5					Send, 80-88; dirty send	Bolling
29.87	James HcDermott		dug £		60-3			••	659	3-5					148-154; sand, 154-160	
			dri							3-3						
30.2a 30.6a	Art Rfabe Hills Bros.		dri dug š	60	36-2				660 658	9.2						••
30.8h3	Russell D. Hilly*	• •-	dr I dug	30	60			••	671	20	••	3		••		
30.8h2	Ressall D. Hiflam	1944	drì	58		••			671		••		••	••	Send, \$7-58	dolliger
30,8h]	Russell D. Hills	1964	drl	129	6	6		-050	671	27	••	50	••	**	Sand, 60-65, 100-104, 120-129	Bolliger
31.19 31.3#	E. J. Donehue Gene Weerts		đug đri	20	34				658 656	\$		5				
31.74	Grville Grubbs	1894	dug	60	48			••	655	s		÷.	**	**		Eilers
31.7hl 31.7h2	Lawis Arch Lawis Arch		bor bor	80 65	18 \$				658 658	¹⁰			:		Sand at 80	
32.56 32.8c1	HcKinney Est. N. & L. FlessnerM		dr I dug	40	48				656 657	12		3			Sand at 40	
32.8c2 32.8e	H. & L. Flessner H. & L. Flessner	1950 1950	de i de i	50± 56.7	6				657 656	6.8		-	••			
33.54	McKinney Est.	1940	dr1	196	ŝ.				656	+2.5				**	Sand at 56.7 Sand # grevel, 53-57;	Swenson
33.80	Henry Schoder		de 1	80	6				658					••	sand, 181-186, 192-196	
34.16	Heles Jackson		dug é de l	60	60~3		••		652	5		3	+-		••	**
35. le	J. Montellus Est.		dug E	65	60-2		••		661	12		3.5			Send at 65	••
35.1h	J. Montellus Est.		de i de i	160	4		••		658			••			Rock	Swenson
35.761	John Actionay#*		dug 6 drl	65	36-4		••	••	657	6		•			Send at 65	**
35.7h2	John HcKinney	8461	dr I	138	4		••	••	657	4	1	8	4.0	10.5	Sand & gravel, 34-45;	Jennek
35.86	Clara Sultzer		dr I	40	3.5				657		••			••	sand rock, 117-138	
36.10	Evelyn Helster	••	dug i dri	60	60-7		••	**	662	\$		4	••	**	••	
36.26	Jansia Schultz		drl	90	2				660	12		•	**	••	••	
36.84	L. G. Anderson	1957	dri	185	6-5			slotted pipe	661			••	••		Rock.	French
729N, R9E																
13.19	Emmry Dubols	+1947	dr I	117.7	4	••			690	38.1	••					
13.30	Donald Mayares		dug i dri	50	34-1		••	~	211	20	••	3.5				*-
13.60	Hary Vene		dug	40	41			:-	711						 .	••
13.6a 13.6h	Ethel Fritz Donald Heas	1924 1941	dr I dr I	15	4				712	30 37.5		4			Rock Shale 6 a little lime*	Stewert Jensen
14.1a1	Royce Down##	••	det.	190					715	34	••	3			stone, 140-193 Rock	••
14.142	Royce Down	1947	471	250	÷.				715	37.7	••					
34,441 34,641	Cecil Cochran Cecil Cochran**	+1953	dr) dr)	200 195 186	- Ă		**		70 4 710	30	::	3			Rock	Bolliger
15.16 15.1h	Ardal) Sutton Edward Queyle		dri dri	1 96 140	L.				715	40 28		ă.		**	Rock	Rylle 6
