**Research Report 118** 

# Irrigation Practices in Illinois

by Jean A. Bowman and Brian C. Kimpel



ILLINOIS STATE WATER SURVEY DEPARTMENT OF ENERGY AND NATURAL RESOURCES

1991

### **RESEARCH REPORT 118**



## **IRRIGATION PRACTICES IN ILLINOIS**

by Jean A. Bowman and Brian C. Kimpel

Title: Irrigation Practices in Illinois.

**Abstract:** Biweekly and total irrigation amounts and irrigation scheduling practices were monitored at representative sites in central Illinois during the 1988 and 1989 growing seasons. The purpose was to gather baseline information on average quantities of irrigation water used in normal and drought years and on the general efficiency of irrigation operations in the subhumid climate of Illinois. Soil water-holding capacity is the most important factor in determining irrigation amounts, explaining about 65 percent of the variability in irrigation totals. Other important factors in explaining irrigation variations include weather changes, individual farmer idiosyncrasies, and crop differences. In general, irrigation farmers in Illinois appear to be applying appropriate amounts of irrigation water at appropriate times in the growing season, based on their soil type, crop type, and total evaporative losses.

**Reference:** Bowman, Jean A., and Brian C. Kimpel. Irrigation Practices in Illinois. Illinois State Water Survey, Champaign, Research Report 118, 1991.

**Indexing Terms:** Evaporation, Illinois, irrigation, irrigation efficiency. irrigation in subhumid climates, irrigation operation and maintenance, irrigation practices, irrigation scheduling, soil water, water balance, water utilization.

### STATE OF ILLINOIS HON. JIM EDGAR, Governor

## DEPARTMENT OF ENERGY AND NATURAL RESOURCES John S. Moore, B.S., Director

### BOARD OF NATURAL RESOURCES AND CONSERVATION

John S. Moore, B.S., Chair

Robert H. Benton, B.S.C.E., Engineering

Donna M. Jurdy, Ph.D., Geology

H.S. Gutowsky, Ph.D., Chemistry

Roy L. Taylor, Ph.D., Plant Biology

Robert L. Metcalf, Ph.D., Biology

Judith S. Liebman, Ph.D. University of Illinois

John H. Yopp, Ph.D. Southern Illinois University

## STATE WATER SURVEY DIVISION RICHARD G. SEMONIN, Chief

2204 GRIFFITH DRIVE CHAMPAIGN, ILLINOIS 61820-7495

1991

Beginning with Water Survey Report 117, new reports in this series (formerly known as Reports of Investigation) are being published as Water Survey Research Reports.

Funds derived from grants and contracts administered by the University of Illinois were used to produce this report.

This report was printed on recycled and recyclable paper.

Printed by authority of the State of Illinois (9-91-300)

