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Abstract 
 

The Climate-Weather Research and Forecasting (CWRF) is the climate extension of the Weather Research and 
Forecasting (WRF) model, incorporating all WRF functionalities for numerical weather predictions while enhancing the 
capability for climate applications. This report focuses on the construction and implementation of surface boundary conditions 
(SBCs) specifically designed for CWRF mesoscale modeling applications. The primary SBCs include surface topography (mean 
elevation, slope, curvature, and their standard deviations); bedrock, lakebed, or seafloor depth; soil sand, and clay fraction 
profiles; surface albedo localization factor; bottom soil temperature; surface characteristic identification; land cover category; 
fractional vegetation cover; leaf and stem area index; sea surface temperature, salinity, and current; and sea temperature and 
salinity profiles. They are currently presented in a CWRF domain suitable for the U.S applications at 30-kilometer spacing. The 
raw data sources and processing procedures, however, are elaborated in detail, by which the SBCs can be readily constructed for 
any specific CWRF domain anywhere in the world. For a specific field, alternative data sources, if available, were compared to 
quantify uncertainties and suggest the choice or improvement. 
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Introduction 
 

Mesoscale regional climate models (RCMs) are 
recognized as an increasingly important tool to address 
scientific issues associated with climate variability, changes, 
and impacts at local and regional scales (Giorgi and Mearns 
1999; IPCC 2001; Leung et al. 2003). Numerous RCMs have 
been developed, applied, and intercompared, demonstrating 
important downscaling skills achieved and model 
deficiencies yet to be resolved (Takle et al. 1999; Leung et al. 
1999; Roads et al. 2003; and references therein). The most 
widely used RCM was the RegCM2, developed by Giorgi et 
al. (1993a, b) based on the Penn State/National Center for 
Atmospheric Research (NCAR) Mesoscale Model version 4 
or MM4 (Anthes et al. 1987). This was later integrated with 
sea ice and ocean models to establish the ARCSyM (Lynch et 
al. 1995), the single existing fully coupled RCM. Over the 
years, the hydrostatic MM4 has been improved significantly 
and eventually succeeded by the nonhydrostatic MM5 (Grell 
et al. 1994; Dudhia et al. 2000). Several RCMs then built 
upon the MM5 as the basic framework and gained a wide 
range of applications (e.g., Leung and Ghan 1999; Liang et 
al. 2001, 2004a; Wei et al. 2002). 

Meanwhile, the next-generation Weather Research 
and Forecasting (WRF) model (http://www.wrf-model.org/) 
is being developed by a broad community of government and 
university researchers (Klemp et al. 2000; Michalakes 2000; 
Chen and Dudhia 2000). Because the WRF was based upon 
the most advanced supercomputing technologies and 
promises greater efficiency in computation and flexibility in 
new module incorporation, it eventually will supercede the 
MM5. An initial study demonstrated WRF capability and 
limitation for regional climate applications (Liang et al. 
2002). In particular, the WRF exhibits an encouraging 
advance in reproducing North American summer monsoon 
rainfall, which is poorly simulated in the MM5-based RCM 
or CMM5 (Liang et al. 2004a) and remains a challenging 
issue in the global and regional climate modeling community 
(NAME 2003). Since then, the authors have committed, in 
collaboration with the WRF Working Groups, to develop the 
climate extension of the WRF (CWRF) to replace the CMM5 
(Liang et al. 2004a) and, after sufficient validation, for 
general public use. 

The WRF originally was designed for numerical 
weather prediction (NWP) and not expressly for climate 
studies. To extend its capability for applications on regional 
climate scales, the authors developed the CWRF with four 
crucial characteristics to improve: [1] planetary-mesoscale 
interaction by including an optimal buffer zone treatment that 
integrates realistic energy and mass fluxes across the lateral 
boundaries of the RCM domains (Liang et al. 2001); [2] 
surface-atmosphere interaction by incorporating new physics 
modules for planetary boundary layer, and land surface and 
terrestrial hydrology, as well as observed variations or 
dynamic predictions of vegetation, ocean, and sea ice; [3] 
convection-cloud-radiation interaction by implementing fully 
coupled, new physical parameterizations for cumulus clouds, 
cloud microphysics, cloud formation, and radiative transfer; 
and [4] system consistency throughout all process modules by 
using unified water vapor saturation and solar zenith angle 
functions, common physical constants, and coherent tunable 
parameters. These improvements were accomplished through 

iterative, extensive model refinements, sensitivity 
experiments, and rigorous validations over the past three 
years. As a result, the CWRF has demonstrated greater 
capability and better performance in simulating the U.S. 
regional climate than the CMM5 (Liang et al. 2001, 2004a). 

The concept of the CWRF is in its emphasis on the 
extension of the WRF. This extension incorporates inclusively 
all WRF functionalities for NWP while enhancing the 
capability for climate applications. As such, the CWRF has 
applications for both weather forecasts and climate 
predictions. This unification offers an unprecedented 
opportunity to develop, test, and verify new physical 
parameterizations of unresolved processes, identify their 
systematic errors, and eventually improve them over a wide 
range of frequencies from weather to climate scales. Given 
that systematic climate biases result from nonlinear 
interactions among many dynamic and physic processes, it is 
impossible to unravel RCM deficiencies in specific physical 
parameterizations solely by diagnosing climate simulations. 
Incorporation of the WRF data assimilation system, which 
ingests all available observations and applies variational 
methods to produce an optimal reality analysis, enables the 
CWRF to produce short-range weather forecasts from realistic 
initial conditions. Because the model dynamics evolve freely 
and interact fully with the physical parameterizations during 
the forecasts, the CWRF consistently generates all forcings 
and feedbacks. Thus high-frequency NWP analyses and 
unassimilated observations of parameterized variables can be 
used to identify parameterization deficiencies and gain 
insights on improvements manifested initially in short-range 
weather forecasts, but ultimately that persisted in climate 
simulations (Phillips et al. 2004). The parameterizations then 
can be modified to reduce the perceived high-frequency 
deficiencies and further evaluated beyond the deterministic 
forecast range (~15 days) to determine whether they 
ameliorate low-frequency biases in progressively longer 
(seasonal, interannual, or decadal) climate simulations. Some 
systematic climate biases that develop slowly probably cannot 
be identified and reduced by the NWP-based approach. For 
example, WRF mass and height dynamic cores reveal little 
sensitivity in weather forecasts while generating substantial 
systematic differences in climate simulations. The authors 
later found, via CWRF sensitivity experiments, that these 
differences were caused by erroneous lateral boundary 
conditions (LBCs) due to inappropriate use of surface rather 
than sea-level pressures by WRF Standard Initialization or SI 
(http://www.wrf-model.org/si/) in mapping the coarse-
resolution global reanalysis into the RCM grid. Clearly, the 
CWRF provides a unique tool to develop improved schemes 
for realistic weather and climate applications. 

A series of papers being prepared document details of 
CWRF formulations and skills for weather forecasts and 
climate predictions. This report is the first of the series to 
depict the construction and implementation of surface 
boundary conditions (SBCs). These SBCs also will be 
amenable to the requirements of existing WRF modules that 
simulate surface processes. A brief description of the current 
CWRF representation of these processes precedes general 
considerations introducing the SBCs wanted or required for 
normal model operations. There is also a discussion of how to 
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construct these SBCs, their important characteristics, and 
how to implement them into the WRF input/output 
application program interface (I/O API). This effort is unique 
in that, for the first time, the science community will have 

access to the most comprehensive SBCs specifically designed 
for mesoscale modeling applications, which is especially 
beneficial for the CWRF users. 

 
CWRF Representation of Surface Processes 

 
Most relevant to the SBCs is how the CWRF 

simulates local surface processes over land and oceans, for 
which a more detailed description follows. The WRF release 
version 2 included the 5-layer SLAB thermal diffusion model 
(Dudhia 1996); the 6-layer Rapid Update Cycle (RUC) land 
surface model or LSM (Smirnova et al. 2000); and the 4-layer 
NOAH LSM, jointly developed by National Centers for 
Environmental Prediction (NCEP), Oregon State University, 
U.S. Air Force Weather Agency, and NOAA Office of 
Hydrology (Chen and Dudhia 2001; Ek et al. 2003). The 
Common Land Model or CLM (Dai et al. 2003), a state-of-
the-art model for Soil-Vegetation-Atmosphere Transfer 
(SVAT), was incorporated into the CWRF. Major CLM 
characteristics include: a 10-layer prediction of soil 
temperature and moisture; a 5-layer prediction of snow 
processes (mass, cover, and age); an explicit treatment of 
liquid and ice water mass and their phase change in soil and 
snow; a runoff parameterization based on the Topmodel 
concept (Beven and Kirkby 1979); a canopy photosynthesis-
conductance scheme that describes the simultaneous transfer 
of carbon dioxide and water vapor to and from vegetation; a 
tiled treatment of subgrid fraction of energy and water 
balance; and high-resolution geographic distributions of land 
cover, vegetation, and root and soil properties. The CLM has 
been evaluated extensively in stand-alone mode with field 
measurements (Dai et al. 2003), indicating realistic 
simulations of state variables (soil moisture, soil temperature, 
and snow water equivalent) and flux terms (net radiation, 
latent and sensible heat fluxes, and runoff). Preliminary 
CWRF results showed that the CLM, when compared with 
the existing WRF modules, significantly improves 
representation of land surface processes, and also facilitates 
the consistent coupling with the radiation transfer, where 
surface albedo and emissivity are predicted by the CLM. 