-						•	••		700						Rock	Nunger
16	Cabery (¥)	1956	del	133	•	- 1		.040	**		••	••		••	Dirty sand, 110+113; sand, 128+133	601 içer
16.1g1	Hrs. H. J. Salcker	1898	dr i		,	2		.020								
16.1.2	Mrs. N. J. Seicker	1954	drl	275	6-4		••	-+	690 690	33 41		10			Sand, 110-113, 121-124;	Nalls
16.6g	••	1892	del	230	4-3		•••		690	22		••	••		limestone, 187-275 Rock at 200	Nelson
16.6h 16.8c	Ernst Refsing Roy 5. Johnson	1890 1954	dr I dr I	230 230	2				698 700						sand, 129-132, 185-187;	Bolliger
							••	_							licestone, 212-230	
16.89(3)	Cabary (V)	1956	dr 1	357	•				700	48	34.5	125	3.6	4	Olrty send, 124+126; send, 196+198; 11me+	Scifiger
16.6h(2)	Cabory (V)	1920	drl	233	6	••	••		700	42	19.5	30.5	1.6	3.5	scone, 212-357 Lime rock, 192-233	Jensen
17.86	Clifford Clapp	1954	dr1	180		•-	••	.020		39-5	19.5	30.5	1.6	8.5		
17.46	Peter Sedler**	1904	4+1	233					710 690	34 80		50 3.5	=		Sand #1 40, 169-180 Rock	Solliger Rossr
18. INI	F. & L. Parodies	1870	dug 6 bor	40	48-4	•-		•-	690							
l\$. 1h2	F. S L. Peredles	1954	de1	387	6-5	10	5	slotted pipe	690	49		••		••		ðol H (gar
18.6al-	Henry Canhen	1880	dug	40				**	707			**		••		Canhan
18.602	Henry Conhim	1894	ár)	104.7	4				708	44.4		**				Canham E Adaps
(8.6e) (8,761	Henry Cenhan Bill Hiddleson	1910	dr I	316			••		710			••		••		Cenhap
18.7hz	Dill Hiddleson	1894	drt dri	280	6				698 696 696	82		3			Acck	Low
18.8h 19.8h	Elenn Sargeant** V. A. Neckett		dır.l dug	260 122	10				696 710	80 24.5		3.5			Rock	
19.64 20	George Frame A. T. Anderson**	1955	dei dei	N85 175	4				708	60-80		10		Ĩ.	**	lolliger
20.16	R. & H, Vegner		drl	222					740			••	••		Send, 220-222	Bolliger
20.3h 20.8b	Hrs. J. Jensen Frøderick Reab		d r l dug	100+ 40	72				712 729	30 20			••			
20.84	Willard Velsnith	1953	del	167	6			. 020	713	··		10	••	••	Send 6 grave) at 130;	Bolliger
21.la	Herle Haley		dr 1		•				729			••	••	**	sani, 130-167	
31.1h 21.9c	Serah Stithe± Abel A. Wenson	1900	dr I Cr I	160	1				730	10		•• •-			••	
22.4e 22.6h	Cecil Cochran J. Ogilvie Est.		dug dr1	185	54	**	**		731	30		ï			••	
23.16	Ine Huture1	1921	drl	295	- k	••	••		730 725	**			**		Lime reck, 190+295	Jensen
23.6h1 23.6h2	Derothy Noroff## Borothy Noroff	1956	dr) dr)	180 353	-				722 722	30 52	148	3-5 2	.01		Rock Dirty send, 140-182;	Griffy
										-					limestone, 250-353	