## CONTENTS

## Page

| Introduction       1         Purpose of Study       1         Previous Studies       2         Acknowledgments       3         Description of study Area       4         Havana Lowlands Study Area       4         Climate       4         Soils       4         Human Activity       4         Ground-Water Resources       5         Green River Lowlands Study Area       6         Climate       7         Soils       7         Human Activity       7         Ground-Water Resources       7         Characterization of Irrigation Study Sites       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Estimation of Irrigation System Operation Time       11         Rainfall and Evaporation Records       11         Nonpumping Water Level Measurements       11         Results       14         General Results       14         Annual Irrigation Totals       14         Annual Irrigation Totals       13         Variations in Individual Farmer Behavior       35         Scasonal Irrigation Time                                         | Abstract                                       | 1  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----|
| Purpose of Study       1         Previous Studies       2         Acknowledgments       3         Description of study Areas       4         Havana Lowlands Study Area       4         Climate       4         Soils       4         Human Activity       4         Ground-Water Resources       5         Green River Lowlands Study Area       6         Climate       7         Soils       7         Human Activity       7         Human Activity       7         Ground-Water Resources       7         Goils       7         Human Activity       7         Ground-Water Resources       7         Characterization of Irrigation Study Sites       9         Methods       9         Estimating Irrigation Water Use       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Farmer-Estimated Flow Rates       10         Estimation of Soil Moisture Characteristics       11         Rainfall and Evaporation Records       11         Nonpumping Water Level Measurements       11 <tr< td=""><td>Introduction</td><td> 1</td></tr<>               | Introduction                                   | 1  |
| Previous Studies       2         Acknowledgments       3         Description of study Areas       4         Havana Lowlands Study Area       4         Climate       4         Soils       4         Human Activity       4         Ground-Water Resources       5         Green River Lowlands Study Area       6         Climate       7         Soils       7         Human Activity       7         Ground-Water Resources       7         Soils       7         Human Activity       7         Ground-Water Resources       7         Characterization of Irrigation Study Sites       9         Methods       9         Estimating Irrigation Water Use       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Intrusive Flowmeter       11         Results       11         Results       11         Reinfall and Evaporation Records       11         Nonpumping Water Level Measurements       11         Nonpumping Water Level Measurements       11         Meather Variations                                                                    | Purpose of Study                               | 1  |
| Acknowledgments       3         Description of study Areas       4         Havana Lowlands Study Area       4         Climate       4         Soils       4         Human Activity       4         Ground-Water Resources       5         Green River Lowlands Study Area       6         Climate       7         Soils       7         Human Activity       7         Ground-Water Resources       7         Soils       7         Human Activity       7         Ground-Water Resources       7         Characterization of Irrigation Study Sites       9         Estimating Irrigation Water Use       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Intrusive Flowmeter       10         Estimation of Soil Moisture Characteristics       11         Results       11         Results       14         Annual Irrigation Totals       31         Wether Variations and Drought       31         Soil Type Variations       33         Variations in Individual Farmer Behavior       35                                                              | Previous Studies                               | 2  |
| Description of study Areas       4         Havana Lowlands Study Area       4         Climate       4         Soils       4         Human Activity       4         Ground-Water Resources       5         Green River Lowlands Study Area       6         Climate       7         Soils       7         Human Activity       7         Ground-Water Resources       9         Estimation of Irrigation Study Sites       9         Methods       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Intrusive Flowmeter       10         Estimation of Soil Moisture Characteristics       11         Rainfall and Evaporation Records       11         Nonpumping Water Level Measurements       11         Nonpumping Water Level Measurements       11         Meather Variations and Drought       31         Soil Type Variations       33         Variations                                  | Acknowledgments                                |    |
| Havana Lowlands Study Area       4         Climate       4         Soils       4         Human Activity       4         Ground-Water Resources       5         Green River Lowlands Study Area       6         Climate       7         Soils       7         Human Activity       7         Ground-Water Resources       7         Characterization of Irrigation Study Sites       9         Methods       9         Estimating Irrigation Water Use       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Intrusive Flowmeter       10         Estimation of Irrigation System Operation Time       11         Rainfall and Evaporation Records       11         Results       14         General Results       14         Annual Irrigation Totals       31         Weather Variations and Drought       31         Soil Type Variations       35         Other Variations       35         Other Variations       35         Other Variations       35         Other Variations       35 <tr< td=""><td>Description of study Areas</td><td> 4</td></tr<> | Description of study Areas                     | 4  |
| Climate       4         Soils       4         Human Activity       4         Ground-Water Resources       5         Green River Lowlands Study Area       6         Climate       7         Soils       7         Human Activity       7         Ground-Water Resources       7         Ground-Water Resources       7         Characterization of Irrigation Study Sites       9         Methods       9         Estimating Irrigation Water Use       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Estimation of Soil Moisture Characteristics       11         Rainfall and Evaporation Records       11         Rainfall and Evaporation Records       11         Nonpumping Water Level Measurements       11         Results       14         General Results       14         Annual Irrigation Totals       31         Weather Variations and Drought       31         Soil Type Variations       33         Variations in Individual Farmer Behavior       35         Other Variations       35         Other Va                                 | Havana Lowlands Study Area                     | 4  |
| Soils4Human Activity4Ground-Water Resources5Green River Lowlands Study Area6Climate7Soils7Human Activity7Ground-Water Resources7Characterization of Irrigation Study Sites9Methods9Estimating Irrigation Water Use9Estimation of Pumping Rates10Ultrasonic Flowmeter10Intrusive Flowmeter10Farmer-Estimated Flow Rates10Estimation of Irrigation System Operation Time11Estimation of Irrigation Records11Results11Results14General Results11Weather Variations and Drought31Soil Type Variations31Crop Type Variations35Variations in Individual Farmer Behavior35Seasonal Irrigation Time Series36Conclusions39References40Appendix A41Appendix B48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Climate                                        | 4  |
| Human Activity       4         Ground-Water Resources       5         Green River Lowlands Study Area       6         Climate       7         Soils       7         Human Activity       7         Ground-Water Resources       7         Characterization of Irrigation Study Sites       9         Methods       9         Estimating Irrigation Water Use       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Fastmer-Estimated Flow Rates       10         Estimation of Irrigation System Operation Time       11         Rainfall and Evaporation Records       11         Rainfall and Evaporation Records       11         Nonpumping Water Level Measurements       11         Results       14         General Results       14         Annual Irrigations and Drought       31         Soil Type Variations       35         Other Variations       36         Conclusi                                 | Soils                                          | 4  |
| Ground-Water Resources       5         Green River Lowlands Study Area       6         Climate       7         Soils       7         Human Activity       7         Ground-Water Resources       7         Characterization of Irrigation Study Sites       9         Methods       9         Estimating Irrigation Water Use       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Farmer-Estimated Flow Rates       10         Estimation of Soil Moisture Characteristics       11         Rainfall and Evaporation Records       11         Nonpumping Water Level Measurements       11         Results       14         Annual Irrigation Totals       31         Weather Variations and Drought       31         Soil Type Variations       33         Variations in Individual Farmer Behavior       35         Other Variations       36         Conclusions       39         References       40         Appendix A       41         Appendix A       41                                                                                           | Human Activity                                 | 4  |
| Green River Lowlands Study Area       6         Climate       7         Soils       7         Human Activity       7         Ground-Water Resources       7         Characterization of Irrigation Study Sites       9         Methods       9         Estimating Irrigation Water Use       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Estimation of Soil Moisture Characteristics       11         Rainfall and Evaporation Records       11         Results       14         General Results       14         Meather Variations and Drought       31         Soil Type Variations       31         Crop Type Variations       33         Variations in Individual Farmer Behavior       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                        | Ground-Water Resources                         | 5  |
| Climate       7         Soils       7         Human Activity       7         Ground-Water Resources       7         Characterization of Irrigation Study Sites       9         Methods       9         Estimating Irrigation Water Use       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Estimation of Irrigation System Operation Time       11         Estimation of Soil Moisture Characteristics       11         Rainfall and Evaporation Records       11         Nonpumping Water Level Measurements       11         Results       14         General Results       14         Mether Variations and Drought       31         Soil Type Variations       33         Variations in Individual Farmer Behavior       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       41                                                                                                                                                          | Green River Lowlands Study Area                | 6  |
| Soils       7         Human Activity       7         Ground-Water Resources       7         Characterization of Irrigation Study Sites       9         Methods       9         Estimating Irrigation Water Use       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Estimation of Irrigation System Operation Time       11         Estimation of Soil Moisture Characteristics       11         Rainfall and Evaporation Records       11         Nonpumping Water Level Measurements       11         Results       14         General Results       14         Annual Irrigation Totals       31         Weather Variations and Drought       31         Soil Type Variations       33         Variations in Individual Farmer Behavior       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       41                                                                                                                                       | Climate                                        | 7  |
| Human Activity       7         Ground-Water Resources       7         Characterization of Irrigation Study Sites       9         Methods       9         Estimating Irrigation Water Use       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Estimation of Irrigation System Operation Time       11         Estimation of Soil Moisture Characteristics       11         Rainfall and Evaporation Records       11         Nonpumping Water Level Measurements       11         Results       14         General Results       14         Soil Type Variations       31         Variations in Individual Farmer Behavior       35         Other Variations       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       41                                                                                                                                                                                                                     | Soils                                          | 7  |
| Ground-Water Resources       7         Characterization of Irrigation Study Sites       9         Methods       9         Estimating Irrigation Water Use       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Farmer-Estimated Flow Rates       10         Estimation of Irrigation System Operation Time       11         Estimation of Soil Moisture Characteristics       11         Rainfall and Evaporation Records       11         Nonpumping Water Level Measurements       11         Results       14         General Results       14         Gound Irrigation Totals       31         Soil Type Variations       31         Crop Type Variations       35         Other Variations       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                  | Human Activity                                 | 7  |
| Characterization of Irrigation Study Sites       9         Methods       9         Estimating Irrigation Water Use       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Farmer-Estimated Flow Rates       10         Estimation of Irrigation System Operation Time       11         Estimation of Soil Moisture Characteristics       11         Rainfall and Evaporation Records       11         Nonpumping Water Level Measurements       11         Results       14         General Results       14         Meather Variations and Drought       31         Soil Type Variations       33         Variations in Individual Farmer Behavior       33         Variations In Individual Farmer Behavior       35         Other Variations       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                    | Ground-Water Resources                         | 7  |
| Methods       9         Estimating Irrigation Water Use       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Farmer-Estimated Flow Rates       10         Estimation of Irrigation System Operation Time       11         Estimation of Soil Moisture Characteristics       11         Rainfall and Evaporation Records       11         Nonpumping Water Level Measurements       11         Results       14         General Results       14         Meather Variations and Drought       31         Soil Type Variations       33         Variations in Individual Farmer Behavior       35         Other Variations       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                                                                                         | Characterization of Irrigation Study Sites     |    |
| Estimating Irrigation Water Use       9         Estimation of Pumping Rates       10         Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Farmer-Estimated Flow Rates       10         Estimation of Irrigation System Operation Time       11         Estimation of Soil Moisture Characteristics       11         Rainfall and Evaporation Records       11         Nonpumping Water Level Measurements       11         Results       14         General Results       14         Manual Irrigation Totals       31         Weather Variations and Drought       31         Soil Type Variations       33         Variations in Individual Farmer Behavior       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                                                                                                         | Methods                                        |    |
| Estimation of Pumping Rates10Ultrasonic Flowmeter10Intrusive Flowmeter10Farmer-Estimated Flow Rates10Estimation of Irrigation System Operation Time11Estimation of Soil Moisture Characteristics11Rainfall and Evaporation Records11Nonpumping Water Level Measurements11Results14General Results14Weather Variations and Drought31Soil Type Variations33Variations in Individual Farmer Behavior35Other Variations35Seasonal Irrigation Time Series36Conclusions39References40Appendix A41Appendix B48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Estimating Irrigation Water Use                |    |
| Ultrasonic Flowmeter       10         Intrusive Flowmeter       10         Farmer-Estimated Flow Rates       10         Estimation of Irrigation System Operation Time       11         Estimation of Soil Moisture Characteristics       11         Rainfall and Evaporation Records       11         Nonpumping Water Level Measurements       11         Results       14         General Results       14         Meather Variations and Drought       31         Soil Type Variations       31         Crop Type Variations       33         Variations in Individual Farmer Behavior       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                                                                                                                                                                                                          | Estimation of Pumping Rates                    |    |
| Intrusive Flowmeter       10         Farmer-Estimated Flow Rates       10         Estimation of Irrigation System Operation Time       11         Estimation of Soil Moisture Characteristics       11         Rainfall and Evaporation Records       11         Nonpumping Water Level Measurements       11         Results       14         General Results       14         Meather Variations and Drought       31         Soil Type Variations       31         Crop Type Variations       33         Variations in Individual Farmer Behavior       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                                                                                                                                                                                                                                                | Ultrasonic Flowmeter                           |    |
| Farmer-Estimated Flow Rates10Estimation of Irrigation System Operation Time11Estimation of Soil Moisture Characteristics11Rainfall and Evaporation Records11Nonpumping Water Level Measurements11Results14General Results14Annual Irrigation Totals31Weather Variations and Drought31Soil Type Variations31Crop Type Variations33Variations in Individual Farmer Behavior35Other Variations35Seasonal Irrigation Time Series36Conclusions39References40Appendix A41Appendix B48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Intrusive Flowmeter                            |    |
| Estimation of Irrigation System Operation Time11Estimation of Soil Moisture Characteristics11Rainfall and Evaporation Records11Nonpumping Water Level Measurements11Results14General Results14Annual Irrigation Totals31Weather Variations and Drought31Soil Type Variations31Crop Type Variations33Variations in Individual Farmer Behavior35Other Variations35Seasonal Irrigation Time Series36Conclusions39References40Appendix A41Appendix B48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Farmer-Estimated Flow Rates                    |    |
| Estimation of Soil Moisture Characteristics11Rainfall and Evaporation Records11Nonpumping Water Level Measurements11Results14General Results14Annual Irrigation Totals31Weather Variations and Drought31Soil Type Variations31Crop Type Variations33Variations in Individual Farmer Behavior35Seasonal Irrigation Time Series36Conclusions39References40Appendix A41Appendix B48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Estimation of Irrigation System Operation Time | 11 |
| Rainfall and Evaporation Records11Nonpumping Water Level Measurements11Results14General Results14Annual Irrigation Totals31Weather Variations and Drought31Soil Type Variations31Crop Type Variations33Variations in Individual Farmer Behavior35Other Variations35Seasonal Irrigation Time Series36Conclusions39References40Appendix A41Appendix B48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Estimation of Soil Moisture Characteristics    | 11 |
| Nonpumping Water Level Measurements       11         Results       14         General Results       14         Annual Irrigation Totals       31         Weather Variations and Drought       31         Soil Type Variations       31         Crop Type Variations       33         Variations in Individual Farmer Behavior       35         Other Variations       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rainfall and Evaporation Records               | 11 |
| Results       14         General Results       14         Annual Irrigation Totals       31         Weather Variations and Drought       31         Soil Type Variations       31         Crop Type Variations       33         Variations in Individual Farmer Behavior       35         Other Variations       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nonpumping Water Level Measurements            | 11 |
| General Results14Annual Irrigation Totals31Weather Variations and Drought31Soil Type Variations31Crop Type Variations33Variations in Individual Farmer Behavior35Other Variations35Seasonal Irrigation Time Series36Conclusions39References40Appendix A41Appendix B48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Results                                        |    |
| Annual Irrigation Totals       31         Weather Variations and Drought       31         Soil Type Variations       31         Crop Type Variations       33         Variations in Individual Farmer Behavior       35         Other Variations       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | General Results                                |    |
| Weather Variations and Drought31Soil Type Variations31Crop Type Variations33Variations in Individual Farmer Behavior35Other Variations35Seasonal Irrigation Time Series36Conclusions39References40Appendix A41Appendix B48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Annual Irrigation Totals                       |    |
| Soil Type Variations       31         Crop Type Variations       33         Variations in Individual Farmer Behavior       35         Other Variations       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weather Variations and Drought                 |    |
| Crop Type Variations       33         Variations in Individual Farmer Behavior       35         Other Variations       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Soil Type Variations                           |    |
| Variations in Individual Farmer Behavior       35         Other Variations       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Crop Type Variations                           | 33 |
| Other Variations       35         Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Variations in Individual Farmer Behavior       | 35 |
| Seasonal Irrigation Time Series       36         Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Other Variations                               | 35 |
| Conclusions       39         References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Seasonal Irrigation Time Series                |    |
| References       40         Appendix A       41         Appendix B       48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conclusions                                    | 39 |
| Appendix A         41           Appendix B         48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | References                                     | 40 |
| Appendix B 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Appendix A                                     | 41 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Appendix B                                     |    |