The latest version CLM incorporates several 
important updates and new modules.  Major updates include 
a two-leaf (sunlit and shaded) canopy treatment for 
temperature, radiation, and photosynthesis-stomatal 
resistance; a two-stream approximation for canopy albedo; 
the bedrock depth effect on soil thermal and hydrological 
processes; a new canopy interception treatment accounting 
for partitioning between convective and stable precipitation; 
turbulent transfer under the canopy; an efficient iterative 
solution for leaf temperature; separation of surface and 
subsurface runoff; rooting fraction and water stress on 
transpiration; and perfect energy and water balance within 
every time-step. A dynamic vegetation module (DVM) that 
integrates the interactive canopies with the full carbon and 
nitrogen cycling mechanism (Dickinson et al. 1998, 2002) 
has been added to represent two-way interactions between 
climate and biosphere processes over a wide range of 
temporal scales from minutes to decades. The DVM 
combines process-based representations of terrestrial 
vegetation dynamics and land-atmosphere carbon, nitrogen, 
and water exchanges in a modular framework. Features 

include feedbacks through canopy conductance between 
photosynthesis and transpiration and between these “fast” and 
other “slow” ecosystem processes, such as tissue turnover, and 
soil organic matter and litter dynamics. 

Most recently, the CLM was extended to include 11 
layers with the bottom below 5 meters (m) to contain all water 
tables. In addition, the CLM was coupled with a terrestrial 
hydrology module (HYD) based on the three-dimensional 
averaged, localized Richard’s equation to better predict runoff 
due to saturation and infiltration excess, base flow and snow 
melt, and surface energy fluxes (see Kumar 2004 for the initial 
concept and full implementation to be documented in an 
upcoming paper). The HYD predicts the averaged directional 
lateral flow from the bulk of each side of a grid box at 
individual soil layers. The prediction, completed in a soil 
column fully underneath each CWRF dynamic grid, thus 
makes obsolete the Topmodel concept, which operates at 
individual basins (Kumar and Chen 1999; Chen and Kumar 
2001). The resultant four-directional lateral flows can be 
integrated readily into a comprehensive routing module to 
predict streamflow geographic distributions. Along with the 
DVM, the authors are coupling the most popular 
agroecosystem models, GOSSYM (Reddy et al. 2002) and 
DSSAT (Jones et al. 2003), to predict the life cycle of major 
crops, including cotton, corn, soybeans, wheat, and rice. These 
advances provide the foundation for modeling water quantity 
and quality at local, regional, and national scales over the 
United States. 

The WRF release version 2 prescribes surface 
temperatures of water bodies, including inland lakes and 
oceans, and fixes them at the initial conditions from the 
WRFSI. This is one of the factors impeding WRF application 
in climate studies. In this regard, observed daily sea surface 
temperature (SST) variations have been incorporated into the 
CWRF following the approach for the CMM5 (Liang et al. 
2004a). The SST data also define sea ice cover changes using 
a temperature threshold of 271.36 K. This noninteractive 
approach, however, excludes the observed negative radiative 
feedback that results from increased (decreased) convective 
clouds in response to positive (negative) SST anomalies. 
Feedback relaxes the SST anomalies and has impacts on other 
processes, including those responsible for the development 
and maintenance of convection. To facilitate the full 
interaction, the Geophysical Fluid Dynamics Laboratory 
Modular Ocean Model or MOM (Griffies et al. 2003) and the 
Los Alamos Sea Ice (CICE) model (Hunke and Lipscomb 
2001; Liang et al. 2004b) are being coupled to predict ocean 
temperature, salinity, current, and sea ice distributions. The 
CLM then predicts water temperature profiles for inland 
shallow and deep lakes (Bonan 1995). The CLM also 
determines air-sea exchanges of heat, moisture, and 
momentum over all ocean and sea ice grids consistently for 
land surfaces. 

The input parameter requirement depends on the 
formulation complexity of the surface modules. The SLAB 



 3

needs only the bulk surface moisture availability to calculate 
evaporation. The RUC and NOAH LSMs require the soil 
texture category to define static soil properties at each 
geographic grid; the land vegetation category to specify static 
canopy properties; and the green vegetation fraction to 
compute canopy versus bare soil contributions. Although soil 
texture categories are provided separately for top (0-30 
centimeters or cm) and bottom (30-100 cm) layers, only the 
top values are used to provide constant soil properties in each 
entire column. The green vegetation fraction distribution is 
given by monthly means based on the NOAA Advanced Very 
High Resolution Radiometer (AVHRR) satellite-derived five-
year climatology (Gutman and Ignatov 1998), but presently 
kept fixed at the initial conditions. The NOAH incorporates 
four additional input parameters: minimum areal coverage of 
annual green vegetation, background snow-free and 
maximum snow albedos to calculate the actual surface albedo 
with weighting of green vegetation and snow cover fractions, 
and LAI to account for the leaf density effect on canopy 
resistance. Due to limited data availability, the LAI, however, 
is presently set to a globally universal value of 4 across all 
vegetation categories. 

On the other hand, the CWRF incorporating the most 
comprehensive representation of surface processes, when 
fully developed, includes the CLM, DVM, HYD, CICE, and 
MOM modules. The CLM needs soil, sand, and clay fraction 
profiles to specify eight static soil properties in individual 
layers of each geographic grid; bedrock depth to set the soil 
bottom level impervious to water; regression parameters to 
determine local characteristic dependence of surface albedos 
for direct and diffuse solar radiation at visible (0.3-0.7 

micrometers or µm) and near-infrared (0.7-5.0 µm) spectral 
bands; the vegetation category to define 32 static canopy 
(morphological, optical, and physiological) properties; 
fractional vegetation cover to compute canopy versus bare soil 
contributions; and time-variant vegetation greenness, and leaf 
and stem area indices to describe canopy dynamic variations. 
The canopy dynamic variables can be predicted by the DVM, 
which, in turn, demands more input fields, such as plant 
phenology, stress thresholds, and crop cultural or management 
practices. The HYD requires terrain geographic distribution at 
the finest possible resolution to derive structure information 
for watersheds, including directional slopes and curvatures of 
elevation, to produce more realistic water redistribution (e.g., 
river routing, and surface and subsurface runoff). Without the 
interactive MOM and CICE, the CWRF entails specification 
of SST and sea ice distributions. The CICE predicts sea ice 
variations, but calls for input of sea surface current and 
salinity distributions. The MOM predicts ocean temperature, 
salinity, and current at the surface and throughout the water 
column above the seafloor. For a regional application, 
however, the MOM necessitates LBCs, especially for water 
temperature and salinity profiles, throughout the oceanic 
columns within the CWRF buffer zones. Unless a fully 
coupled global general circulation model (GCM) is driving the 
CWRF, these oceanic temperature and salinity profiles 
typically are supplied by coarse-resolution observational 
analyses of the monthly mean climatology. To force realistic 
upper ocean variations and constrain the unavoidable climate 
draft of the fully coupled system, the MOM dynamically can 
be relaxed toward the observed SST distributions. 

 
General Considerations for Comprehensive SBCs 

 
Like the WRF, the CWRF is targeted for community 

use. A comprehensive set of SBCs based on best 
observational data is desired for CWRF general applications 
for all effective, dynamically coupled or uncoupled, 
combinations of the surface modules, as well as for any 
specific region of the world. There is no universal, complete 
set of SBCs, however, because different modules may require 
specification of more or less surface parameters (see Chen et 
al. 1997 for an intercomparison of various LSM schemes). 
Some fields are necessary, in general, such as surface 
elevation. Others no longer require input when an interactive 
component is coupled to predict them. For example, if the 
MOM and CICE are fully coupled, input for oceanic 
conditions is not needed. Data for these fields still could be 
useful as initialization or relaxation to constrain the coupled 
system drift away from the observed climatology. Many other 
fields usually are presumed static and empirically derived 
from the basic parameters due to lack of global observations. 
For example, the CLM prescribes numerous canopy 
properties as static tabular values depending only on the 
vegetation category, while parameterizing several soil 
profiles in terms of clay and sand fractions. These parameters 
are not presented in this study, but rather treated as derivative 
static fields. 

The study considers an SBC that: (a) requires a 
geographic distribution, static or varying over time; (b) for 
which global observations are freely available; (c) is a 
fundamental input field, independent or defining other 

derivatives; and (d) plays an important role in surface-
atmosphere interaction. Table 1 lists all CWRF SBCs that 
meet these criteria and are documented. They can be 
distinguished into three time-dependet groups. The first group 
contains static fields that need to be defined at the first step of 
an initial or restart run. The only field that may change 
between sea ice and open water over oceans is SCI. The 
second group includes SST, LAI, and SAI daily variations. 
These data, however, are derived from weekly or monthly 
means changing from year to year. The third group fields 
(SSS, SSC, STP, and SSP) vary relatively slowly and consist 
of only the monthly mean climatology due to limited 
observations. Among the static SBCs, fundamental inputs 
include surface elevation parameters defining the CWRF 
geographic boundaries, and soil characteristic fields 
determining terrestrial water movement (Webb et al. 1993). 
There exist rich studies for weather and climatic importance of 
SST (Gao et al. 2003; Thiébaux et al. 2003; Liang et al. 
2004a), surface albedo (Charney 1975), and various 
vegetation parameters (Xue and Shukla 1993; Copeland et al. 
1996; Chase et al. 1996; Betts et al. 1997; Hahmann and 
Dickinson 1997; Pielke et al. 1997; Hoffmann and Jackson 
2000; Buermann et al. 2001; Lu and Shuttleworth 2002; Liang 
et al. 2003).  

The list of the SBCs in Table 1 is designed for normal 
operation of the CWRF surface representation using the CLM 
and optional HYD, CICE, and MOM modules. The surface 
elevation fields developed show large differences from the 
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WRFSI result due to improved data processing techniques. 
The soil fields (DBED, SAND, CLAY, and SALF) 
consistently were introduced into the SVAT modeling for the 
first time ever. The use of a single SCI simplifies the CWRF 
control for various surface modules, where multiple indices 
were necessary in the WRF.  Incorporation of daily SST 
variations common to other choices (SLAB, RUC, or NOAH) 
is the minimal requirement enabling the CWRF for climate 
applications. The vegetation fields (LCC, FVC, LAI, and 
SAI) also can be integrated with these choices, but important 
modifications are required. This would entail replacing the 
green vegetation fraction in the RUC with the new static FVC 
to disable canopy variability or replacing the NOAH 
combination of a variable green vegetation fraction and a 
universal LAI with the new static FVC and time-variant LAI 
plus SAI, assuming acceptable switching time dependence 
between the two fields. One problem arises in calculating 
surface albedo from prescribed snow-free and maximum 
snow values weighted by a green vegetation fraction that 
differs from the FVC. An alternative is to adopt the new 
parameterization based on the SALF. For convenience, in 
addition to the FVC, the old green vegetation fraction was 
retained but the model was improved to incorporate its 
temporal variation.  