.

Appendix A (Concluded)

		Yeer	01	Di en-		Screen Dien-	Slot	Land surface elevetion	Non- putping water	Drew-	Pumping	Observed specific	Length of	Water-bearing formation and		
wet) number	Quiner	con- structed	Type	Depch (ft)	eter (tn)	Langth (ft)	eter (in)	\$ i ze (ĉη)	(ft above mel)	tavet (ft)	60mn (ft)	rate (gpm)	capacity (gpm/ft)	test (hr)	depth (ft)	0rl11er
7298, A9E	(Continued)														_	
23.6NJ	Porothy Moroff	1959	drl	376	5			••	722	70	120	2	.02		Dirty sand, 140-191; limescone wich shale beds, 191-376	Griffy
24, Iał	Helen L. Rughes	1689	drl	976	6-3				737	84	**	5				Syekes
24, 842	Helen 1. Hughes	1960	drl	1250	6-5				740		-		••	••	Lionstone, 210-460, 515- 1025; sandstone, 1025- 1245	Mehling
24.15	Helen L. Hughes**	1925	de l 👘	523				**	740				••	••	Limestone, 184-523	Jen san
24.3h	K. N. Hughes	1917	cug.	84.4	30				711	9.2				**		
24.69	Lasile Hummel		drl	143.5	- 4					44					••• • • • • • • • • • • • •	
24,86	Orville Rouk	1963	dr1	326	6				740	75		15			5mtd, 103-107; 11me- stane, 216-223, 228- 236, 240-252, 278-326	Bolliger
25.3e	Mrs. J. Alnehart	1956	dr 1		- 6			**	740	40						**
25.3h	Hrs. J. Rinehert*	•	del	178					730	**						
25.6el	Minnie Scheforth		dug		48 6			.020	735	90		9				
25.6a2	Ninnie Schaforth	1958	drb	234					240	35-40		·			Sandstone, 218-234	Bolliger
26.80	Yern H. Gown	1955	del	220	. 60				240	. 33-44						Wehling
27.4al	Nielson Bros.	1954	dug dri	165					740							Senesec
27.4.2	Nielson Bros. Cecll Cochran	1937	drt	280	1			••	745			**			Limestone, 180-280	Jensen
28.3+ 29.10	Earl Taylor Est.	1931	drf	230	7	••	••		740							Jensen
29.16 29.1h1	Edward Ohrt	.,,,,	dug	\$2.5	SÌ	**		••	735	26			**		**	**
29. INZ	Edward Ohrt	1967	dri	470	6	**		••	137							Bolliger
29.8h	J. 6 H. Donaghue		dug \$ bor		N\$-12	**	••		731	21.4						••
30	Eldon Sargeant	1953	drl	318	••		••					2			Send at 152; rock, 152- 370	Nolfiger
30.16	Dean Bonson	1924	drl	206		**			725	38			**	**	Send at 206	Jensen
31,164	Earl Teylor Est.		drl	240		••			740	40	••	•	••	••	Rock	
31.162 31.161	Earl Taylor Est. James Malona	1942 1899	dr] dr]	81 735	6 1-3-2		••		730 731	100		4.5	••		Sand & gravel, 80-81 Line rock, 220-260; rock, 250-735	Bolliger Munger 6 Burns
31.162	James Malione	1954	del	236			••	.020	730	90 80		8	••	••	Send, 212-215, 230-236	Bolliger
31.163	James Nationa	1960	drl	213	6		**	.020	730	60		5		**	Sand, 153-155, 210-215	Bolliger
31.5+(4)	Rempton (V)	1962	drl	238	6	4.7	e 	.020	740 740	67.5	61.5	100	1,6	¥ 	Dirty sand, 210-238; sand, 231-238	Bolliger
32.161	John Leonard, Jr.		dr1		ii ii				740							••
32.182 32.30	John Leonard, Jr. Robert Wagner		bor drì	180	17				210						**	Katfield
32.74	Berenes Gros.		dr1						745							**
33.141	Paul Weaver		del	125			**		735	เป		3		**	••	
33.142	Paul Verver	1960	del	400	i.	**			735	38 84	16	9	.6	12	Ligastone at 400	Jensen
33.40	Eule Ferley	••	del	209	- 6	**			749	50		<u> </u>	••	••	••	
34.2h	Richard Horn	••	471	160	3	**	+-		212	35-40			**	••	••	
34.40	Thomas Fenton	••	del	200	4	**			707	45		4	••	••	Rock	
34.5hl	O. H. Gesham	••	bor	105	18	**	+-		750 750	90			••	••	••	
34.562	Q. H. Beshae**	••	dwg –	**	42	**								**		
34.841	Fred Crane	÷1932	del	200	6	**			715			•	**	••	Sand 6 grevel, 135-136	Bolliger
34.842	Fred Crane	1932	de1	851	•		•• ,		715					* •	*Limestone, 326-660, 663-850	Berns
34.643	Fred Crane	1955	del	340	6				715	50		30			Sand, 108-112, 142-165, 187-201; lime rock, 201-240	Bolliger
35.2h	Leroy Delchman	••	drl	••					714	••	**	••				••
35.7h	Luther Merrett	••	dri	170	· •				702	30	••		*-		Rock	
35.8c	Carrol Anderson		dri	80+	2.5				697			••				
36.10	J. H. Bergen##	1925	41	187	4-3				705 705	30					Sand & gravel at 187	Jansan
36.11	J. H. Bergen	1926	dri dri	221	4-5				727	45					Lime rock, 183-221	Jensen
36,4h 36,6h	J. H. Bergen** Erwin Taylor	1957	dri	170	- 2				740	~						
30.00	Freen seyior	100			•											
								•								

Tabulated data of mineral content for groundwater supplies in Ford County follow.

Symbols used in the tabulations are:

- D = glacial drift
- L = limestone
- S = sandstone

The sources and significance of the major dissolved elements and substances in groundwater in waters of Ford County and U. S. Public Health Service drinking water limits (1962) are included in table 1.