by Jean A. Bowman and Brian C. Kimpel

## ABSTRACT

Irrigation is becoming increasingly important to Illinois agriculture. Yet, because Illinois has traditionally not been heavily irrigated, relatively little has been known about present irrigation water use and irrigation scheduling and efficiency in the state. Questions are arising with greater frequency about irrigation in the subhumid Illinois climate and about the impact of irrigation water use on regional water resources.

Biweekly and total irrigation amounts and irrigation scheduling practices were monitored at 214 sites in central Illinois during the 1988 and 1989 growing seasons to gather baseline information on average quantities of irrigation water used in normal and drought years and on the general efficiency of irrigation operations in the subhumid Illinois climate. Estimates of irrigation water use were based on hours of irrigation system operation and rate of system flow. Flow rate information was based on irrigation system design flow ratings; in many cases, that information was provided by the irrigation farmer. Efforts to independently verify flow rate data with external and internal flow measurement devices were not entirely successful.

Soil water-holding capacity (expressed as average field capacity in the root zone) correlates well with total irrigation water use, suggesting that irrigation farmers largely determine their irrigation timing and amounts based on some understanding of the water-holding capacity of their soil. Total irrigation water use varies with weather conditions; year-to-year variations are greater than variations among irrigation farmers within any single year.

There is some unexplained variability in irrigation water use from year to year and from farmer to farmer, but most irrigation farmers respond uniformly to the more extreme changes in weather such as drought. Surprisingly little variation in total irrigation applications is evident between different crop types, suggesting that irrigation farmers: (1) have no time to adjust water applications on different crops growing in the same field, (2) keep incomplete records of the amount of water applied to their crops, or (3) apply as much water as possible to all crops. Individual irrigation farmers' practices may vary for reasons unrelated to the physical controls of weather, crop type, or soil type. Irrigation farmers are applying irrigation water on corn and soybean crops in appropriate amounts and times according to evaporative demand and rainfall.

## INTRODUCTION

#### **Purpose of Study**

The irrigation of farmland, a practice traditionally associated with arid western states, is growing in popularity in the Midwest. Irrigation has been one of the fastestgrowing categories of ground-water use in Illinois over the last ten years. Although truck and nursery crop irrigation occurs near urban areas across the state, corn soybeans, and a host of specialty crops are increasingly being placed under irrigation in areas with sandy soils that have low moisture-holding capacities. In Mason County, for instance, irrigated acreage expanded from 530 acres in 1960 (Walker et al., 1965) to nearly 91,000 acres in 1989. Similar expansion of irrigated acreage has occurred in Tazewell, Lee, Whiteside, Kankakee, and several other counties. The Illinois State Water Survey estimates that 250,000 acres are currently irrigated in Illinois, and irrigation farmers are expected to place at least 20,000 more acres under irrigation within the next five years.

Although the expansion of irrigated farming in Illinois will likely continue, few research efforts have been undertaken to quantify irrigation ground-water use. Several questions arise:

- How much water is used to irrigate corn and soybeans, the predominant irrigated crop types in Illinois, during a year with normal rainfall?
- How does irrigation water use vary with crop type, soil type, and single- or double-cropping methods?
- How do farmers' irrigation scheduling practices vary?

Questions about irrigation water use, efficiency, scheduling accuracy, soil-water management, and ground-water management are being raised in Illinois and other midwestern states that have expanding agricultural irrigation industries. Answers are being sought by both irrigation farmers and water resources managers. Irrigation farmers would like to know how to reduce energy and water waste and improve the efficiency of their operations; water resources managers would like to know how much water irrigation uses, how much that quantity will likely increase, and what effect irrigation consumption will have on other water uses. With the possibility of large expansions of irrigated acreage, some of the key questions about irrigation in Illinois should be addressed.

With agricultural irrigation clearly gaining importance in Illinois with respect to regional agricultural economies and water resources management, a study was undertaken to gather baseline data on irrigation water use and practices in the state. This report describes the results of this two-year irrigation field study completed in Illinois for the 1988 and 1989 growing seasons. The purpose of the study was to characterize irrigation practices and estimate seasonal irrigation ground-water use at 214 irrigation sites in the Havana Lowlands (Mason and southern Tazewell Counties) and the Green River Lowlands (Lee and Whiteside Counties), the two most heavily irrigated regions in the state. These sites are generally representative of irrigation operations in those regions.

The objectives of the study were:

- 1. To evaluate irrigation practices by monitoring a sample of irrigation farmers over a specified period of time;
- 2. To compare irrigation water use during normal and drought years;
- 3. To evaluate scheduling effectiveness and variability of water use patterns by irrigation farmers; and
- 4. To evaluate the role of soil type in determining irrigation water use.

## **Previous Studies**

Very little research has been conducted to provide answers to specific irrigation questions in Illinois. However, a number of related studies provided valuable background for this investigation. The studies were primarily directed toward (1) characterizing hydrogeologic conditions in the Havana Lowlands and Lee and Whiteside Counties (including the Green River Lowlands), (2) evaluating the potential for irrigation development in Illinois and the Midwest, and (3) examining the effects of irrigation on crop yields and farm profitability in the Upper Midwest, particularly on southern Illinois claypan soils. These previous studies are briefly reviewed here.

Walker et al. (1965) described the hydrogeology of the Havana Lowlands region in Mason and Tazewell Counties and evaluated hydraulic properties of the sand and gravel aquifer underlying the region. Hanson (1955) examined ground-water quality and yields of municipal, industrial, and some farm and domestic wells in Lee and Whiteside Counties. Foster (1956) described hydrogeologic conditions in Lee and Whiteside Counties and discussed ground-water availability in each township of the area. These studies were completed prior to any significant development of irrigation in either area.

Bowman and Collins (1987) estimated statewide irrigation water use for varied weather conditions using a simple water-balance model and information on soil moisture, precipitation, evaporation, temperature, and crop type. Irrigation water-use quantities were computed on a township basis and compared to ground-water potential yield information by township.

The impact of irrigation development on a dolomite aquifer in eastern Kankakee and northern Iroquois

Counties has been investigated by Cravens et al. (1990) and Cravens and Wilson (1989). Based on ground-water use data, precipitation records, and hydrogeologic conditions, this study concluded that the magnitude of water-level declines in the dolomite aquifer was more a result of variable hydrogeologic conditions than of pumpage or of climatic changes.

The geographic and economic feasibility of using a surface impoundment as a water source for irrigation on claypan soils in southern Illinois was studied by Scott et al. (1986). The researchers concluded that a significant potential for profitable irrigation existed where surface impoundments were available.

In an interinstitutional regional study of efficient irrigation water use in the Midwest, Stout et al. (1983) concluded that many areas of the Midwest possess adequate ground water and surface water to support irrigation development. The researchers also concluded that yield differentials between irrigated and nonirrigated crops would be moderate on soils with high moisture-holding capacities and high on soils with low moisture-holding capacities and claypan soils, even in regions with relatively high annual precipitation.

Walker et al. (1981) and Sipp et al. (1984) investigated the effects of drainage and irrigation methods on crop yields. Walker et al. (1981) concluded that yields on claypan soils in a humid climate increased significantly with the addition of irrigation or drainage alone. Both studies demonstrated that crop yields increased synergistically with the addition of both irrigation and drainage improvements and that the method of irrigation and drainage had little effect on crop yield.