It may still be arguable whether the FVC, LAI, or 
both should carry the information for time variations of 
terrestrial vegetation phenology. The global distributions at 

fine spatial and temporal scales can be described only by 
means of remote sensing, such as the satellite product of 
Normalized Difference Vegetation Index (NDVI). Sellers et al. 
(1996) incorporated all NDVI geographic and seasonal 
variations into LAI distributions. In contrast, Gutman and 
Ignatov (1998) revealed that the limited information contained 
in NDVI precludes construction of seasonal variations for both 
FVC and LAI, and thus derived a time-variant FVC while 
prescribing a constant LAI. Recently, Zeng et al. (2000) 
argued that assuming a static FVC and varying LAI is more 
realistic from modeling perspective and also made feasible by 
current data availability. As such, FVC is determined by 
distinct vegetation categories and long-term edaphic and 
climatic controls, whereas LAI includes all canopy dynamic 
variability. This study follows the approach of Zeng et al. 
(2000). The three-dimensional canopy effects are 
parameterized by the combination of FVC for the fractional 
area of vegetation covering a model grid (horizontal extent), 
LAI, and SAI for the abundance of green leaves and stems of 
the vegetated area (vertical density). 

A critical requirement in constructing the SBCs for 
CWRF use is that each field must be defined globally with no 
missing values and with physical consistency across all 
relevant parameters.  Missing data,  if  any, must be 
appropriately filled. For mesoscale weather and climate 
modeling, the raw data should be available at the finest 
possible resolution to facilitate a more realistic representation  

 
 

Table 1. Primary SBCs Incorporated into the CWRF 
 

SBC Description Units Level Time Usage I/O 
HSFC Surface elevation m 1 Static All ir 
HSDV Surface elevation standard deviation m 1 Static CLM ir 
HSLD Surface elevation slope and deviation m/m 4 Static HYD ir 
HCVD Surface elevation curvature and deviation 1/m 4 Static HYD ir 
DBED Bedrock, lakebed, or seafloor depth m 1 Static CLM, MOM ir 
SAND Soil sand fraction profile    nl_soil Static CLM ir 
CLAY Soil clay fraction profile   nl_soil Static CLM ir 
SALF Soil albedo localization factor   4 Static CLM ir 
TBS Bottom soil temperature K 1 Static CLM ir 
SCI Surface characteristic identification   1 Static All ir 
LCC Land cover category   1 Static CLM ir 
FVC Fractional vegetation cover   1 Static CLM ir 
LAI Leaf area index m2/m2 1 Daily CLM i2r 
SAI Stem area index m2/m2 1 Daily CLM i2r 
SST Sea surface temperature K 1 Daily All i1r 
SSS Sea surface salinity ‰ 1 Monthly CICE i3r 
SSC Sea surface current m/s 1 Monthly CICE i3r 
STP Sea temperature profile K nl_ocean Monthly MOM i3r 
SSP Sea salinity profile ‰ nl_ocean Monthly MOM i3r 

 
Note: 
I/O indices used in Registry for DATASET=INPUT (i), AUXINPUT? (i?), and RESTART (r).
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of surface heterogeneity effects. When the data resolution 
is sufficiently finer than the RCM grid, the subgrid effects 
can be incorporated further using composite, mosaic, or 
statistical-dynamical approaches (Avissar and Pielke 1989; 
Koster and Suarez 1992; Dickinson et al. 1993; Giorgi 
1997; Leung and Ghan 1998). Although many raw datasets 
collected in this study have adequate resolutions (as fine as 
1 km) to account for the subgrid effects, only the SBCs on 
a given RCM grid with a single dominant surface type are 
assumed. Note that a global database developed by Masson 
et al. (2003) at 1-km resolution for several land surface 
parameters is still insufficient for the CWRF applications. 

Existing observational databases have various 
resolutions, finer or coarser than the RCM grid, a wide 
range of map projections and data formats, and often 
contain missing values or inconsistencies between variables. 
This presents significant challenges and requires labor-
intensive efforts to process the data onto the RCM-specific 
grid mesh and input data format. Horizontal data 
remapping uses Geographic Information System (GIS) 
software application tools, Arc/Info and Arc/Map, from 
Environmental Systems Research Institute, Inc. In 
particular, the GIS tools are used to determine the 
geographic conversion information from a specific map 
projection of raw data to the identical RCM grid system. 
The information includes location indices, geometric 
distances, or fractional areas of all input cells contributing 
to each RCM grid. It then can be applied to remap all 
variables of the same projection. Remapping is completed 
by a bilinear interpolation method in terms of the geometric 
distances if the raw data resolution is low or otherwise a 
mass conservative approach as weighted by the fractional 
areas. For a categorical field such as SCI and LCC, the 
dominant field that occupies the largest fraction of the grid 
is chosen after calculating the total fractional area of each 
distinct surface category contributing to a given RCM grid.  

In the vertical, soil profiles at each gridpoint are 
processed onto the same RCM standard soil layers. The 
CLM soil layers (Table 2) were used to construct SAND 
and CLAY profiles. Note that the CLM defines a soil layer 
at the node depth zn (m): 

 

N,...,,n,)e(z
n

n 2114
1

2
400
1 =−= −                (1) 

 
where N  is the total number of soil layers (i.e., nl_soil in 
Table 1). The interface is located between two layers (Dai 
et al. 2001). As such, the soil layers are thinner near the top 
of the profile to better resolve details of near-surface 
processes and have progressively larger thicknesses as an 
exponential function of the depth. Because the water tables 
are observed below a 4-m depth in some U.S. regions 
(Chen and Kumar 2001), N was increased from 10 to 11 to 
extend the model’s soil bottom to 5.68 m. The number 
(nl_ocean in Table 1) and bounds of vertical layers for 
oceanic fields are set to be the same as the raw data. The 
authors anticipate that a smaller number of layers can 
provide a reasonable representation of upper ocean 
interaction with the atmosphere. This will be changed after 
completion of the MOM coupling. 

The SBCs’ data quality, value representation, and 
visual display largely depend on the RCM computational 
domain and grid resolution. The CWRF incorporates an 
optimal buffer zone treatment that integrates realistic 
energy and mass fluxes across the boundaries between the 
GCM and RCM domains, following that used for the 
CMM5 (Liang et al. 2001). This treatment consists of an 
advanced buffer zone positioning and LBC assimilation 
technique. A fundamental requirement is correct 
representation of key physical processes near buffer zones 
that govern the GCM resolvable circulation in the RCM 
domain interior.  

 
 

Table 2. CLM Soil Layer Depth and Thickness (cm) 
 

Layer n Node depth ( nz ) Thickness ( nz∆ ) Interface depth ( /
nz ) 

1   0.71   1.75   1.75 

2   2.79   2.76   4.51 

3   6.23   4.55   9.06 

4  11.89   7.50  16.55 

5  21.22  12.36  28.91 

6  36.61  20.38  49.29 

7  61.98  33.60  82.89 

8 103.80  55.39 138.28 

9 172.76  91.33 229.61 

10 286.46 150.58 380.19 

11 473.92 187.45 567.64 
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As such, the buffer zones are positioned over areas of small 
observational uncertainties or GCM biases but high GCM 
climate predictability. The assimilation technique 
incorporates improved dynamic relaxation coefficients 
within widened buffer zones such that robust GCM signals 
are integrated realistically into the RCM domain while 
LBC errors are effectively absorbed. For U.S. climate 
applications, the domain is centered (37.5ºN, 95.5ºW) using 
the Lambert Conformal Conic map projection and 30-km 
horizontal grid spacing, with total gridpoints of 196 (west-
east) ×  139 (south-north). The domain covers the 
continental United States and represents the regional 
climate that results from interactions between the planetary 

circulation (as forced by the LBCs) and North American 
surface processes, including orography, vegetation, soil, 
and coastal oceans. Buffer zones are located across 14 
gridpoints along all four domain edges, where LBCs are 
specified throughout the entire integration period using a 
dynamic relaxation technique (see Eqs. [1-2] in Liang et al. 
2001 with 115 −=L ). This configuration enables the 
CMM5 to produce skillful simulations of temporal and 
spatial variations of precipitation over North America 
during 1982-2002 (Liang et al. 2001, 2004a). In this study, 
all SBCs constructed and displayed on this CWRF domain 
are suitable for U.S. applications. 

 
Construction of the CWRF SBCs 

 
For convenience, the geographic location of a point 

is hereafter referred as a “pixel” for raw data and a “grid” 
for the CWRF result. A given pixel or grid value represents 
the area surrounding the point as defined by its respective 
horizontal spacing. The following section elaborates in 
detail on raw data sources and processing procedures used 
to construct any specific CWRF domain over the globe. 
Most procedures use ArcInfo commands. In particular,  
IMAGEGRID and GRIDPOLY convert input data from the 
image to the ArcGIS raster grid and to the polygon 
coverage formats, respectively; PROJECT remaps the raw 
input data onto the CWRF grid projection; UNION and 
CLIP geometrically intersect polygon features of input data 
with the CWRF grid mesh and extract the fractional area of 
each pixel contributing to the grid; GRID DOCELL and IF 
statements conditionally merge, replace, or adjust different 
input datasets for an improved product. On the other hand, 
some raw input data are available only at coarse resolutions 
(e.g., 1°). They are interpolated into the CWRF grid using 
a bilinear approximation in longitude and latitude. These 
data, especially those for land or ocean only, also may 
contain gaps along coastal regions and over islands that are 
resolved by the CWRF. They are extrapolated with 
adjacent values using bilinear approximation. Even 
relatively finer resolution (1-km and 8-km) input data such 
as soil fraction and LAI have missing value pixels filled by 
the average over the nearby data pixels having the same 
land cover category within a certain radius around a 
missing point. The number of pixels and the range of radius 
used for filling depend on the resolution of the raw input 
data. 