Vell number	Dwner	1, Depth	Source	Labora tory number	Sou [Fe	atenganete	an Annon un	an [Sod] un	2 Calcium	Angresium	5 5 5 102	- Fluoride	MICrace	2 Chloride	5 Sulfate	📙 🕈 Alkalinity C	(² 03e (² 03e	Total dissolved minerels	👌 Tamperatura
T23H, R7E 1.2a 2.4b2 2.4b5(3) 2.4b5(3) 2.4b5(3) 2.4b5(3) 2.4b5(3) 3.4f 4.5e1 4.5e2 5.5e 9.3d 11 11.3h2 11.3h2 11.4h1(1) 11.4h1(1) 11.4h1(1) 11.4h1(1) 11.4h1(1) 11.4h1(1) 11.4h1(1) 11.4h1(1) 11.4h1(1) 11.4h1(1) 11.4h1(1) 11.4h1(1) 11.4h1(1) 11.5h(2) 11.7d(4	Lillie Ogg Gibson City Gibson City Gibson City Gibson City Gibson City Gibson City Gibson City Rutkowski Bros. Narwey Tjardes A. Gerling, et al Stokely Van Camp Canning Co. Gibson City Gibson City G	427 427 552 552 552 552 33	00000000000000000000000000000000000000	146776 118909 119441 119441 119441 119441 119442 142972 160510 171553 162512 162512 162551 80151 110075 110209 110210 110827 110830 110190	3.110.079355584922 00801.106082347752 r 2 2 4 6 8 0-		Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr		64.7 		18 18 18 19 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10			36223335343109 3323232385353435566 3 Tr Tr 4 3 25 10	277 277 277 277 270 270 270 270	3200 3000 2808 2844 2952 2954 2952 2954 2952 2954 3776 3776 3722 3026 3722 3026 3706 3706	232 317 301 313 313 3140 3480 370 3290 343 302 343 304 302 302 302 302 302 302 302 302 302 302	3517 333419 33302996 33343996 33440823356 35560776108882 3882 3882 3882 3882 3882 3882 3882	
Ti.841(2) Ti.841(2) Ti.841(2) Ti.841(2) Ti.841(2) Ti.842(3) Ti.842(3) Ti.842(3) Ti.842(3) Ti.842(3) Ti.842(3) Ti.842(3) Ti.842(3) Ti.842(3) Ti.842(3) Ti.842(3) Ti.842(3) Ti.842(3) Ti.841(2)	Central Soya Co., Inc. Central Soya Co., Inc. Cararae Goodrich C. V. Schroeder William Hollend Mallace Ollimen Elmer Meison James Thompson Leonard Cross George Tjardes	385 385 385 385 400 400	, L L L L L L D 0 0 0 0 0 0 0 0	103778 110212 1218212 1228473 109960 109963 172850 170855 164158 80179 80206 165249 80178	1.2 .1 2.3 13.2 .3 1.3 4.7 1.6 1.6 .2 .1	.0 .0 .2 0	4.3 3.8 .1 5.6 .1 .1 .1 .1 .1 .1	50	58.8 71.4 73.7	33.5 33.5 31.0 30.1 33.0	21 21 11 6		1.7 .6 .6 41.2 .5 .9	10 Tr 26 107 82 40 14 23 0	0 5 3 	304 384 396 340 406 412 276 304 316 258 396 258 200 292 264 240	3770 2261 327 3885 2709 328 3709 328 307 3509 3458 309 350 350 350 350 352 348	5106 403 421 554 1026 488 451 112 328 401 392 502 619 414	55 54 55 57 52 53
2.50 4.1f 11.6h 11.8d2(2) 11.8d2(2) 11.8d2(2) 11.8d2(2) 11.8d2(2) 15.1g 27.1h 29.4m 32.4h1	Stokely Van Camp Canning Co. Branville Brewer Roy Forman Elliott (V) Elliott (V) Elliott (V) Elliott (V) Elliott (V) Isabelle Renolds Florence P. Johnson C. W. Christie S. E. Leonard	90 110 180 129 126 126 126 126 126 126 126 126 126 126	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	158677 172708 158676 113025 121725 121725 124933 *5062 172783 172782 80255 80256	2.2 2.6 1.6 .7 1.1 2.1 1.4 1.2 3.0 1.0	 0 .15	 .8 1.2 .7	51 51 50 35	 60.0 81.5 61.4	 24.8 32.1 27.7	 19 12 12		 	2 021 1 3 0021		300 364 284 308 296 300 302 256 288 292 300 328	250 338 224 257 238 252 244 290 230 236 268	390 378 367 368 408 363 400 325 532 349	
T23N, R9E 2.5a 4.3a 9.2h2	Rhoda Holtzman R. & K. Humphrey Ada H. Burwash	98 102 100	0 0	172643 80248 172641	5.5 9.0 4.0	•	 .5 	34	58.7	32.1	 9		 .3	1 1 0	 51	386 300 324	340 279 286	437 365 431	57 60