Sipp et al. (1984) also concluded that (1) yields were significantly higher for irrigated corn than for nonirrigated corn, even during years of adequate precipitation; (2) soybeans were less responsive to irrigation than corn; (3) irrigation of corn at less than 50 percent soilmoisture depletion had no effect on yield; (4) most efficient water use was accomplished when irrigation was scheduled using soil-moisture monitoring devices or a checkbook method; (5) double-cropped soybeans were potentially profitable when irrigation was used; and (6) the selection of corn and soybean hybrids strongly influenced irrigated yields.

The work described in this report builds on previous research efforts to gain more specific knowledge of statewide irrigation practices and water use. Information from this report is also summarized in Bowman et al. (1991).

#### Acknowledgments

This report was prepared under the general supervision of Richard G. Semonin, Chief of the Illinois State Water Survey; John M. Shafer, Head of the Division of Hydrology; Ellis W. Sanderson, former Head of the Ground-Water Section; and Adrian P. Visocky, Director of the Office of Ground-Water Resources Evaluation and Management. This work was underwritten by the Illinois Department of Transportation, Division of Water Resources, under the direction of Gary R. Clark, and the University of Illinois Water Resources Center, under the direction of Glenn Stout. Cecille Widolff is credited for her field data collection efforts in the Green River Lowlands. The Midwestern Climate Center, under the direction of Kenneth Kunkel, provided information on climatic trends for the two study regions. John W. Brother, Jr., David Cox, and Anna Zahn provided graphics and mapping assistance. Eva Kingston provided editorial assistance. Many individuals at the State Water Survey and elsewhere provided valuable technical advice, input, and criticism, which aided greatly in this report's preparation.

The authors especially recognize the following cooperating irrigation farmers, who granted access to the study sites, participated in many personal and public meetings, and provided information vital to this research effort. The study participants from Mason County were Rocky Adkins, William Atwater, Gary Bell, George Bilyeu, Doug Blessman, Jeffrey Clark, Glenn Fanter, Tim Fanter, Arthur Finch, Daryl Fornoff, Fred Friedrich, Robert Garlisch, Ralph Heinhorst, Larry Kennedy, Ralph Kreiling, Marvin Lasalles, Roger Meeker, Darrell Pfeiffer, Dean Pfeiffer, Leo Pfeiffer, Kenneth Ringhouse, Charles Roat, Daniel Roat, John Roat, Paul Sandidge, Richard Showalter, Richard Smith, Jim Stelter, Loren Thomas, Wayne Vanderveen, Norman White, and Edward Whitaker; from Tazewell County were Kenneth Becker, Robert Betzelberger, Robert Freidrich, Phil Freidrich, Phillip Golden, J.D. Proehl, Scott Talbott, and James Yontz; from Lee County were Clifford Albrecht, Floyd Albrecht, Al Bolman, Dale Brownlee, John Burke, Lyle Butler, Bob Coleman, Dave Didier, Pat Draper, Tom Draper, Gordon Ely, Brian Fisher, Dean Geldean, Gordon Meyer, Ed Mead, Tom Mead, Alvin Montavon, and Kenneth Rueter; and from Whiteside County were Patrick Burke, Phil Droege, Ted Jacobs, Alan Landis, Roger Moore, Steve Rosengren, Elwin Schmitt, Wayne Schmitt, and Terry Shutz.

## **DESCRIPTION OF STUDY AREAS**

The study regions, containing more than 150,000 irrigated acres, included Mason County and a portion of Tazewell County in central Illinois (Havana Lowlands) and portions of Lee and Whiteside Counties in northwestern Illinois (Green River Lowlands). The regions are representative of field and vegetable crop irrigation requiring large ground-water withdrawals (figure 1). The Havana Lowlands and the Green River Lowlands have highly permeable soils that require supplemental irrigation even in years with normal amounts of precipitation (36.98 and 35.08 inches, respectively). The regions are also underlain by highly productive shallow sand and gravel aquifers in buried bedrock valleys. These two conditions, sandy soils and abundant ground water, are also found in most of the other irrigated areas in Illinois.

#### Havana Lowlands Study Area

The Havana Lowlands region encompasses all of Mason County and four townships in Tazewell County. The region is roughly triangular in shape and is bounded on the west by the Illinois River, on the south by the Sangamon River and Salt Creek, on the north by the city of Pekin, and on the east by a north-south line dividing ranges 4 and 5 west (figure 2).

Walker et al. (1965) identified three main physiographic areas within the Havana Lowlands: (1) the floodplains of the Illinois, Sangamon, and Mackinaw Rivers and Salt Creek, (2) the wide sand-ridged terraces east of the Illinois River, and (3) the loess-covered Illinoisan drift upland in southeast Mason County. Land surface elevations in the area range from 433 feet above sea level along the Illinois river near Snicarte in southwest Mason County to nearly 740 feet above sea level in southeast Mason County near Mason City.

Although the Mackinaw River crosses southern and western portions of Tazewell County, surface drainages within Mason County are poorly developed. The Quiver and Crane Creek Basins, however, have been developed to drain formerly marshy areas in northern and southern parts of the county.

#### Climate

The warmest month on average during the 1960-1989 period was July, with an average mean temperature of

77°F. January was the coldest month on average, with a mean temperature of 23°F.

The Havana station received an average of 36.98 inches of precipitation during the 23-year period. The wettest year was 1973, with recorded precipitation totaling 55.47 inches. The wettest month on average was May, receiving 3.94 inches. The driest month on average was February, receiving only 1.62 inches. The driest summer (June-August) occurred in 1983, when precipitation totaled only 4.44 inches. Only 23.14 inches of precipitation were recorded during 1989, the driest year.

#### Soils

The soils in the Havana Lowlands are generally characterized by their low moisture-holding capacities. Fehrenbacher et al. (1984) recognized four soil associations in the area. Soils of the Oakville-Lamont-Alvin, Sparta-Dickinson-Onarga, and Plano-Proctor-Worthen soil associations were formed in sandy glacial outwash, sandy alluvium, or sandy aoelian material, and typically exhibit moderate to low water-holding capacities. Soils of the Jasper-LaHogue-Selma soil association were formed under grass in varying thicknesses of silty or loamy material sandy deposits and typically exhibit moderate moisture-holding capacities. Crop stress, fertility management, and wind erosion pose significant problems to crop cultivation on soils in much of the Havana Lowlands. But the high permeabilities of these soils facilitate rapid precipitation recharge to the underlying sand and gravel aquifer.

#### Human Activity

The predominant economic activity in the 700-squaremile area is crop farming. Irrigation of crops is of increasing importance in the area; currently nearly 117,000 acres are irrigated. More than 1,000 irrigation systems, primarily center-pivots, are present in the area. Irrigated crops include field corn, seed corn, popcorn, soybeans, winter wheat, and numerous vegetable crops. Mason County has a population of 19,492. Havana, the county seat, with a population of 4,277, is the largest town in the county. The largest town in the Tazewell County portion of the study area is Green Valley, with a population of 768. All population data are from 1980.



Figure 1. Counties included in the study: Mason, Tazewell, Lee, and Whiteside

#### Ground-Water Resources

The productive sand and gravel aquifer underlying the Havana Lowlands originated as a Pleistocene alluvial deposit at the site of the confluence of the ancient Mississippi River, which was roughly coincident in position with the present lower Illinois River valley, and the ancient Teays River, a major river that drained much of the Midwest east of the present Illinois River. The preglacial Mississippi and Teays Rivers had eroded valleys in the bedrock surface, and their confluence at the Havana Lowlands was marked by a broad lowland. Meltwater from Pleistocene glaciers supplied abundant sand and gravel to the ancient Mississippi and Teays River valleys, as well as to other preglacial bedrock valleys in the Midwest, and the valleys were slowly filled with sediment. The Teays River valley was one of several preglacial drainages that was eventually completely abandoned by the stream or river that formerly occupied it. The Teays River valley was abandoned during an early pulse of Pleistocene glaciation, which subsequent glacial advances buried under a thick blanket of comparatively fine-grained glacial sediment, known as glacial drift. Walker et al. (1965) provide a detailed discussion of the origin, composition, and distribution of the Havana Lowlands aquifer.

Wells finished in these sand and gravel deposits supply all of the area's water needs except power generation, which uses Illinois River water. In 1986, ground-water withdrawals totaled 54.312 million gallons per day (mgd) and 32.222 mgd, respectively, in Mason and Tazewell Counties (table 1). Reported withdrawals for public systems totaled 0.899 mgd and 13.117 mgd, respectively, and industrial withdrawals totaled 1.093 and 36.511 mgd, respectively. Ground-water withdrawals for fish and wildlife were reported to be 8.190 mgd in Mason County, of which most was used by the Jake Wolf Memorial Fish Hatchery, and less than 1.001 mgd in Tazewell County. The importance of irrigation in these counties is reflected in the 1989 estimates of irrigation ground-water use, which amount to 89 percent of total daily ground-water use in Mason County and 32 percent of total daily ground-water use in Tazewell County.