For brevity, italic commands appear throughout 
this section without repeating their corresponding ArcInfo 
commands or interpolation/extrapolation procedures. 

 
[A] Surface Characteristic Identification (SCI) 

The CWRF incorporates the SCI to distinguish 
broad surface categories that invoke distinct surface 
modules. Currently, SCI consists of eight categories: urban 
and built-up, soil, wetland, glacier, shallow lake, deep lake, 
sea ice, and ocean. The first four categories are dealt with 
differently in CLM calculations of soil properties, while the 
remaining categories are treated individually for specific 
processes in water bodies. The current SCI can be modified 

or expanded in the future as needed. For example, ocean can be 
further divided into coastal ocean and deep ocean. 

Figure 1 depicts the SCI distribution over the CWRF 
domain, overlaid with the level-1 basin boundaries and main 
stream network (see [B] for details). The SCI follows the LCC 
to identify an urban and built-up, soil, wetland, glacier, or 
ocean grid, while defining a shallow lake or deep lake grid if the 
inland water body depth (DBED) is less or greater than 10 m. 
Note that no glacier grid exists in the current CWRF domain. 
Nor shown is sea ice, which is not static but specified by the 
changing SST or predicted by the CICE. The sea ice and ocean 
grids are interchangeable at their edges, where sea ice can form 
or melt out completely depending on whether the SST is cooler 
or warmer than 271.35 K. They may coexist in a grid, with their 
partitions predicted by the interactive CICE. 

 
[B] Surface Elevation and Derivatives (HSFC, HSDV, 
HSLD, and HCVD) 

These fields are constructed from the U.S. Geological 
Survey (USGS) HYDRO1k Digital Elevation Model (DEM) 
with a 1-km nominal cell size (http://edcdaac.usgs.gov/ 
gtopo30/hydro/) based on the Global 30-arc-second elevation 
dataset (GTOPO30). The DEM data is available in the band 
interleaved by line (BIL) image format on the Lambert 
azimuthal equal area projection. The raw data are converted into 
ArcGIS raster grid format and then remapped onto the CWRF 
projection. Subsequently, the ArcInfo/GRID commands, 
ZONEALMEAN and ZONALSTD, are used to calculate the 
mean and standard deviation of the elevations within each 
CWRF grid. The mean and deviation from the centroid of each 
grid are picked up by ArcInfo's Arc Macro Language (AML) 
program Gridspot70 for HSFC and HSDV. Figure 2 illustrates 
the geographic distributions of HSFC, HSDV, and HSFC 
difference from the WRFSI product. Note that the SI mean 
elevation constrains the arithmetic averaging to no more than 10 
× 10 raw data pixels surrounding each grid (John Smart, NOAA, 
personal communication, 2004), while the CWRF mean is the 
area-weighted averaging over all pixels within the grid. The 
local HSFC differences between the CWRF and SI can be large, 
up to ±1 km, especially over mountainous regions. 

The HYD requires additional surface elevation 
derivatives, including slopes and curvatures, and their deviations 
along both x and y directions (HSLD and HCVD) to consider 
the topographic effect on soil moisture transport. These fields 
also can be constructed from the same DEM data. A more 
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accurate representation can be achieved by using the most 
recent Shuttle Radar Topography Mission (SRTM) 
elevation data, available at a 90-m (3 arc-second) resolution 
worldwide between 60ºS and 60ºN, and at a 30-m (1 arc-
second) resolution for the U.S. domain south of 60ºN 
(ftp://edcftp.cr.usgs. gov /pub/data/srtm/). 

Stream network lines and drainage basin 
boundaries of individual watersheds must be specified for 
the HYD to determine the source and sink terms closing the 
Richard’s equation. Vector streamlines and the derived 
basin boundaries along with the flow directions also are 
provided in the HYDRO1k data (http://edcdaac.usgs.gov/ 
gtopo30/hydro/namerica.asp). Upstream watershed 

contributing areas greater than 1000 km2 are selected and 
processed using the ArcInfo STREAMLINK function. Drainage 
basins are consecutively divided from the coarse to fine levels 
using procedures first articulated by Otto Pfafstetter (Verdin 
2003). For a given level, each polygon in a basin has a unique 
Pfafstetter code depicting a sub-basin. The highest level (i.e., the 
most comprehensive structure representation) currently available 
is 6, which indicates identification of a total of 3612 basins in 
the CWRF domain. Interceptions of stream network lines and 
drainage basin boundaries with the CWRF grids are presently 
stored for the HYD use. Figure 1 depicts the level-1 basin 
boundaries and main stream network. 
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Stream network
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Figure 1. Geographic distribution of SCI with overlays of basin boundaries and main stream network. 
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[C] Bedrock, Lakebed, or Seafloor Depth (DBED) 
The DBED includes bedrock depth of the land, 

lakebed depth of the lakes, and seafloor depth of the oceans. 
The CLM uses bedrock depth to determine thermal and 
hydraulic properties in terms of the SAND and CLAY 
profiles (see [D]) for the soil layers above the bedrock. The 
CLM also predicts separate water temperature profiles for 
shallow and deep lakes, as distinguished by the SCI via 
lakebed depth (see [A]). The MOM requires specification of 
the seafloor depth to define the lower boundary of the water 
circulation. Eventually, the MOM will be integrated with the 
HYD and a comprehensive routing model to predict the water 
level (HSFC) of major inland water bodies, including the 
Mississippi River and the Great Lakes. The DBED defines 
the bottom of all surface modules impermeable to water over 
the entire CWRF domain. 

The bedrock depth is based on the combination of 
the Continental U.S. Multi-Layer Soil Characteristics 
(CONUS-SOIL) Dataset and FAO-UNESCO Soil Map of the 
World. The FAO-UNESCO data (FAO 1996) include the 
geographic distribution at 5-minute longitude-latitude spacing 
of nearly 5000 mapping units over the globe (also available 
from http://www.lib.berkeley.edu/EART/fao.html). Each 
mapping unit contains a maximum of eight soil units among 
the 106 categories of the FAO 1974 soil classification system 
(FAO, 1974). Each soil unit corresponds to one of five 
bedrock depth classes: 0-10, 10-50, 50-100, 100-150, and 
150-300 cm (Curt Reynolds, USDA Foreign Agricultural 
Service, personal communication, 2003). For each mapping 
unit, all soil units are assigned with respective depth of their 
upper bounds (i.e., 10, 50, 100, 150, or 300 cm) and then 
integrated with their occurrence rates to estimate the mean 
bedrock depth. A global soil bedrock depth distribution at a 
5-minute resolution then is constructed.  

The CONUS-SOIL, developed at Penn State 
University (Miller and White 1998) from the USDA State Soil 
Geographic Database (STATSGO), has a finer resolution over 
the conterminous 48 states with 1-km spacing on the 
geographic coordinate system (http://www.essc.psu.edu/ 
soil_info/index.cgi?soil_data&conus&data_cov). About one 
third of the data pixels were coded as 152 cm, which generally 
indicates the maximum depth of soil data from an area where 
bedrock was not encountered. Most CONUS-SOIL regions 
with bedrock deeper than 152 cm are overlaid with certain 
FAO-UNESCO mapping units having soil depths of 150 cm. 
Given large uncertainties involved in these estimates, a 
uniform bedrock depth of 600 cm (deeper than the bottom of 
the last CLM soil layer) is assigned to all CONUS-SOIL 
pixels with values of 152 cm and the corresponding FAO-
UNESCO mapping units. The FAO-UNESCO data are then 
replaced by CONUS-SOIL data to better resolve the U.S. 
bedrock distribution. These hybrid data are adjusted further to 
be confined by the USGS land cover classification (see [F]) 
for a consistent representation of water bodies. 

Lakebed depth is calculated by subtracting the lake 
topographic data from the DEM surface elevations (see [B]), 
consistent with the long-term mean water levels of each lake 
(http://www.glerl.noaa.gov/data/now/wlevels/). Currently, 
only the Great Lakes topographic data are available at 2.56-
km spacing on the Mercator projection from the NOAA Great 
Lakes Environmental Research Laboratory (http://www.glerl. 
noaa.gov/data/bathy/bathy.html). For all other lakes within the 
CWRF domain, including the Great Salt Lake in Utah, Lake 
Okeechobee in Florida, and lakes in Canada, no digital data 
were available so it was assumed that these water bodies were 
10 m deep (shallow lake). 
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Figure 3. Geographic distribution of DBED. 
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 Seafloor depth is based on the global 2-minute 
bathymetry data (ETOPO2) available from the National 
Geophysical Data Center (http://www.ngdc.noaa.gov/mgg/ 
fliers/01mgg04.html). Between 64°N and 72°S, it is derived 
from satellite altimetry observations in combination with 
shipboard echo-sounding measurements, version 8.2 (Smith 
and Sandwell 1997). South of 72°S, the U.S. Naval 
Oceanographic Office's Digital Bathymetric Data Base 
Variable Resolution, version 4.1, is used. North of 64°N, the 
new International Bathymetric Chart of the Arctic Ocean, 
version 1 (Jakobsson et al. 2001), is used. 

For each of the above three datasets with various 
spatial resolutions, the pre-processed depth distribution is 
converted from the raster grid into the polygon coverage, 
remapped onto the CWRF projection, and later intersected 
with the CWRF grid mesh. The fractional area of each pixel 
contributing to the grid is extracted. The final depth is 
obtained by the area-weighted averaging of all pixels within 
each CWRF grid. The resulting three depth distributions are 
merged conditionally with SCI guidance. The depth of the 
dominant SCI category (soil, lakes, or ocean) within each 
CWRF grid is chosen to represent the DBED for that grid. 
Figure 3 depicts the merged DBED geographic distribution 
over the CWRF domain. 