Well number	Quine r	ti Debti	Source	Leboratory number	uori fe	nanganeta 1	E Amontua	E sodium	ç Calcium	an I senged &	511ca 211ca	a fluoride	6 Mitrate	13 Chloride	o Sulface	B Alkalinity 2		Total dissolved minerels	👷 Temperature
T23N, 89E	(Continued)	-	_		_	_	_		_	_		-	_	-	_	_			-
9,3d 14,19(8) 14,292 14,293(7) 14,293(7) 14,293(7) 14,293(7) 21,89 26,78 27,1h 34,8h 36,Ah2	Carson Farm Account Paston (C) Paston (C) Paston (C) Paston (C) Paston (C) Paston (C) Nilo Hansen Lewis Thompson Harvin Gritton Lawrence Seim Arthur Stävenson	92 340 340 125 340 340 340 84 140 140 95 104.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	167577 *32335 152590 141907 141850 150859 154244 80249 172645 80182 172646 172646	.7 2.0 1.7 2.0 1.0 2.2 1.6 3.0 .1 1.7 1.7	.1 Tr .2 .0 .0 .1 .1 Tr	2.6 Tr .4 2.3 1.1	416	85 86.6 85.9 53.5 83.6 	37 32.5 25.5 26.1 35.8	18 18 17 17 13	·· .4 .2 .3 .3 .3 	.0 3.6 .2 .0 3.8 .4 .7 .7	030470011 200	0 21 15 2 6	372 368 340 356 356 356 348 356 358 362 360 380	280 364 350 284 312 320 332 241 335 270 396	388 340 348 366 368 368 340 357 456 456	55 54 54 60 60
T23#, RIGE	4																		
4.7f 5.1e2 7.1e4(3) 7.1c(4) 7.1c(4) 7.3d(6) 9.4e 10.3h 11.1f 11.4h 12.1c 18.8a 19.8g 22.8a 23.4c 24.1d 29.5c 33.8e 33.8a 34.3a 35.5a 36.3a	C. C. Brocksmith Edward Brocksmith Parton (C) Parton (C) Parton (C) Parton (C) Parton (C) Parton (C) Helvin Coulter Elwer Zimmerman Marvin Goold Horace Fredrick Sussell Larimer Richard Leider Hilton Schofield Hilton Schofield Cocil Hayeraft M. W. Atkins Leo R. Cerlson, Sr. Leon Foster Chuck Condit Arlin Roy J. & E. Speck Hrs. M. B. Collins Welby Adkins	157 151 150 150 153 153 153 153 153 153 153 153 153 153		90730 172465 50983 84158 116219 104732 162353 80121 172482 172457 176131 80184 172457 17642 80184 172458 172458 172459 172456 158036 157036 1572563	.74 1.24 1.04 1.43 1.44 1.45 2.22 1.1 2.63 4.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	0,00 7r 00 7r	8.2 4 6.0 3.2 3.3 1.1 5 2.6 7 7 7 7			32.8 29.8 34.3 23.3 34.9 	31 15 24 15 26 12 12 12 12		1.2 2.1 1.2 2.3 10.6 9 1.8 .7 2.2 2.3 1.7 4.9 1.8 8.8 1.5	422111312201034021600007	38 12 57 06 66 	278 396 389 303 328 303 328 296 412 266 412 262 282 266 412 262 282 266 412 306 412 306 252 282 266 412 306 252 250 302 360 305 252 250 305 252 250 305 250 250 250 250 250 250 250 250 250 2	502 6486 2950 2322 1945 2304 2304 2304 2924 3067 294 3046 292 3246 290 3246 290 3246 290 3246 3290 3246 3290 3290 3290 3290 3290 3290 3290 3290	686 1019 471 368 311 468 384 603 384 384 384 384 384 384 384 384 385 312 3346 323 3346 323 3346 323 323 3346 323 335 342	
723N, RÌIE																			
25.56 36.16	Mary Sandquist E. E. Evans	73 60	0 D	172469 131349	.8 4.2			•••				-1 	 	1 7		268 352	364 508	397 510	58
T23N, RIAW																			
7.20 9.89 16.8a 18.7a 21.29 29.8g 31.4c	Watter Congram Elmer Kief K. Gordon Murray Edward W. Cartson Dr. W. L. Hamm Marvin Lawis Joseph Van Ham	106 135 80 120+ 111 110 89	0 0 0 0 0 0	80030 80031 172471 172470 157362 90731 172468	.3 .6 1.6 .4 .8 .7 2.4	.3 	.2 8.3 	22 34 	67.6 82.9 	32.4 41.5 	12 12 	 .2	3.8 1.7 -5 	3220422	22 9 	300 440 340 268 320 280 328	302 378 432 288 356 311 424	326 449 529 284 401 331 433	6) 59
T24N, R7E																			
4.1g 13.1f 14.2d 19.1a	Oscar A. Yentes Milton R. Bell Ralph Borchers Mrs. John Erp	18 147 120 110	0 0 0	172965 172967 179252 172966	Tr 1.1 .5 1.1		 	 		 	 		 .8	12 0 0 0		254 340 356 318	386 284 320 256	474 337 368 307	 54
T24N, RÔE						,													
1.741{2}	Melvin (V) (before despening)	231	0	30591	2.4	.0	2.9	28	71.3	30.2	17	••	6.A	I	6		335	416	
1.762(3)	Helvin (V) (before despening)	258	0	67456	8. 2	0.	1.6	41	69.2	36.8	22		1.2	2	10	404	324	444	
1.7e2(3) 1.7e3(4)	Melvin (V) (after deepening) Melvin (V)	265 260	0 0	116241 135015	.6 .7	.0	2.0	33	77.6	34.3	24	.6 .4	.4	2	21	388 428	335 316	427 426	55 55
1.7e3 (4) 7.8g2 12.7h2 12.7h2 13.1g1 13.1g1 35.8g	Melvin (Y) Louise Smith Corp. John W. Pool John W. Pool Roy W. Otto Roy W. Otto Florence Stephens	260 125 112 125 125 125 125 85	0 0 0 0 0 0	421838 172779 170301 170947 144991 144992 172781	.6 3.7 4.7 4.4 9.1 .8 1.1	.0 	1.8	49 	69 272	38	15 	.6	.0 .0 1.1 1.2	4010320	25 	404 322 176 176 260 308 300	330 280 1340 1300 304 358 248	440 387 2267 2125 375 462 365	59 59 57

,

Appendix	В	(Continued)
----------	---	-------------

.