#### Table 1. Havana Lowlands Ground-Water Use, 1986

(million gallons per day)

|                             | Cou    | enty     |
|-----------------------------|--------|----------|
| User                        | Mason  | Tazewell |
|                             |        |          |
| Public <sup>+</sup>         | 0.889  | 13.117   |
| Self-supplied industry +    | 1.090  | 36.511   |
| Fish and wildlife +         | 8.190  | 1.001    |
| Irrigation (1989 estimates) | 82.700 | 23.300   |
| Totals                      | 92.900 | 73.900   |
|                             |        |          |

<sup>+</sup>After Kirk, 1987



Figure 2. Irrigation study sites in Mason and Tazewell Counties (Havana Lowlands)

Actual daily irrigation ground-water use during the growing season (May 1 to August 31), the period of greatest irrigation, greatly exceeds the figures reflected in table 1. These figures represent averages over a one-year period so that irrigation can be compared to other ground-water withdrawals. Estimates of seasonal irrigation pumpage in the Havana Lowlands were based on data obtained during this field study, approached 425 mgd in 1989.

## Green River Lowlands Study Area

The Green River Lowlands region consists of 11 townships in Lee and Whiteside Counties (figure 3). Most irrigation in Lee County occurs in the west central townships of East Grove (T.19N., R.9E.), May (T.19N., R.10E.), Marion (T.20N., R.9E.), and Amboy (T.20N., R.10E.). Another area of irrigation includes the townships of Nelson (T.21N., R.8E.), Harmon (R.20N., R.8E.), and Hamilton (T.19N., R.8E.) in western Lee County. In Whiteside County, most of the irrigation occurs in the southwestern townships of Hume (T.20N., R.6E.), Montmorency (T.20N., R.7E.), Tampico (T.19N., R.6E.), and Hahnamnan (T.19N., R.7E.).

Two physiographic areas are present in Lee and Whiteside Counties: (1) broad floodplain areas formed by the Mississippi, Rock, and Green Rivers, and (2) rolling Illinoisan and Wisconsinan morainal uplands. The Mississippi River forms the western boundary of Whiteside County, where elevations as low as 570 feet above sea level occur near Albany. The Rock River, which flows from northeast to southwest, passes through Dixon and Sterling-Rock Falls to the Mississippi River. The Green



Figure 3. Irrigation study sites in Lee and Whiteside Counties (Green River Lowlands)

River, which has a similar trend, passes through Amboy and southeastern Whiteside County. Gently rolling morainal uplands make up northern Whiteside and central and southeastern Lee Counties. The highest elevations in the two counties, 950-990 feet above sea level, occur in southeastern Lee County near Lee.

#### Climate

The warmest month on average during the 1960-1989 period was July, with an average mean temperature of 74°F. January was the coldest month on average, with a mean temperature of 19°F.

The Dixon station received an average of 35.08 inches of precipitation during the 30-year period. The wettest year was 1989, and the wettest month on average was June, receiving 4.24 inches of precipitation. The driest month on average was February, receiving 1.11 inches. The driest summer occurred in 1988, when precipitation totaled only 3.55 inches. Only 22.99 inches of precipitation were recorded during 1976, the driest year.

## Soils

The soils in the Green River Lowlands are similar to those in the Havana Lowlands and are generally characterized by their low moisture-holding capacities. Fehrenbacher et al. (1984) recognized four soil associations; they are the Sparta-Dickinson-Onarga, Jasper-LaHogue-Selma, Plano-Proctor-Worthen, and Lorenzo-Warsaw-Wea soil associations. The latter occurs in small areas. These soils were formed under grass in loamy and silty materials on sand and gravel outwash deposits. The upper soil strata exhibit moderate to low moisture-holding capacities, and the lower strata exhibit low to very low moisture-holding capacities. The problems associated with crop cultivation on highly permeable soils experienced in the Havana Lowlands are also encountered in the Green River Lowlands.

### Human Activity

In the Green River Lowlands, as in the Havana Lowlands, the predominant economic activity is crop farming. Nearly 34,000 acres of cropland are irrigated annually in Lee and Whiteside Counties. Although irrigation is much less predominant at a regional scale than in the Havana Lowlands, the dense concentration of irrigation systems in the 11 townships named above has aroused public concern over irrigation practices and their impact on regional ground-water resources. Irrigated acreage in this area expanded by an estimated 50 percent from 1988 to 1989, and further development is expected. Irrigated crops include field corn, seed corn, soybeans, green beans, peas, and lima beans.

Amboy, in Lee County, is the largest town in the Green River Lowlands, with a population of 2,377. The second largest town is Tampico, in Whiteside County, with a population of 966. The populations in Lee and Whiteside Counties are 36,328 and 65,970, respectively. All population data are from 1980.

#### Ground-Water Resources

Like that of the Havana Lowlands, the productive sand and gravel aquifer underlying the Green River Lowlands originated as an alluvial deposit in a Pleistocene and pre-Pleistocene lowland north of the confluence of the ancient Mississippi and Rock Rivers in central Bureau County. Meltwater from Pleistocene glaciers deposited sand and gravel in this lowland and in the ancient Mississippi and Rock River valleys bounding it on the east, west, and south. Foster (1956) discusses in detail the origin, composition, and distribution of the sand and gravel aquifer in the Green River Lowlands.

Approximately 65 percent of the ground water used in Whiteside and Lee Counties is supplied by the sand and gravel aquifer of the Green River Lowlands, and nearly all of the irrigation wells in the area obtain water from this aquifer. The remaining 35 percent of ground water used in the area is obtained from Silurian-Devonian and Cambrian-Ordovician aged bedrock aquifers.

Table 2 gives estimates of daily ground-water pumpage in Lee and Whiteside Counties during 1986. In Lee County, ground-water withdrawals for public systems, self-supplied industry, and fish and wildlife categories totaled 3.680 mgd, 0.100 mgd, and 0.001 mgd, respectively. In Whiteside County, these categories respectively totaled 4.234 mgd, 2.325 mgd, and 0.005 mgd. Estimated irrigation ground-water pumpage for 1989 totaled 8.202 mgd (Lee County) and 10.871 mgd (Whiteside County).

#### Table 2. Green River Lowlands Ground-Water Use, 1986

(million gallons per day)

|                                     | Ce     | ounty     |
|-------------------------------------|--------|-----------|
| User                                | Lee    | Whiteside |
|                                     |        |           |
| Public <sup>+</sup>                 | 3.680  | 4.234     |
| Self-supplied industry <sup>+</sup> | 0.100  | 2.325     |
| Fish and wildlife <sup>+</sup>      | 0.001  | 0.005     |
| Irrigation (1989 estimates)         | 8.202  | 10.871    |
| Totals                              | 11.943 | 17.435    |

#### <sup>+</sup>After Kirk, 1987

Ground-water withdrawals totaled 11.943 mgd (Lee County) and 17.435 mgd (Whiteside County).

This investigation indicated that daily irrigation pumpage in the Green River Lowlands approached 77 mgd during the 1989 growing season. The method used in this investigation for estimating irrigation pumpage is described in the "Methods" section.

## CHARACTERIZATION OF IRRIGATION STUDY SITES

To characterize irrigation practices and quantify irrigation water use in the two study areas, irrigation farmers were interviewed and permission was sought to monitor their irrigation systems through two growing seasons. Each study site included an irrigation well or irrigation system or both at which ground-water levels and water use were monitored. Forty irrigation farmers with 195 study sites in the Havana Lowlands and 27 irrigation farmers with 65 study sites in the Green River Lowlands agreed to participate in the field studies.

During initial site visits, descriptive information was collected regarding well location, type of irrigation system (diesel or electric power source, system pressurization, and center-pivot or traveling gun system), crop types, and soil types. Quantitative information such as pumping rate of the well, irrigated acreage, soil moisture content, and nonpumping water levels in the irrigation wells was also recorded. A subset of these sites was visited biweekly throughout the 1989 growing season to observe irrigation scheduling patterns.

Of the 214 irrigation systems monitored, none were identical. Even system types used by an individual farmer often differed markedly. Characteristics of the sites visited during the field studies can be found in appendices A and B at the back of this report. Center-pivot systems were predominant, but a few traveling gun systems were operated in each area. Center-pivot pressurizations ranged from low (10-20 pounds per square inch (psi)) to medium (30-40 psi) to high (50-60 psi) and covered 40 to 290 acres per revolution. Because buildings, roads, drainage ditches, and treelines frequently limited the pivots to less than one complete revolution, some irrigation farmers were forced to operate their systems in a windshield wiper fashion. The center-pivot systems, usually equipped with end guns or corner systems, were powered by diesel

engines or electric motors of various brands and sizes. Pumping rates ranged from 300 to 2300 gallons per minute (gpm).