 
[D] Soil Sand and Clay Fraction Profiles (SAND 
and CLAY) 

The CLM requires SAND and CLAY profiles to 
parameterize soil thermal and hydraulic properties (Dai et al. 
2003) following Cosby et al. (1984). The WRFSI currently 
provides global 1-km distribution of 16 soil texture categories 
for top (0-30 cm) and bottom (30-100 cm) layers 
(http://www.rap.ucar.edu/projects/land/LSM/). In addition, 
Webb et al. (1993) produced global 1° distributions of sand 
and clay for the two layers by combining the FAO-UNESCO 
Soil Map of the World with the World Soil Data File (Zobler, 
1986). Both datasets are insufficient to define the required 
SAND and CLAY profiles over all 11 CLM layers. Consist 
with the bedrock depth (see [C]), these profiles are 
determined by a combination of the CONUS-SOIL and FAO-
UNESCO data. 

Reynolds et al. (2000) reproduced the FAO-
UNESCO global 5-minute distributions of sand and clay 
fractions for 0-30 and 30-100 cm (http://hydrolab.arsusda. 
gov/soils/start.htm). Top layer data are assigned uniformly 
for the upper five CLM layers above 28.91 cm, while bottom 
layer values are used for the remaining layers. Over the 
conterminous 48 states, they are replaced by the CONUS-
SOIL 1-km distributions of sand and clay fractions at 11 
standard layers, divided at 5, 10, 20, 30, 40, 60, 80, 100, 150, 
200, and 250 cm (Miller and White 1998). As previously 
discussed, raw data below the bedrock depth of 152 cm likely 
were not measured, and thus those for standard layers 10 and 
11 (150-250 cm) are discarded. Data in the top 9 standard 
layers are interpolated with thickness-weighting to the upper 
8 CLM layers above 138.28 cm, while those of the standard 
layer 9 are extended uniformly down to the remaining CLM 
layers. In addition, the CONUS-SOIL contains points with 
other soil texture classifications without providing sand and 
clay fractions. Each missing point is filled by averaging over 
all nearby data pixels having the same USGS land cover 

classification (see [F]) within a certain radius starting at 10 km 
(440 pixels) around the point and increasing until a minimum 
of 50 data pixels are obtained. 

As with the bedrock depth, the pre-processed hybrid 
soil fraction data are adjusted to be confined by the USGS 
land cover classification (see [F]) to provide consistent 
representation of water bodies. The resultant sand and clay 
fractions in each of the 11 CLM layers at the varying 
horizontal resolutions of the raw data (1 km or 5 minutes) are 
converted from the raster grid into the polygon coverage, 
remapped onto the CWRF projection, and then intersected 
with the CWRF grid mesh. The fractional area of each pixel 
contributing to the grid is extracted. Final SAND and CLAY 
profiles are obtained by area-weighted averaging of all pixels 
within each CWRF grid. When bedrock occurs within a CLM 
layer, averaging applies an additional thickness weight for the 
portion of the layer above the bedrock depth. Note that there 
exist some regions with soil texture classified as organic 
material for which neither sand nor clay data are given. These 
regions are mainly in Florida, Minnesota, and several western 
states.  Corresponding sand and clay fractions are assigned a 
negative unit as an indicator of organic material properties in 
the CLM. Figure 4 shows the geographic distributions of 
SAND and CLAY profiles for CLM layers 1 and 8 in the 
CWRF domain. 

 
[E] Bottom Soil Temperature (TBS) 

To specify lower boundary or initial conditions, some 
LSMs (e.g., SLAB and NOAH) require the soil temperature 
for the bottom layer. A similar need may arise for lakebed or 
seafloor temperature when coupling the interactive HYD or 
MOM. These three temperatures are the TBS. Unfortunately, 
there is no global observation for this field. As a proxy, TBS is 
defined by combining the annual mean climatology of surface 
air temperature over land, SST over lakes (see [J]), and STP at 
the seafloor over oceans (see [L]). The 1971-2000 land air 
temperature data (http://www.cru.uea.ac.uk) are available at 
0.5° longitude-latitude spacing (New et al. 2002). Given the 
coarse resolution, these proxy data are extrapolated beyond 
the coastal boundaries and then interpolated into the CWRF 
grid. They are conditionally merged to be confined by the 
LCC for the final TBS. Figure 5 depicts the geographic 
distribution of TBS over the CWRF domain. 

 
[F] Land Cover Category (LCC) 

The CWRF uses the 24-category USGS land cover 
classification (Table 3) developed from the April 1992-March 
1993 AVHRR satellite-derived NDVI composites. The raw 
data are available at 1-km spacing on the geographic 
coordinate system in BIL image format (http://edcdaac.usgs. 
gov/glcc/globe_int.html), converted into the ArcGIS raster 
grid and polygon coverage, and remapped onto the CWRF 
projection. The fractional area of each pixel contributing to the 
grid is extracted after the result is intersected with the CWRF 
grid mesh. The contributing area for each of the 24 LCCs is 
summed over all pixels of the same category within each 
CWRF grid. The category contributing the largest area is 
chosen as the LCC for the grid. When the fractional area of 
water bodies (shallow or deep lakes, sea ice or ocean) is less 
than 0.5 but dominates the grid, the category chosen is the one 
contributing the second largest area. 
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Figure 5. Geographic distribution of TBS. 
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Table 3. Comparison of vcN , between USGS and IGBP Land Cover Legends 
 

USGS IGBP 

 

vcN ,
 

Distribution ratio 
(%) 

Contributing ratio 
for corresponding 
USGS Legend (%) Type Description 

RCM Global RCM Global 

Type  
Description vcN ,

 

RCM Global 

1 Urban and Built-Up Land 0.62 0.62 0.34 0.12 13 Urban and Built-Up 0.62 100 100 

2 Dryland,Cropland,and Pasture 0.61 0.61 5.49 5.64 12 Croplands 0.61 100 100 

12 Croplands 0.61 100 94.41 
3 Irrigated Cropland and Pasture 0.61 0.61 0.48 1.52 

14 Cropland/Natural Vegetation Mosaic 0.65 0 5.59 

4 Mixed Dryland/Irrigated Cropland and Pasture**          

12 Croplands 0.61 0 1.33 
5 Cropland/Grassland Mosaic 0.65 0.65 4.42 2.05 

14 Cropland/Natural Vegetation Mosaic 0.65 100 98.67 

6 Cropland/Woodland Mosaic 0.65 0.65 2.26 3.27 14 Cropland/Natural Vegetation Mosaic 0.65 100 100 

7 Grassland 0.49 0.49 6.10 4.82 10 Grasslands 0.49 100 100 

6 Closed Shrublands 0.60 6.67 14.81 

7 Open Shrublands 0.60 79.52 81.00 8 Shrubland 0.60 0.60 8.23 7.23 

8 Woody Savannas 0.62 13.81 4.19 

6 Closed Shrublands 0.60 100 15.28 

7 Open Shrublands 0.60 0 76.53 9 Mixed Shrubland/Grassland 0.60 0.59 0.11 1.02 

10 Grasslands 0.49 0 8.19 

8 Woody Savannas 0.62 86.88 50.48 
10 Savanna 0.61 0.60 0.99 7.13 

9 Savanna 0.58 13.12 49.52 

2 Evergreen Broadleaf Forest 0.69 0 20.41 

4 Deciduous Broadleaf Forest 0.70 68.78 68.26 11 Deciduous Broadleaf Forest 0.69 0.70 5.46 2.55 

5 Mixed Forest 0.68 31.22 11.33 

12 Deciduous Needleleaf Forest*  0.63 0.00 0.91 4 Deciduous Needleleaf Forest 0.63  100 

13 Evergreen Broadleaf Forest 0.69 0.69 0.08 5.75 2 Evergreen Broadleaf Forest 0.69 100 100 

14 Evergreen Needleleaf Forest 0.63 0.63 10.32 2.26 1 Evergreen Needleleaf Forest 0.63 100 100 

15 Mixed Forest 0.68 0.68 7.59 3.59 5 Mixed Forest 0.68 100 100 

16 Water Bodies   43.09 38.90 17 Water Bodies  100 100 

17 Herbaceous Wetland*  0.56 0.00 0.03 11 Permanent Wetlands 0.56  100 

18 Wooded Wetland 0.56 0.56 0.84 0.43 11 Permanent Wetlands 0.56 100 100 

19 Barren or Sparsely Vegetated 0.60 0.60 0.46 7.56 16 Barren or Sparsely Vegetated 0.60 100 100 

20 Herbaceous Tundra**          

7 Open Shrublands 0.60 100 68.11 
21 Wooded Tundra 0.60 0.61 3.35 2.99 

8 Woody Savannas 0.62 0 31.89 

22 Mixed Tundra 0.60 0.60 0.37 0.97 16 Barren or Sparsely Vegetated 0.60 100 100 

23 Bare Ground Tundra*  0.60 0.00 0.02 16 Barren or Sparsely Vegetated 0.60  100 

24 Snow or Ice   0.03 1.23 15 Snow and Ice  100 100 

 
Notes: 
*Land cover type does not exist in the CWRF domain. 
**Land cover type does not exist in the global dataset. 
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Figure 6. Geographic distribution of 17 LCC categories occurred over the CWRF domain and 5 U.S. key regions of 
interest, each with a predominant category: Texas (grassland), Southwest (shrubland), Midwest (dryland cropland 
and pasture), Southeast (evergreen needleleaf forest), and Northeast (deciduous broadleaf forest).  
 
 

Figure 6 illustrates the LCC geographic distribution 
over the CWRF domain. Note that the USGS raw data do not 
contain LCCs 4 and 20 over the globe, and additionally LCCs  
12, 17, and 23 within the present CWRF domain. Moreover, 
LCCs 22 and 24 are not LCC majority categories. Therefore, 
the final LCC includes only 17 LCCs over the CWRF domain. 
 