Weit number	Dumer	tt Dept	Source	Laboratory number	voj Fe	A Nongenese	American E	F Sodium	e) ce)ce	Angres I um	5 [] \$10 ₂	n Fluoride	⁶ ON Nicreta	13 Chloride	S Sulfate	e) Alkalinity C	*co²) Hardness	Fotal dissolv e d minerals	d Temperature
T24H, A9E			_			_		-	-	—	_	_	_	_	_	_			_
16.1a 22.1d2 27.1a	Eva Spellmeyer E. & J. Lind Florence Wright	120 220 245	D D D	172701 173692 154200	2.4 1.9 7.2	 					 		1.2	1 0 0		208 316 284	530 450 372	940 694 500	62
T25N, R7E													-						
20.1a2 22.5e 23.8a3 31.1a 35.7g1(1) 35.7g1(1) 35.7g1(1)	James W. Liddle Louise Smith Corp. Elsie Walters James Watson, Jr. Sibley (V) Sibley (V) Sibley (V)	189 210 109 118 117 117	0 0 0 0 0 0 0	176670 172964 172001 169494 47620 116216 *33971	8.2 1.1 1.3 .2 .1 .8 1.3	 .0	3.6 .9 .7	 26 12 28	 52.6 62.2 77	23.6 28.5 17	12	 .4	 5.7 .9 .5	31 0 3 1 2 4	 5 9 14	552 360 356 348 286 288 302	244 294 232 229 273 260	724 396 306 363 330 310 320	53 56 54
125N, R9E																			
1.6a 3.6i 6.1h2 11.3c 20.1e 21(1) 21.3e2(3) 21.3e3(4) 21.5g1(5) 21.5g2(6) 23.6h 25.2h 31.1e 33.7h 35.8c	Patrick Cleary R. E. Bradbury Margaret Stahmer Herle Flessner Thomas Taibot Joe Rock Roberts (V) Roberts (V) Roberts (V) Roberts (V) Roberts (V) Roberts (V) Roberts (V) Mathew Rock G. B. e N. Furby R. H. Norgan Katherine Stamm Seward Arnold Dick Pelle	136 165 120 85 206 111 225 232 225 232 226 228 80 108 101 112 190 235	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	172376 172379 172379 172374 172374 172371 172371 172371 172371 172375 15367 123034 123034 123034 123034 123034 172373 172373 172358 172358 172350	1.8 2.2 3.8 1.5 2.3 1.7 1.2 6.4 3.0 1.7 6.4 3.0 7 2.9	.04 0.0 .1 .0 Tr	1.7 2.0 1.3 .1 				15 21 14 22 24 			0000211221221160402	229 210 225 249 2	342 308 286 360 324 314 308 304 304 304 304 304 288 172 230 260 260 264 312 240	484 428 404 416 322 425 405 405 436 436 1580 1170 376 406 796	690 628 574 553 667 658 667 658 599 685 681 2549 1988 848 863 604 1400	62 63 60 57 55 55 55 55 56 80 60 62 56
T26H, R9E																			
2.1f2 4.2f1(3) 4.2f1(3) 4.2f1(3) 4.2f2(6) 4.5f(7) 4.5f(7) 4.5f(7) 5.1d2 5.1d2 9.1f 11.7d 13.2a 18.8g 22.3h 26.1b1 28.1a 28.6g 29.7h 31.3a	Dora Johnson Est. Piper City (V) Piper City (V) Piper City (V) Piper City (V) Piper City (V) Producers Seed Co. Piper City (V) Piper City (V) Piper City (V) Piper City (V) Piper City (V) Ray Keefe Flessner Est. Edmund Johnson Catherine Woolsey Discutf & Henna Duane Magner D. 6 T. Rainagle Edward Fuost, Sr. Cifford Boms Clarence Grosenbech Henry Kurtanbach James Phipps	78+ 80,5 78,5 78,5 90 96 127 127 127 127 127 127 127 127 127 127		172111 38326 100209 100210 100211 116250 *6343 118576 133032 133032 133032 172109 172109 172109 172109 172105 172238 17224 172244 172244 172242	.6685432008661745435579745 212712862123,21145,2,343		3.2 5.4 4.9 2.1 2.1 4.4	28	93.3 82.0 93.0 93. 	35.8 39.4 17 	23 21 27 2 7 19 19		-7 1.4 -9 .9 .2 .1 	11112115 56600000000000000	······································	3706 4446 4446 37320 4108 45752 4004 5752 4004 5752 3362 588 433 514 3343 3414 434 434	328 3804 3567 3594 30962 333 39062 3199 3280 333 3288 3880 3880 3880 3880 3880	404 4407 4407 4407 4385 4385 40398 5885 407 407 5387 5951 407 5387 5951 401 438	60 - 33 - 55 - 55 5 - 55 5 - 55 5 - 55 - 55
T27H, R9E 4.3a1 7.8f 9.1a 11.4h 15.1a2 19.7h 23.1f 24.3h1 24.3h1 24.6a 27.1f 29.1f 29.1f 29.1f 33.5d2 36.5h2	Mrs. W. R. Crandal] Yatos Est. Sara C. Androws Elmo Read Durell Mhite Noille Dehm John P. Gallahue John P. Gallahue Reorge ficklin Matson McKas Paul Perkinson Bob Sterrenberg John Wilson John P. Gallahue John P. Gallahue	50+ 12,7 56 314 103 60 58 85 90 67 67	000000000000000000000000000000000000000	171962 172005 171964 172010 172002 172006 61757 172006 61757 172006 172011 172110 172112 172110 81756 172009	.68 1.80 13.0 13.0 14.0 2.2 3.6 2.4 2.4 10.0 11 2.0 1.1			63 						49 23 19 32 13 14 0 10 7		236 378 336 436 436 436 436 436 436 436 436 436	166 304 360 368 368 368 320 374 368 320 374 368 320 374 368 354	378 384 710 574 6726 754 4056 6493 6493 85 6493 85	67 65 57 62 57 60 58 62 58 62 58 62 58