A wide variety of crops were grown under irrigation in the study areas. Typical crops included field corn, seed corn, popcorn, sweet corn, soybeans, green beans, peas, wheat, cucumbers, and tomatoes. In addition, potatoes, lima beans, pumpkins, watermelons, cantaloupes, and a variety of other vegetable crops were observed. Generally, one or two different crop types were grown in an irrigated field, but one farmer reported producing four different crops during one season under a center-pivot system. Several of the fields produce two crops during one season (double-cropping) by growing successive "short-season" crops of cucumbers, green beans, and sweet corn that require only 8 to 10 weeks to mature. At least one field was known to have grown three cucumber crops during the 1989 season. But an early frost on September 24, 1989 destroyed this third crop as well as the second cucumber crop on many other irrigation farms.

All of the irrigation systems monitored use wells as a water-supply source. Although a few wells in the Green River Lowlands tapped bedrock ground water at a depth of 480 to 505 feet below land surface, the vast majority of the irrigation wells obtain ground water from the sand and gravel aquifers described previously. These wells ranged in depth from 20 to 170 feet below land surface.

A single well may supply one or more stationary or towable irrigation systems. Towable center-pivots may be used with a single well to irrigate several fields using a network of underground pipeline. One participating farmer irrigated as many as five separate 40-acre fields from one well and a towable center-pivot. Another farmer regularly towed a center-pivot system across a highway from one well to another.

## METHODS

#### **Estimating Irrigation Water Use**

Many irrigation systems are operated for short periods of time to reposition a center-pivot system or test the system without irrigating. Because this time is negligible in comparison to the seasonal total, hours of system operation time recorded are assumed to equal the duration of irrigation pumpage. Irrigation water use, measured in inches of irrigation water applied, was estimated by the following equation:

$$It = 0.00221Q * H/A$$

where It is the total irrigation water applied between field visits (inches), Q is the estimated pumping rate from the irrigation well (gpm), H is the duration of irrigation pumpage between field visits (assumed equivalent of system operation time in hours), and A is the irrigated area in acres. The constant 0.00221 is used to convert gpm to acre-inches per hour.

#### Estimation of Pumping Rates

Unlike many heavily irrigated, arid western states, Illinois and many other midwestern states do not require metering and reporting of irrigation pumpage. The addition of flowmeters is an optional, yet significant expense for irrigation farmers, who seldom include them at the time of irrigation system installation. Means for measuring irrigation pumpage rarely exist. For a scientific study, researchers could purchase and install permanent metering devices, but the costs for a regional study are usually prohibitive. Because none of the irrigation systems monitored in this study were equipped with permanent metering devices, pumping rates were estimated based on the irrigation system design flow rates. In many cases, this information was provided by participating farmers from installation records for their irrigation systems. Thus, for the purposes of this report, the flow rates used to determine irrigation water use were called "farmer-estimated" flow rates. This is not meant to convey that participating farmers simply guessed at their system flow rates.

Considerable attempt was made to independently verify the farmer-estimated flow rates using both external and internal flow measurement devices. Given the variations in irrigation system configuration, the possibility of improper flowmeter calibration, and the potential for operator error, the flowmeters did not produce reasonable validation of the original farmer-estimates. Although the flowmeter data were not used to compute irrigation water use in this study, the process of collecting and eliminating this data is discussed.

### Ultrasonic Flowmeter

The ultrasonic flowmeter, portable and designed for monitoring flow rates through a wide range of pipe diameters, measures flow rate externally. This meter consists of two transducers that are placed on opposite sides of the pipe through which flow is to be measured. One transducer transmits a signal of known frequency into the pipe. The signal, altered by the flow of water through the pipe, is received by the other transducer. If properly calibrated, the ultrasonic flowmeter calculates flow velocity by comparing the frequencies of the transmitted and received signals. Flow rate is calculated by multiplying the flow velocity measured by the ultrasonic flowmeter and the cross-sectional area of the pipe.

#### Intrusive Flowmeter

The intrusive flowmeter operates by measuring the spin rate of a l-inch diameter paddlewheel protruding <sup>1</sup>/<sub>2</sub>- inch into the flow. The paddlewheel axis is perpendicular to the flow and the meter housing is normal to the discharge pipe. A signal converter changes the electromagnetic current generated by the paddlewheel to an electric current compatible with datalogging and portable computer equipment. This instrument was used to record short- and long-term pumping rates during six well production tests, ranging in duration from 1 to 5 hours.

#### Farmer-Estimated Flow Rates

Farmer-estimated flow rates (system design flow rates) were used for final computation of irrigation water use due to apparent inaccuracies with the flowmeters. The irrigation farmers based their estimates on records and personal knowledge of the pumping rates for which the system was originally designed. Though irrigation farmer-estimated pumping rates may be slightly higher than actual pumping rates due to well deterioration or modifications to the system since installation, large discrepancies in pumping rate would cause pressure changes in the irrigation system, creating system malfunction. For that reason, it was assumed that the design pumping rate.

Ultrasonic flow measurements were made at 70 sites during 1988 to verify irrigation farmer-estimated flow rates. Table 3 compares ultrasonic flowmeter measurements to irrigation farmer-estimated pumping rates. As the table indicates, the flowmeter measurements were generally lower (up to 80 percent). Only 14 measurements fell within 10 percent of the farmers' estimates of pumping rate. Separate flowmeter measurements at the same site were also commonly inconsistent, as were measurements from simultaneous use of two flowmeters.

In 1989, both ultrasonic flowmeters were recalibrated. Optimal flow measurement environments (according to manufacturer's recommendations) at 23 sites were selected in both study areas and visited two or three times during the season. Again, the results were low and inconsistent (table 4).

Similar problems were encountered with the intrusive flowmeter. When pumping rates during well production tests were altered by adjusting a backflow check valve or diesel engine throttle, the measured increases and decreases in flow rates corresponded to adjustments in pumping rates. However, these measurements differed significantly from the farmer-estimated flow rates.

#### Estimation of Irrigation System Operation Time

Most of the information about irrigation system operation time was collected from the hour meters in the control box of center-pivot systems. There were 118 hour meters in the study, of which 15 were broken. The remaining working hour meters were read in spring and fall 1989 to estimate seasonal water use at these sites. At sites where both diesel engine meters and center-pivot control box hour meters were available, readings from the latter were used to record system operation time. A subset of the most accessible sites with working hours meters were visited biweekly to determine irrigation scheduling patterns in the Havana and Green River Lowlands.

Diesel engine hour meters provided unreliable operation time estimates. Of 49 diesel engines monitored in the Havana Lowlands, 13 lacked hour meters and 13 others had broken hour meters. Where both diesel engine and control box hour meters were available, the former typically recorded more operation time (diesel engines are often run for short periods to warm the motor or to move the system when not irrigating). Estimates of irrigation system operation time were dependent upon diesel engine meters at 30 sites and 23 sites in the Havana and Green River Lowlands, respectively. Seasonable water use was determined from meters read in spring and fall 1989.

Participating irrigation farmers were also asked to record daily water applications in notebooks distributed during spring 1989. Each notebook contained a descrip tion and the location of all irrigation systems operated by the farmer, and tables to record water use and rainfall amounts. Most irrigation farmers kept incomplete records, which will be discussed further in the Results section.

#### Estimation of Soil Moisture Characteristics

Soil water characteristics for each site in the study were based on regional soil maps from the U.S. Soil Conservation Service. Study sites were superimposed onto the soil maps to determine the percentage of each soil series under the irrigation system. Published information (Fehrenbacher et al., 1984) for each soil series on available moisture in the upper 60 inches of soil was aerially weighted for each site to obtain an average field capacity for the root zone, assumed to be about 36 inches at plant maturity. Also noted for each site were the moisture availability and percentage of area of the most "draughty" soil with the lowest moisture-holding capacity within range of the irrigation system.

Also for the purposes of this report, irrigated fields in which 51 percent or more of the soils possessed moderately rapid to rapid permeabilities, according to soil series descriptions, were considered rapidly permeable soils. Fields in which 50 percent or more of the soils possessed moderate to moderately rapid permeabilities were considered moderately permeable soils.

#### **Rainfall and Evaporation Records**

Many of the participating irrigation farmers maintained raingages and recorded rainfall totals in their notebooks. Daily rainfall data were also recorded at National Weather Service stations in Havana, Mason City, Dixon, and Morrison, Illinois. Pan evaporation was measured daily at the Sand Field Research Station in Bath, Illinois (Mason County), operated by the University of Illinois Department of Agronomy. Pan evaporation measurements were not available for the Green River Lowlands study area.