 

[G] Fractional Vegetation Cover (FVC) 
The FVC is one ecological parameter that determines 

contribution partitioning between bare soil and vegetation for 
surface evapotranspiration, photosynthesis, albedo, and other 
fluxes crucial to land-atmosphere interactions. It is assumed to 
be time-invariant or static, and derived following Zeng et al. 
(2000, 2002), from the same global 1-km AVHRR satellite 
product as for LCC (see [F]). The 10-day April 1992-March 
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1993 composites were used to determine the annual 
maximum NDVI ( )max,pN  for each LCC, minimizing the 
effect of cloud contamination on data quality. For each pixel, 
the vegetation cover is computed by:  

 

                   
sv,c

smax,p
v NN

NN
C

−

−
=                                (2) 

 
where Nc,v is the NDVI value for a complete coverage of a 
specific USGS LCC over the pixel and Ns for bare soil. Using 
a commercial imagery database, Zeng et al. (2000) 
determined Nc,v by examining percentiles of the Np,max  
histogram for each LCC of the International Geosphere 
Biosphere Programme (IGBP) classification (Belward 1996; 
Loveland et al. 2000). To avoid redundant data processing, 
the Nc,v values for the 24 USGS LCCs (Table 3) are 
calculated from those of the 17 IGBP categories by 
intersecting the USGS and IGBP land cover maps to 
determine the fractional areas of individual IGBP categories 
contributing to each USGS category. The final Nc,v is the 
average of all contributing IGBP values weighted by their 
corresponding fractional areas. Corresponding Nc,v values and 
contributing areas for the USGS and IGBP categories are 
listed in Table 3. In addition, the lower percentiles of the 
Np,max histograms for most categories that define Ns occur 
mainly in winter and have larger uncertainties (than in 
summer) due to cloud contamination and atmospheric effects. 
After Zeng et al. (2000), a uniform value of 0.05 is assigned 
to Ns for all USGS LCCs. 

Note that there exist significant differences between 
the NDVI from the AVHRR and the most recent Moderate 
Resolution Imaging Spectroradiometer (MODIS) sensors 
(http://edcimswww.cr.usgs.gov/pub/imswelcome/). Gallo et 
al. (2004) compared the concurrent 16-day composite data 
during 2001 and found a linear relationship between the two 
methods. The regression intercept and slope values change 

with LCCs, but all are significantly different than 0 and 1, 
respectively. The MODIS has generally larger values than the 
AVHRR, causing Equation (2) to produce greater Cv values. 
On the other hand, Zeng et al. (2002, 2003) demonstrated that, 
using the same method with Equation (2), the Cv derived from 
8-km AVHRR NDVI during 1982-2000 (James and Kalluri 
1994) is consistent with that derived from the 1-km data for 
April 1992-March 1993. Given the good agreement with field 
surveys and observational studies and the small interannual 
variability over areas expecting small anthropogenic impacts, 
the FVC derived from the AVHRR NDVI was believed to be 
robust. 

The MODIS Cv is therefore scaled toward the 
AVHRR. For each USGS LCC, a scaling factor fp,v is defined 
to remove the systematic MODIS difference from the AVHRR 
in Np,max averaged over all pixels. Assuming the same Ns and 
multiplying Np,max by fp,v in Equation (2), the corresponding 
Nc,v is estimated to minimize the Cv difference between 
MODIS and AVHRR. Table 4 lists the resultant fp,v and Nc,v 
values, as well as the correlation coefficients and root mean 
square (RMS) differences between the Cv based on the 
AVHRR and MODIS after scaling. The fp,v ranges from 0.50 
to 0.81, while the Nc,v remains close to the respective AVHRR 
value except for category 19. The correlations are generally 
excellent and above 0.5, except for categories 18 and 22 (~0.4) 
and quite low for categories 6 and 19 (~0.3). Nonetheless, the 
RMS differences are small for all categories. 

The resultant Cv point data at 1-km spacing are 
converted to polygon coverage data, remapped onto the 
CWRF projection, and intersected with the CWRF grid mesh. 
The fractional area of each pixel contributing to the grid is 
extracted. The final FVC is obtained by the area-weighted 
averaging of Cv values for all pixels within each CWRF grid. 
Figure 7 compares the FVC geographic distributions derived 
from the AVHRR and scaled MODIS data over the CWRF 
domain. 

 
 

AVHRR MODIS

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

AVHRR MODIS

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

 
 
Figure 7. Geographic distributions of FVC derived from the April 1992-March 1993 AVHRR (left) and scaled 
January 2000-December 2003 MODIS (right) NDVI data. 
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Table 4. Estimated vpf ,  and vcN ,  for vC Based on MODIS NDVI (2000-2003) 
 

Type USGS land cover legend fp,v Nc,v Correlation RMS 
1 Urban and Built-Up Land 0.77 0.63 0.81 0.14 
2 Dryland Cropland and Pasture 0.78 0.61 0.63 0.12 
3 Irrigated Cropland and Pasture 0.81 0.62 0.53 0.16 
4 Mixed Dryland/Irrigated Cropland and Pasture**     
5 Cropland/Grassland Mosaic 0.78 0.65 0.80 0.11 
6 Cropland/Woodland Mosaic 0.78 0.65 0.26 0.08 
7 Grassland 0.77 0.51 0.69 0.18 
8 Shrubland 0.75 0.64 0.82 0.13 
9 Mixed Shrubland/Grassland 0.81 0.62 0.64 0.14 

10 Savanna 0.77 0.62 0.59 0.12 
11 Deciduous Broadleaf Forest 0.81 0.69 0.66 0.08 
12 Deciduous Needleleaf Forest*     
13 Evergreen Broadleaf Forest 0.77 0.69 0.78 0.06 
14 Evergreen Needleleaf Forest 0.75 0.64 0.64 0.11 
15 Mixed Forest 0.74 0.68 0.58 0.12 
16 Water Bodies     
17 Herbaceous Wetland*     
18 Wooded Wetland 0.59 0.56 0.42 0.13 
19 Barren or Sparsely Vegetated 0.53 0.96 0.28 0.10 
20 Herbaceous Tundra**     
21 Wooded Tundra 0.63 0.62 0.61 0.16 
22 Mixed Tundra 0.50 0.66 0.36 0.19 
23 Bare Ground Tundra*     
24 Snow or Ice     

 
Notes: 
*Land cover type does not exist in the CWRF domain. 
**Land cover type does not exist in the global dataset. 
 
 

[H] Leaf and Stem Area Index (LAI and SAI) 
The LAI and SAI are defined, respectively, as the 

total one-sided area of all green canopy elements and stems 
plus dead leaves over vegetated ground area. They are 
constructed from the global monthly mean distributions of 
green vegetation leaf area index, based on the July 1981-
December 1999 AVHRR NDVI data at 8-km spacing on the 
Interrupted Goode Homolosine projection provided by 
Boston University (Zhou et al. 2001; Buermann et al. 2002). 
There exist missing data zones in some land cover regions: 
urban and built-up, permanent wetlands, marshes, tundra, 
barren, desert, or very sparsely vegetated area. These missing 
zones are filled by the average over nearby data pixels having 
the same LCC within a certain radius starting from 16 km (24 
pixels) around a missing point and increasing until a 3-pixel 
minimum is obtained. Filled data are converted into the raster 

grid, then the polygon coverage, and remapped onto the 
CWRF projection. The result is further adjusted to be confined 
by the USGS LCC (see [F]) for a consistent representation of 
water bodies. The product is denoted as Lraw. 

Because Lraw is defined with respect to unit ground 
area, it is divided by local vegetation cover Cv to define Lgv 
representing the green leaf area index with respect to 
vegetated area only (Zeng et al. 2002). Due to inconsistency 
between Cv and Lraw data at individual pixels, some Lgv values 
are abnormally large, up to several hundreds. The 
inconsistency arises mainly because Cv was derived based on 
the 24 USGS LCCs at 1-km spacing, but Lraw in terms of six 
alternative biomes with distinct vegetation structures at an 8-
km interval. Zeng et al. (2002) determined Cv at every point, 
while defining LAI for each IGBP LCC by a mean seasonal 
variation within a 10º latitude zone.  
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Table 5. Ecological Parameters in Deriving LAI and SAI for each USGS Land Cover 
 

FVC (1 km) 
Type USGS land cover legend 

RCM Global 
Displacement

height (m) 
gvL  filter 

threshold 
γ  

minSAI

1 Urban and Built-Up Land 0.767 0.735 0.667 7 0.00 0.1 
2 Dryland Cropland and Pasture 0.941 0.875 0.667 7 0.00 0.1 
3 Irrigated Cropland and Pasture 0.882 0.804 0.667 7 0.00 0.1 
4 Mixed Dryland/Irrigated Cropland and Pasture**   0.667    
5 Cropland/Grassland Mosaic 0.823 0.729 0.667 7 0.25 0.5 
6 Cropland/Woodland Mosaic 0.958 0.869 0.667 7 0.25 0.5 
7 Grassland 0.805 0.711 0.667 6 0.50 1.0 
8 Shrubland 0.417 0.381 0.333 5 0.50 1.0 
9 Mixed Shrubland/Grassland 0.722 0.391 0.333 5 0.50 1.0 
10 Savanna 0.899 0.848 0.667 7 0.50 1.0 
11 Deciduous Broadleaf Forest 0.947 0.871 13.333 8 0.50 1.0 
12 Deciduous Needleleaf Forest*  0.920 13.333 8 0.50 1.0 
13 Evergreen Broadleaf Forest 0.955 0.953 23.333 8 0.50 1.0 
14 Evergreen Needleleaf Forest 0.898 0.895 13.333 8 0.50 1.0 
15 Mixed Forest 0.848 0.875 13.333 8 0.50 1.0 
16 Water Bodies   0.667    
17 Herbaceous Wetland*  0.947 13.333 6 0.50 1.0 
18 Wooded Wetland 0.729 0.835 0.667 8 0.50 1.0 
19 Barren or Sparsely Vegetated 0.061 0.073 0.333 4 0.50 1.0 
20 Herbaceous Tundra**   0.667    
21 Wooded Tundra 0.704 0.714 0.667 6 0.50 1.0 
22 Mixed Tundra 0.396 0.323 0.333 6 0.50 1.0 
23 Bare Ground Tundra*  0.018 0.333 6 0.50 1.0 
24 Snow or Ice   0.667    

 
Notes: 
*Land cover type does not exist in the CWRF domain. 
**Land cover type does not exist in the global dataset. 
 