Ve I i		Depth	Source	Laboratory Rushar	5	Manganate	Annonium	Sodium	Cale I um	Hagnes i un	Silice	F1 uor I de	Hi trate	Chloride	Sul fate	Alkallalty	Hardness	Total dissolved minerats	Temporature
number	Owne r	ft.			Fe	Mo	MH _L	Na	Ca	Mg	\$102	F	×٥,	C I	50 ₄	(es	(₂ 0363		٩٢
<u> </u>		_	-		_	_			•	_				_		_	ź		
728N, R9E																			
2.ld	Florence Schaub	100.6	0	171665	1.8	••						•-	33.2	32		172	850	1586	63
6.5h1(1)	Kempton (V)	404	L.,	35950	.3		-5	351	5.7	1.5	15	••	8,	43			20	821	
6.5h1(I)	Kempton (V)	404	Ľ	50541	.2	.0	- <u>A</u>	309	6.6	2.3	14		.0	43	1	678	26	82 S	*-
6.5h1(1)	Kempton (V)	404	Ľ	72733	.0	.0		321	2.0	.8	.7	3.7	.5	47	0	640	8	801	
6.5h2(2)	Kempton (V) Kempton (V)	238	0	83928 116251	2.8	.0	1.5	257 241	165.9 162.4	90.2	11		ę.	25	1140	128 140	785	1809 1688	**
6.5h2(2) 6.5h2(2)	Kempton (V)	238 238	6	*31539	1.5	.1		241	102.4	79.6		-9 .6	.5 .0	21 54	1100	132	734 700	1260	55
6.5h3(3)	Kempton (V)	386	ŭ	117100							**	1.0		30		288	579	1280	54
6.5h3(3)	Kempton (V)	386	1	117231	2.4	**						3.5	**	45	166	652	141	998	
6.5h3(3)	Kempton (V)	386	ĩ	431540	4.0			••	••	••	••	- í .í	.0	36	1025	280	460	1220	**
7.16	Dora Brown	200+	ō	171851	2.6					••				20		128	562	1112	59
10.162	Herold Kelly	72.3	Ď	171844	.9	**					**		••	12	••	130	820	1334	61
11.3h	Louis Guelendi	97	0	171667	1.2				••.				**	10	••	152	400	854	59
17.5m	Oswald Keller, Sr.	61.3	0	171854				••					206.0	295		234	1660	2538	59
20.8a2	Howard Ferry	200	L	171853	4.4			••		÷-		••		20		156	708	1181	61
21.4a	Ford County Farm Service, Inc.	190	L	171966	0.6	••				••	••	••		167		248	96	560	65
22.8d2	John Alebe	206	ş	171852	3.7						••			194	'	258	128	605	56
23.84	W. 4 E. Halpin	40	0	171967	.3							**	45.8	19		254	374	514	59
24.4h	Donald Read	62	0	171959	6						••	••	9.3	13		120	716	1506	59
29.8f	James Hollermott	56.7	0 D	171856	Tr 7.6								95.6	65		260 280	650 340	1034 556	65 57
32.8e 35.1h	<pre>H. & L. Flessner J. Montellus Est.</pre>	180	Š	171965 171960	1.5									7 63		180	62	300	59
35.86	Clara Switzer	40	Ď	171963	.6		••		••					64		238	364	752	58
729#, R9E																			
13-19	Emery DuBols	117.7	Þ	171632	.7	*-			••				1.4		••	120	890	1571	
16.192	Hrs. N. J. Smicker	275	L	87831	.2				56.4	26.2	••	1.8	••	22 21	535	358 248	43 249	675 1090	59
16,6g 16,6h	Ernst Reising	230 230	ĩ	87833	1.5				41.6	31.6				20	531	144	234	949	
16.89(3)	Cabary (V)	357		141967	.5	.0				31.0		1.0		20		26B	544	1260	54
16.89(3)	Cabery (V)	357	1	152585		.õ	Tr	254	150.8	64.0	10	1.0	9.0	21	923	196	640	1619	54
16.89(3)	Cabery (V)	357	ĩ	*1945	- 3	.03	4.9	-11	148	62	12		.0	22	900	212	600	1636	
16.8h(2)	Cabery (V)	233	ĩ	92606					**					21		172	820	1630	53
16.8h(2)	Cabery (V)	233	L .	116366	1.4	Te	1.4	279	171.5	67.5	14	1.0	5.4	21	1060	180	707	1744	55
16.8h(2)	Cabery (V)	233	ι	140893	1.6			**				••		20		196	684	1406	
18.1h1	F. & L. Paradies	40	0	171633	h			••		••	••	**	397.0	315		224	2020	3147	5z
19.Ah	W. A. Hockett	122	Đ	171638						••	••	••	118.0	51	~~	234	890	1302	60
20.3h	Hrs. J. Jensen	100+	0	171634	2.6							**		13	••	92	1280	2435	
22_8h	J. Oglivie Est.	185	O P	171637	.e								4.0	18 64	•••	98	905	1919	60
24.3h 26.8d	K. H. Hughes	84.4	D	171636 171666	2.7								54.4	64		252 108	608 482	829 2519	54 58
26.00 29.1h1	Vern H. Ocwm Edward Ohrt	220 52.5	0	171671	2.2 Tr								10.7	34		264	482 539	720	58
29. In1 31.162	Earl Taylor Est.	81	D	171669	15.0								10.7	5		152	162	384	\$7
31.56(4)	Kempton (V)	238	ő	158802	2.2							.5	.7	20		130	730	1776	54
34.561	0. H. Bashan	109	õ	171668	1.4									19		100	760	2027	61
			-																