#### Nonpumping Water Level Measurements

Nonpumping water levels were measured, where possible, using a steel tape, incremented to hundredths of an inch, and carpenter's chalk. Many wells in the study either had no access ports or ones inadequate to make water-level measurements. During this study, it became apparent that such access ports were seldom installed on irrigation wells even though they provide an inexpensive, effective means for an irrigation farmer to maintain important information. Because an irrigation farmer's operation is so inextricably tied to well and ground-water resources, every irrigation well should be expected to be equipped with an access port. Continued education on this important point is needed for farmers, irrigation well drillers, and irrigation system dealers.

| Table 3. Com | parison of Ultraso | ic Flowmeter | Measurements and | l Farmer-Estimate | ed Flow Rates. | , 1988 |
|--------------|--------------------|--------------|------------------|-------------------|----------------|--------|
|--------------|--------------------|--------------|------------------|-------------------|----------------|--------|

|       | Havana Lov           | vland Sites    |                 | Green River Lowland Sites |                      |                |                 |  |  |  |
|-------|----------------------|----------------|-----------------|---------------------------|----------------------|----------------|-----------------|--|--|--|
| Site  | Farmer's<br>estimate | First<br>meas. | Second<br>meas. | Site                      | Farmer's<br>estimate | First<br>meas. | Second<br>meas. |  |  |  |
| MT1   | 950                  | 400            | -               | LWI                       | 700                  | 431            | -               |  |  |  |
| MT2   | 1100                 | 482            | -               | LW2                       | 900                  | 353            | 251             |  |  |  |
| MT5   | 950                  | 988            | -               | LW6                       | 800                  | 225            | -               |  |  |  |
| MT6   | 700                  | 575            | -               | LW7                       | 700                  | 740            | -               |  |  |  |
| MT8   | 1100                 | 330            | -               | LW15                      | 700                  | 200            | -               |  |  |  |
| MT9   | 1100                 | 1239           | 941             | LW16                      | 1000                 | 868            | -               |  |  |  |
| MT24  | 600                  | 618            | -               | LW17                      | 650                  | 468            | -               |  |  |  |
| MT26  | 900                  | 884            | -               | LW18                      | 620                  | 141            | -               |  |  |  |
| MT42  | 300                  | 300            | 528             | LW23                      | 1000                 | 455            | -               |  |  |  |
| MT43  | 350                  | 300            | -               | LW24                      | 400                  | 440            | -               |  |  |  |
| MT44  | 300                  | 308            | 615             | LW25                      | 350                  | 253            | -               |  |  |  |
| MT46  | 300                  | 550            | 467             | LW26                      | 900                  | 793            | -               |  |  |  |
| MT47  | 400                  | 388            | 318             | LW34                      | 600                  | 649            | 511             |  |  |  |
| MT50  | 900                  | 421            | 852             | LW35                      | 900                  | 659            | -               |  |  |  |
| MT51  | 1000                 | 686            | -               | LW37                      | 500                  | 168            | -               |  |  |  |
| MT52  | 500                  | 437            | -               | LW42                      | 800                  | 957            | -               |  |  |  |
| MT54  | 1200                 | 627            | -               | LW43                      | 900                  | 369            | 560             |  |  |  |
| MT56  | 600                  | 402            | -               | LW46                      | 1200                 | 267            | -               |  |  |  |
| MT57  | 1250                 | 386            | 289             | LW47                      | 1200                 | 627            | 188             |  |  |  |
| MT58  | 1650                 | 1164           | 1323            | LW49                      | 350                  | 260            | -               |  |  |  |
| MT59  | 1000                 | 641            | -               | LW50                      | 1200                 | 627            | 563             |  |  |  |
| MT60  | 850                  | 488            | -               | LW52                      | 700                  | 334            | -               |  |  |  |
| MT61  | 950                  | 972            | 412             | LW54                      | 700                  | 1030           | -               |  |  |  |
| MT62  | 800                  | 305            | 692             | LW57                      | 450                  | 525            | -               |  |  |  |
| MT63  | 800                  | 467            | -               | LW61                      | 800                  | 807            | -               |  |  |  |
| MT92  | 1000                 | 1092           | -               | LW62                      | 500                  | 478            | 280             |  |  |  |
| MT93  | 400                  | 154            | 260             | LW63                      | 900                  | 314            | 274             |  |  |  |
| MT94  | 400                  | 447            | -               | LW64                      | 800                  | 486            | 345             |  |  |  |
| MT95  | 400                  | 447            | -               | LW65                      | 700                  | 388            | -               |  |  |  |
| MT97  | 1000                 | 422            | 380             | LW67                      | 800                  | 708            | 708             |  |  |  |
| MT99  | 1000                 | 844            | -               | LW86                      | 750                  | 692            | -               |  |  |  |
| MTI13 | 1000                 | 766            | 857             | LW87                      | 1000                 | 305            | -               |  |  |  |

## Table 3. Concluded

|       | Hava                 | ına Lowland    |                 | Green River Lowland Sites |                      |                |                 |  |  |
|-------|----------------------|----------------|-----------------|---------------------------|----------------------|----------------|-----------------|--|--|
| Site  | Farmer's<br>estimate | First<br>meas. | Second<br>meas. | Site                      | Farmer's<br>estimate | First<br>meas. | Second<br>meas. |  |  |
| MT136 | 800                  | 878            | -               |                           |                      |                |                 |  |  |
| MT137 | 500                  | 549            | -               |                           |                      |                |                 |  |  |
| MT139 | 560                  | 862            | -               |                           |                      |                |                 |  |  |
| MT142 | 700                  | 235            | 857             |                           |                      |                |                 |  |  |
| MT174 | 1000                 | 221            | -               |                           |                      |                |                 |  |  |

## Table 4. Comparison of Ultrasonic Flowmeter Measurements and Farmer-Estimated Flow Rates, 1989 (Havana Lowlands)

| Site | Farmer's<br>estimate | First<br>meas. | Second<br>meas. | Third<br>meas. | Site  | Farmer's<br>estimate | First<br>meas. | Second<br>meas. | Third<br>meas. |
|------|----------------------|----------------|-----------------|----------------|-------|----------------------|----------------|-----------------|----------------|
| MT8  | 1100                 | 614            | -               | -              | MT108 | 750                  | 308            | -               | -              |
| MT10 | 300                  | 436            | -               | -              | MT118 | 1000                 | 954            | -               | -              |
| MT12 | 900                  | 355            | 937             | 355            | MT127 | 700                  | 275            | -               | -              |
| MT18 | 1000                 | 1034           | -               | -              | MT128 | 850                  | 172            | -               | -              |
| MT27 | 900                  | 840            | -               | -              | MT130 | 850                  | 283            | 275             | -              |
| MT28 | 1050                 | 133            | -               | -              | MT141 | 1200                 | 1341           | 1123            | -              |
| MT57 | 1250                 | 1325           | 1325            | 323            | MT142 | 700                  | 1147           | 1115            | 1107           |
| MT58 | 1650                 | 450            | -               | -              | MT165 | 800                  | 362            | 436             | 493            |
| MT61 | 950                  | 808            | 792             | -              | MT171 | 700                  | 355            | 242             | -              |
| MT81 | 1000                 | 884            | -               | -              | MT174 | 1000                 | 282            | 300             | -              |
| MT86 | 800                  | 986            | -               | -              | MT175 | 950                  | 1147           | -               | -              |
| MT92 | 1000                 | 1033           | 994             | -              |       |                      |                |                 |                |

The results from this study are presented in three sections: General Results, Annual Irrigation Totals, and Seasonal Irrigation Time Series. The second section summarizes quantities and explores plausible explanations for variances in irrigation water use. Some emphasis is given to the 1989 growing season because of the limited data available from 1988. The third section summarizes specific watering patterns in the 1989 growing season, based on biweekly observations in the Havana Lowlands study region. Comparisons of water use and evapotranspiration shown in the third section do not reflect the Green River Lowlands study data because of the lack of evapotranspiration information from that area.

#### **General Results**

In both the Havana and Green River Lowlands, irrigation water use on double-cropped fields slightly exceeded single-cropped fields. In the Havana Lowlands, doublecropped fields received an average of 15.4 inches of water (25 samples), while single-cropped fields received an average of 14.3 inches of water (38 samples). In the Green River Lowlands, double-cropped fields received an average of 8.1 inches of water (4 samples), while singlecropped fields received an average of 6.8 inches of water (29 samples).

Figure 4 compares average water use on field corn and popcorn (16.3 inches) and soybeans (12.6 inches) in the Havana Lowlands. Because only a few study sites in the Green River Lowlands produced soybeans, no comparison could be made of irrigation water use by crop type.

Variations in single-cropped field water use on rapidly permeable soils were also observed in the Havana Lowlands. Field corn and popcorn received an average of 16.3 inches of water (28 samples) while soybeans received 10.3 inches (4 samples).

Tables 5 and 6 show 1989 biweekly and seasonal total irrigation operation time (irrigation hours). Tables 7 and 8 show computed biweekly and seasonal total water use in inches. For a review of farmer-estimated flow rates



Figure 4. Average 1989 irrigation water use for corn (field corn and popcorn) and soybeans in the Havana Lowlands

used to compute these water use amounts, see appendices A and B. Tables 9 and 10 list soil permeabilities (Fehrenbacher et al., 1984) at selected sites in both study areas.