 

For the CWRF, the 1-km Cv data are integrated 
onto the 8-km rawL  map to compute Lgv guess values and 
then a smoothing filter removes abnormal values. The filter 
was designed through trial and error by examining the 
frequency distribution of abnormal Lgv values and 
considering the canopy displacement height in the CLM for 
each USGS LCC. The point value that exceeds the filter 
threshold listed in Table 5 is filled by the average over 
nearby data pixels having the same LCC within a certain 
radius starting from 16 km (24 pixels) around the point and 
increasing until a 3-pixel minimum is obtained. In addition, 
Lgv data contain large uncertainties in winter due to cloud 
contamination, especially for the USGS LCCs 13 and 14 
(evergreen broadleaf and needleleaf forests). Following 
Zeng et al. (2002), Lgv values in winter months for these 
two categories are adjusted by: 

              )Lc,Lmax(L max,gvgvgv =                           (3) 
 

where correction coefficient c is 0.8 and 0.7 for category 13 and 
14 respectively, and Lgv,max is the maximum Lgv. For the 
climatology, the maximum can be determined from all monthly 
values during the entire period, while for interannual variations 
it is taken in three consecutive years. 

After extreme value removal and winter adjustment at 
each 8-km pixel, the new Lgv is multiplied by its respective Cv 
and then intersected with the CWRF grid mesh. The fractional 
area of each pixel contributing to the grid is extracted. The area-
weighted averaging of all pixels within each CWRF grid results 
in the new LAI per unit ground, which will be divided by local 
FVC (see [G]) to produce the final LAI. 
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 For each USGS LCC, SAI is then approximated as 
in Zeng et al. (2002) by: 

 
)]},LAILAImax(SAI[,SAImax{SAI mmm

min
m 011 −+γ= −−                                                

                                                                                              (4) 
 
where m denotes month, SAImin the prescribed minimum 
SAI, and  γ the monthly remaining rate after dead leaves 
removed. Both γ and SAImin are listed in Table 5. Most LCCs 
reach the minimum SAI in winter and the maximum SAI in 
fall (October or November). This seasonal trend may not be 
appropriate for certain categories, especially those with 
croplands where nothing may remain on the field after fall 
harvest. 

A serious concern is the systematic difference in the 
rawL  products based on the AVHRR (Zhou et al. 2001) and 

the recent MODIS (Knyazikhin et al. 1998; Myneni et al. 
2002) data. The MODIS Lraw, available from February 2000 
onward, has a finer resolution at 1-km spacing (http:// 
edcimswww.cr.usgs.gov/pub/imswelcome/). Following the 
same procedure described above, the corresponding LAI and 
SAI can be constructed from the MODIS Lraw. Figure 8 
depicts April and July mean LAI distributions of the AVHRR 
and MODIS climatologies over the CWRF domain, while 
Figure 9 presents seasonal variations of the five key regions 
outlined in Figure 6. The MODIS values are clearly smaller, 
which is not a result of long-term trends. Figure 10 compares 
AVHRR and MODIS monthly mean LAI variations averaged 
over five U.S. key regions for the respective predominant 
LCC types. These include Texas (grassland), Southwest 
(shrubland), Midwest (dryland cropland and pasture), 
Southeast (evergreen needleleaf forest), and Northeast 
(deciduous broadleaf forest). Apparent discontinuities exist 
between the two datasets, when the MODIS values are 
systematically smaller, especially for the Midwest cropland. 
Analyses indicate that certain relationships exist, but vary 
greatly with regions. No physically sound and statistically 
robust adjustment can be made for consistency. A first-order 
correction is to obtain the same climatology while retaining 
the interannual variability at each CWRF grid. Figure 10 
shows corrected regional mean time series using the AVHRR 
or MODIS climatology. 

An open question is which climatology, AVHRR or 
MODIS, is more realistic. More than 1000 published 
estimates during 1932-2000 at nearly 400 field sites over the 
globe have been compiled (Scurlock et al. 2001) and 
validation is underway, but no direct intercomparison 
between field measurements and satellite products is 
currently available. Figure 11 compares monthly mean LAI 
variations for the Midwest cropland based on the January-
December 1999 AVHRR 8-km and January 1999-May 2001 
16-km data (ftp://crsa.bu.edu/pub/rmyneni/myneniproducts/ 
datasets/), and February 2000-May 2001 MODIS 1-km data 
with June-September 1999-2000 field measurements at a 
central Illinois soybean/corn site (Steven Hollinger, ISWS, 
personal communication, 2003). The two AVHRR-based LAI 
estimates have good agreement and well capture the peak 
values of the field observations. Clearly, the MODIS-based 
estimates substantially underestimate the growing season LAI 
for the cropland. 
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Figure 9. Annual cycle of LAI climatologies for 
predominant LCC types over 5 key regions, as derived 
from the original 1981-1999 AVHRR (thin solid) and 
2000-2003 MODIS (thick solid). 

 
 

Because the MODIS measurement is continuing and 
providing finer resolution and quality-controlled data with 
improved atmospheric correction and cloud screening (Justice 
et al. 1998) over the AVHRR measurement (Goward et al. 
1991), its LAI product is preferred. Until a comprehensive 
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evaluation or validation is completed and improved products 
are made available, the authors suggest correcting the 
AVHRR LAI to reflect the same monthly mean climatology 
as the MODIS LAI except for the cropland-related LCC 
categories (2-6), where the opposite correction is applied due 

to the obvious MODIS underestimation. The result is long-
term, continuous, and consistent LAI data. This is particularly 
important because the surface albedo parameterization 
developed from the MODIS data depends on LAI (see [I]). 
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Figure 10. Interannual variations of LAI averaged over 5 key regions for the respective 
predominant LCC types 7 (Texas), 8 (Southwest), 2 (Midwest), 14 (Southeast), and 11 (Northeast) 
as derived from the original 1981-1999 AVHRR (thin solid) and 2000-2003 MODIS (thick solid) 
and bias-corrected correspondence (thin and thick dashed). 
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Figure 11. Comparison of LAI (Midwest dryland 
cropland and pasture) based on AVHRR 8-km (dot) 
and 16-km (solid), and MODIS 1-km (dash) data with 
Illinois soybean/corn field measurements (diamond), 
January 1999-May 2001. 
 
 
[I] Soil Albedo Localization Factor (SALF) 

The original CLM parameterization of surface albedo 
(Dai et al. 2001) was adopted from Dickinson et al. (1993) 
with improvements by Zeng et al. (2002). It consists of 
surface albedos for bare ground αg(λ, w, and soil color), 
vegetation canopy αc(λ, η, µ, Lsai, and αg), and snow cover 
αs(λ, η, µ, snow fraction, amount, and age), weighted by 
their effective fractional areas contributing to the grid. Listed 
in parentheses are the corresponding dependence parameters, 
where λ denotes visible and near-infrared wavebands (0.3-0.7 
and 0.7-5.0 µm), η represents direct beam and diffuse 
radiation, µ represents cosine solar zenith angle (only in 
direct beam), w  represents surface soil water volumetric 
content, and  Lsai=LAI+SAI. Note that αg, not a function of µ, 
ignores the difference between direct and diffuse radiation 
while depending on soil color classes that lack global 
observations. In addition, Zhou et al. (2003) showed that the 
CLM-parameterized albedos have substantial biases from the 
MODIS measurements (http://edcimswww.cr.usgs.gov; 
Schaaf et al. 2002). Correlation coefficients between the 
CLM and MODIS snow-free albedos during 2000-2003 range 
from -0.5 to 0.3 over the CWRF domain. 

Therefore the authors developed an improved snow-
free surface albedo parameterization based on the MODIS 
data. Although a separate paper being prepared documents 
the details of the algorithm development, a brief description 
of the parameterization directly relevant to this study is given 
here. In particular, the static parts that are geographically 
dependent and the dynamic components that can be predicted 
in terms of the CWRF variables are distinguished: 
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⎦
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αµηλα⋅
+µηλα⋅−

⋅ηλ=α
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),(SALF

gsaic

g
freesnow

1
 

(5) 
                                            

where SALF is the static localization factor to represent 
albedo dependence on local soil characteristics (e.g., soil 
color, and surface roughness) and canopy structures (e.g., 
mosaic distribution of multiple vegetation categories). Hence 
this factor, like FVC and LCC, is also a function of 
geographic locations and is included in the CWRF SBCs. 

The new parameterization is a substantial 
improvement over the old one in which the correlation 
coefficients with the MODIS data significantly increased 
toward a 0.6-0.9 range over the CWRF domain. Figure 12 
compares the geographic distributions of the old and new 
parameterizations with the MODIS-measured July surface 
albedos averaged during 2000-2003, along with SALF, for 
near-infrared direct beam. 
 
[J] Sea Surface Temperature (SST) 

One of the most important variables responsible for 
seasonal-interannual climate variability worldwide is SST. 
Given the lack of fine-resolution data, most mesoscale models 
have been using the weekly Optimum Interpolation (OI) SST 
analysis at 1° longitude-latitude spacing, a blend of multi-
channel AVHRR infrared measurements with in-situ ship and 
buoy observations (Reynolds et al. 2002). The CWRF, 
following that for the CMM5 (Liang et al. 2004a), 
incorporates daily variations based on a conservative spline-fit 
procedure from the weekly OISST data, available over oceans 
globally from November 1981 onward (http://www.emc.ncep. 
noaa.gov/research/cmb/sst_analysis). Note that daily SSTs 
interpolated directly from weekly values (treated as if they 
were at mid-week) do not conserve weekly means nor 
preserve the extremes (Taylor et al. 2000). Thus, an iterative 
spline-fit procedure was used to interpolate daily SST 
variations from the weekly data while conserving the weekly 
means. These daily SST variations then were incorporated into 
the CWRF with daily updates. This procedure effectively 
preserves the extremes revealed in the original weekly data. 