.

Appendix B (Concluded)

- Bennison, E. W. 1947. Ground water, its development, uses and conservation. Edward E. Johnson, Inc., St. Paul, Minnesota.
- Buswell, A. M., and T. E. Larson. 1937. *Methane in ground water*. Journal of the American Water Works Association v. 29(12):1978-1982.
- Csallany, Sandor, and W. C. Walton. 1963. Yields of shallow dolomite wells in northern Illinois. Illinois State Water Survey Report of Investigation 46.
- Ground water and wells. 1966. Edward E. Johnson, Inc., St. Paul, Minnesota.
- Hanson, Ross. 1950. Public ground-water supplies in Illinois. Illinois State Water Survey Bulletin 40 (also Supplement 1, 1958, and Supplement 2, 1961).
- Horberg, Leland. 1950. *Bedrock topography of Illinois*. Illinois State Geological Survey Bulletin 73.
- Horberg, Leland. 1953. Pleistocene deposits below the Wisconsin drift in northeastern Illinois. Illinois State Geological Survey Report of Investigation 165.
- Illinois Department of Public Health. *Dug wells.* Division of Sanitary Engineering Circular 4.051.
- Illinois Department of Public Health. *Drilled wells.* Division of Sanitary Engineering Circular 4.052.
- Illinois Department of Public Health. 1967. Water well construction code, rules and regulations.
- Illinois State Water Survey. 1966. *Nitrate in water supplies*. Technical Letter 6.
- Larson, T. E. 1963. *Mineral content of public ground-water supplies in Illinois*. Illinois State Water Survey Circular 90.
- Meents, Wayne F. 1960. *Glacial-drift gas in Illinois*. Illinois State Geological Survey Circular 292.
- Piskin, Kemal, and R. E. Bergstrom. 1967• *Glacial drift in Illinois: thickness and character.* Illinois State Geological Survey Circular 416.
- Pree, H. L., Jr., W. H. Walker, and L. M. MacCary. 1957. Geology and groundwater resources of the Paducah area, Kentucky. U. S. Geological Survey Water Supply Paper 1417.
- Sanderson, E. W. 1967. *Groundwater availability in Shelby County*. Illinois State Water Survey Circular 92.
- Selkregg, Lidia, and John P. Kempton. 1958. Ground-water geology in eastcentral Illinois. Illinois State Geological Survey Circular 248.

Smith, H. F. 1954. *Gravel packing water wells*. Illinois State Water Survey Circular 44.

- Salinity and livestock water quality. 1959. South Dakota State College Agricultural Experiment Station, Brookings, Bulletin 481..
- Spafford, H. A., and C. W. Klassen. *Hazards of methane gas in water wells and suggested method for elimination*. Illinois Department of Public Health mimeograph report.
- Walton, W. C. 1960. *Leaky artesian aquifer conditions in Illinois*. Illinois State Water Survey Report of Investigation 39.
- Walton, W. C. 1965. *Ground-water recharge and runoff in Illinois*. Illinois State Water Survey Report of Investigation 48.
- Water for Illinois, a plan for action. 1967. Illinois Department of Business and Economic Development, Springfield.
- Willman, H. B., and others. 1967. *Geologic map of Illinois*. Illinois State Geological Survey.