A new blended real-time global (RTG) SST analysis 
(Thiébaux et al. 2003) is now available with daily data at 0.5º 
longitude-latitude spacing since 11 February 2001 (ftp://polar. 
wwb.noaa.gov/pub). The analysis ingests the most current 
observations in the previous 24 hours, including NOAA-16 
SEATEMP retrievals from the Naval Oceanographic Office 
Major Shared Resource Center, ship and buoy in-situ SST 
reports from the Global Telecommunications System, and 
Special Sensor Microwave Imager sea ice concentrations. 
Most recently, the MODIS level-3 mapped SST data are 
available twice daily at 4-km spacing, derived from infrared 
brightness temperature measurements by Terra since 19 July 
2000 (http://daac.gsfc.nasa.gov/data/datapool/MODIS/ 
03_Ocean /03_Level3_Mapped/001_MO04MD_4KM_Daily/ 
index.html) or Aqua since 7 January 2003 (http://daac.gsfc. 
nasa.gov/data/datapool/MODIS-qua/03_Ocean/ 
03_Level3_Mapped/001_MY04MD_4KM_Daily/index.html). 
The MODIS sensor was designed with higher sensitivity and 
lower signal-to-noise ratios than AVHRR radiometers on 
NOAA satellites. Despite the similarity in the analysis 
algorithm, the MODIS SST has potentially better accuracy 
and higher resolution than the OISST. 
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Figure 13 compares the OISST and RTGSST 
analyses with the October 2002 MODIS data in terms of 
geographic variations and frequency distributions of the 
differences. To depict the resolution enhancement effect, both 
OISST and RTGSST data are mapped onto the MODIS pixel 
mesh using longitude-latitude bilinear interpolation. 
Approximately 41 and 64 percentage or % (46 and 71%) of 
oceanic pixels in the current CWRF domain have SST 
differences from the MODIS within ±0.25 and 0.5 ºC for the 
OISST (RTGSST) analysis, respectively. About 15 and 4% 
(11 and 2%) of pixels contain absolute differences greater 
than 1 and 2 ºC, respectively. In particular, the MODIS data 
tend to be cooler than both OISST and RTGSST values in the 
northeast Pacific Ocean, but warmer over the Great Lakes, 
the Gulf of Mexico, and western coastal Atlantic Ocean. As 
shown in Figure 13, a comparison with the hourly 
observations at 70 buoy stations uniformly distributed over 
these water bodies indicates overall better agreement by the 
RTGSST and MODIS data, but a relatively larger error with 
the OISST data. In addition, MODIS data daytime and 
nighttime differences contain significant biases from the buoy 
observations, and thus more effort is needed before their real 
applications. 

Note that SSTs from infrared satellite retrievals are 
subject to varying degrees of residual cloud contamination, 
which is difficult to characterize, particularly in the absence 
of in-situ observations. The cloud masking results in cold 
biases for SST retrievals from single-view infrared sensor 
data and is difficult to correct using the OI analysis in regions 
with sparse in-situ data. In addition, the MODIS data, albeit 
twice daily, are available only over the scanning tracks along 
the satellite passes, and hence contain broad areas with 
missing data. Similar to the OISST and RTGSST analyses, 
the MODIS measurements must be blended with in-situ ship 
and buoy observations to fill all missing data objectively 
before their application in the CWRF. The CWRF 
incorporates daily SST variations from the weekly OISST 
data via the iterative, conservative spline-fit procedure or the 
daily RTGSST data, both of which are interpolated into the 
CWRF grid due to their coarse resolutions. In the future, the 
improved, blended MODIS data will intersect with the 

CWRF grid mesh to determine SST by area-weighted 
averaging over all contributing pixels. 
 
[K] Sea Surface Current and Salinity (SSC and SSS) 

The monthly mean SSC climatology was produced 
from a ship drift database provided by the U.S. Coast Guard 
(Mariano et al. 1995). For each velocity component, u or v, a 
median filter was applied to remove gross outliers; a scalar 
objective analysis following Mariano and Brown (1992) then 
yielded the final estimates. The quality of the estimates is poor 
in southern oceans due to missing data, especially south of 
50°S. The raw data are available at 1° longitude-latitude 
spacing over global oceans (http://oceancurrents.rsmas.miami. 
edu/). The monthly mean SSS climatology is adopted from 
that of SSP (see [L]) at sea level. Given the coarse resolution, 
both SSC and SSS data are extrapolated for the coastal 
boundaries and then interpolated into the CWRF grid. Over 
inland lakes with missing data, both SSC and SSS are 
assigned a value of zero. Figure 14 depicts the SSC and SSS 
distributions in January, April, July, and October. 

 
[L] Sea Temperature and Salinity Profiles (STP and 
SSP) 

Both STP and SSP are based on the Polar Science 
Center Hydrographic Climatology or PHC (Steele et al. 2001), 
available on 33 depth levels (0, 10, 20, 30, 50, 75, 100, 125, 
150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 
1200, 1300, 1400, 1500, 1750, 2000, 2500, 3000, 3500, 4000, 
4500, 5000, and 5500 m) at 1° longitude-latitude spacing over 
global oceans (http://psc.apl.washington.edu/Climatology. 
html). The PHC data were created via an optimal interpolation 
procedure that merges the 1998 version of the World Ocean 
Atlas (Antonov et al. 1998) with the recent Arctic Ocean Atlas 
(EWG 1997, 1998). The monthly data are provided for the 
upper 24 levels to a 1500-m depth, while seasonal (March-
April-May and July-August-September) and annual means are 
available for all levels. Both STP and SSP data are 
extrapolated for the coastal boundaries at each depth level and 
then interpolated into the CWRF grid. Figure 15 depicts the 
STP and SSP distributions on the 50- and 300-m depth levels 
in July. 

 
Implementation of SBCs into the WRF I/O API 

 
As stated in Michalakes (2000), I/O presents the 

greatest stumbling block to a software and data architecture 
that strives for independence with respect to machine 
architecture, institutional conventions, and application needs, 
with issues in parallel I/O data, and metadata formats and 
conventions. The WRF incorporates an I/O API with a 
package-independent set of routines implemented using 
GRIdded Binary (GRIB) , Network Common Data Form 
(netCDF), or Hierarchical Data Format (HDF) packages. 
Implementation of these packages, parallel I/O, and vendor 
specifics are hidden by the I/O API and transparent to the 
WRF application. The CWRF complies with the same API 
standard to acquire I/O of all SBCs listed in Table 1. 

The WRF inputs or outputs data on four distinct data 
streams: initial, restart, boundary (lateral), and history. They 
can be directed separately to different I/O packages or 
formats within the same model run. The static or time-

invariant SBCs (HSFC, HSDV, HSLD, HCVD, DBED, 
SAND, CLAY, SALF, TBS, SCI, LCC, and FVC) are inserted 
into the existing files wrfinput and wrfrst, using data stream 
INPUT and RESTART, respectively. The time-variant SBCs 
are incorporated through three auxiliary boundary (surface) 
data streams, using AUXINPUT1, 2, and 3, respectively, with 
wrfsst for daily SST, wrfveg for daily vegetation variables 
(LAI and SAI), and wrfocn for monthly oceanic fields (SSS, 
SSC, STP, and SSP). The WRF Registry registers a time-
variant SBC as <field>B with double memory addresses that 
store two consecutive data records for temporal interpolation 
into its instantaneous value at each shorter step calling the 
surface module between the data period. This facilitates 
simple implementation with an easy distinction from <field> 
predicted by an interactive or dynamic surface module. 
Effective implementation requires consistent modifications to 
the WRF mediation modules and the WRFSI and REAL pre-  
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processors, all following the WRF I/O API standard. Special 
care has been taken to enable the CWRF restart from any 
time step between the first and last data records in an SBC 

file. Individual SBC files may contain data records with 
different starting and ending dates. 

 
Summary 

 
The CWRF, the climate extension of the WRF, is 

being developed with key improvements on planetary-
mesoscale, surface-atmosphere, and convection-cloud-
radiation interactions and system consistency throughout all 
process modules. The extension inclusively incorporates all 
WRF functionalities for weather forecasts while enhancing 
the capability for climate predictions. As an initial effort of a 
series documenting CWRF formulation and performance, this 
report focuses on the construction and implementation of 
SBCs desired for general CWRF applications to all effective, 
dynamically coupled or uncoupled, combinations of the 
surface modules, as well as portability to any specific region 
of the world. The primary SBCs include surface topography 
(mean elevation, slope, curvature, and their standard 
deviations); bedrock, lakebed or seafloor depth; soil sand and 
clay fraction profiles; surface albedo localization factor; 
bottom soil temperature; surface characteristic identification; 
land cover category; fractional vegetation cover; leaf and 
stem area index; sea surface temperature, salinity, and 

current; and sea temperature and salinity profiles. This is by 
far the most comprehensive set of SBCs specifically designed 
for mesoscale modeling applications, and is especially 
beneficial for CWRF users. The climatic impacts of these 
new or improved SBCs, singly or in combination, are being 
investigated and will be documented in the future. 

Given that data quality and value representation 
depend on the RCM computational domain and grid 
resolution, all the SBCs are constructed onto the 30-km 
CWRF domain suitable for U.S applications. Nonetheless, 
the authors elaborate, in detail, on raw data sources and 
processing procedures by which the SBCs can be readily 
constructed for any specific CWRF domain in the world. 
Although the authors have strived for the best-available data 
quality, comprehensive processing procedures, and 
consistency between alternatives, the SBCs so constructed 
carry over uncertainties inherent in the raw data. Evaluation 
of the overall data quality of the SBCs was beyond the scope 
of this study. 
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