Tables 11 and 12 report nonpumping water levels in the Havana and Green River Lowlands. These tables list (1) water levels at 154 sites in September 1988, March 1989, and September 1989, and (2) the change in water level between each measurement. Nonpumping water levels were not measured at a number of the study sites because an access port at the base of the well was either missing or prevented access to the water between the pump column and well casing. Of the 154 sites at which water levels could be measured, 110 were in the Mason-Tazewell County area and 44 were in the Lee-Whiteside County area.

## Table 5. Biweekly and Seasonal Irrigation Hours, 1989 (Havana Lowlands)

| Site | 3/1-<br>5/10 | 5/10-<br>5/24 | 5/24-<br>6/7 | 6/7-<br>6/21 | 6/21-<br>7/5 | 7/5-<br>7/20 | 7/20-<br>8/3 | 8/3-<br>8/17 | 8/17-<br>8/29 | 8/29-<br>9/14 | 9/14-<br>9/27 | 9/27-<br>10/1 | Totals |
|------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|--------|
| MT2  | 0.3          | 0.0           | 37.3         | 82.0         | 161.9        | 153.8        | 51.3         | 97.3         | 42.3          | 0.5           | 0.0           | 0.0           | 627    |
| MT8  | 10.3         | 1.0           | 23.5         | 171.4        | 190.8        | 117.9        | 93.3         | 94.7         | 71.1          | 9.2           | 0.0           | 0.0           | 783    |
| MT10 | 7.4          | 19.3          | 31.0         | 106.1        | 25.6         | 0.0          | 18.1         | 63.7         | 39.6          | 21.0          | 46.7          | 0.6           | 379    |
| MT26 | 0.0          | 0.0           | 30.7         | 102.3        | 227.4        | 192.7        | 62.7         | 186.0        | 114.5         | 0.1           | 0.0           | 0.0           | 916    |
| MT27 | 35.1         | 0.0           | 0.0          | 170.4        | 236.0        | 270.9        | 168.3        | 7.6          | 253.2         | 0.0           | 0.0           | 0.0           | 1142   |
| MT28 | 19.9         | 0.0           | 0.0          | 0.8          | 174.4        | 82.3         | 62.4         | 84.0         | 64.3          | 0.6           | 0.0           | 0.0           | 489    |
| MT29 | 0.7          | 0.0           | 1.3          | 90.8         | 172.2        | 209.1        | 53.5         | 133.5        | 96.0          | 0.0           | 0.0           | 0.0           | 757    |
| MT30 | 0.0          | 0.0           | 0.0          | 68.0         | 0.0          | 73.6         | 0.0          | 77.9         | 45.2          | 19.3          | 44.2          | 14.2          | 342    |
| MT31 | 0.0          | 0.0           | 0.0          | 94.0         | 281.7        | 309.2        | 114.9        | 306.8        | 43.3          | 0.0           | 0.0           | 0.0           | 1150   |
| MT32 | 0.0          | 0.0           | 0.0          | 94.0         | 281.7        | 309.2        | 114.9        | 306.8        | 43.3          | 0.0           | 0.0           | 0.0           | 1150   |
| MT33 | 75.3         | 0.0           | 4.1          | 69.7         | 148.4        | 155.1        | 55.6         | 183.8        | 60.9          | 43.8          | 0.0           | 4.2           | 801    |
| MT34 | 0.0          | 70.6          | 55.9         | 106.9        | 242.3        | 133.5        | 0.0          | 156.9        | 132.2         | 48.2          | 0.0           | 0.0           | 947    |
| MT36 | 0.0          | 0.0           | 0.0          | 62.0         | 139.1        | 220.6        | 103.0        | 159.8        | 121.7         | 0.0           | 0.0           | 0.0           | 806    |
| MT37 | 2.2          | 0.0           | 31.9         | 72.1         | 226.5        | 230.7        | 37.2         | 187.4        | 110.4         | 50.6          | 39.4          | 0.0           | 988    |
| MT38 | 0.0          | 0.0           | 0.0          | 87.1         | 250.7        | 231.7        | 125.3        | 216.5        | 130.3         | 0.0           | 0.0           | 0.0           | 1042   |
| MT39 | 1.0          | 0.0           | 128.0        | 107.4        | 139.0        | 0.0          | 132.0        | 118.7        | 93.8          | 9.4           | 0.0           | 0.0           | 729    |
| MT41 | 10.6         | 0.0           | 14.1         | 122.7        | 338.3        | 144.4        | 38.7         | 235.0        | 84.0          | 1.7           | 3.7           | 0.0           | 993    |
| MT46 | 28.1         | 0.0           | 0.0          | 93.1         | 181.3        | 204.8        | 113.5        | 175.5        | 113.4         | 0.0           | 0.0           | 0.0           | 910    |
| MT47 | 10.9         | 0.0           | 0.0          | 70.2         | 173.8        | 160.9        | 60.7         | 85.0         | 85.0          | 0.0           | 0.0           | 0.0           | 647    |
| MT50 | 0.3          | 11.5          | 0.0          | 130.3        | 257.0        | 196.1        | 44.6         | 81.9         | 68.1          | 55.7          | 80.3          | 43.8          | 970    |
| MT51 | 5.5          | 0.0           | 40.9         | 132.4        | 248.4        | 179.0        | 178.6        | 152.4        | 9.0           | 10.7          | 12.0          | 0.0           | 969    |
| MT53 | 10.0         | 0.0           | 0.0          | 58.1         | 80.6         | 50.4         | 51.6         | 56.1         | 29.9          | 0.0           | 0.0           | 0.0           | 337    |
| MT54 | 3.4          | 0.0           | 0.0          | 112.0        | 173.4        | 181.0        | 184.1        | 127.2        | 52.7          | 0.4           | 0.0           | 0.0           | 834    |
| MT57 | 27.5         | 35.3          | 10.4         | 121.2        | 125.7        | 207.8        | 13.3         | 124.4        | 0.0           | 0.0           | 0.0           | 0.0           | 666    |
| MT58 | 8.4          | 0.0           | 25.0         | 160.0        | 297.1        | 245.3        | 212.4        | 203.0        | 100.1         | 2.3           | 0.0           | 0.0           | 1254   |
| MT59 | 68.5         | 31.8          | 31.7         | 68.8         | 120.0        | 176.4        | 61.1         | 175.1        | 84.5          | 58.2          | 19.0          | 0.0           | 895    |
| MT60 | 32.1         | 47.9          | 0.0          | 109.8        | 181.6        | 117.6        | 5.7          | 119.0        | 76.0          | 46.6          | 72.2          | 47.1          | 856    |
| MT61 | 34.0         | 0.0           | 0.8          | 105.7        | 195.0        | 263.5        | 77.8         | 165.0        | 190.7         | 0.0           | 0.0           | 0.0           | 1033   |
| MT62 | 17.1         | 0.0           | 27.2         | 143.5        | 286.9        | 270.4        | 110.7        | 164.5        | 84.5          | 0.0           | 0.0           | 0.0           | 1105   |
| MT63 | 24.2         | 0.0           | 98.4         | 130.8        | 166.1        | 248.5        | 41.4         | 119.4        | 120.6         | 63.4          | 58.3          | 27.9          | 1099   |
| MT66 | 2.4          | 0.0           | 17.5         | 75.9         | 115.0        | 123.8        | 44.3         | 120.9        | 40.8          | 0.2           | 0.0           | 0.0           | 541    |
| MT71 | 2.3          | 0.7           | 0.7          | 49.9         | 70.0         | 100.2        | 4.4          | 84.9         | 35.1          | 3.4           | 0.0           | 0.0           | 352    |
| MT72 | 3.3          | 1.0           | 0.4          | 44.3         | 43.2         | 98.1         | 24.3         | 73.4         | 12.2          | 0.0           | 0.0           | 0.0           | 300    |

## Table 5. Continued

| Site    | 3/1-<br>5/10 | 5/10-<br>5/24 | 5/24-<br>6/7 | 6/7-<br>6/21 | 6/21-<br>7/5 | 7/5-<br>7/20 | 7/20-<br>8/3 | 8/3-<br>8/17 | 8/17-<br>8/29 | 8/29-<br>9/14 | 8/14-<br>9/27 | 9/27-<br>10/1 | Totals |
|---------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|--------|
| MT77    | 42.9         | 43.0          | 56.7         | 90.0         | 90.3         | 137.9        | 21.5         | 129.0        | 79.4          | 21.6          | 0.0           | 0.0           | 712    |
| MT81    | 2.0          | 0.0           | 0.0          | 50.2         | 126.4        | 191.9        | 48.7         | 69.2         | 69.8          | 0.7           | 0.0           | 0.0           | 559    |
| MT90    | 0.0          | 0.0           | 0.0          | 39.3         | 167.7        | 200.7        | 46.5         | 156.0        | 73.0          | 23.4          | 0.0           | 0.0           | 707    |
| M~96    | 24.2         | 54.0          | 203.0        | 262.9        | 239.0        | 144.0        | 54.9         | 124.2        | 120.8         | 77.0          | 77.0          | 0.0           | 1381   |
| MT97    | 2.9          | 0.0           | 24.7         | 100.9        | 281.8        | 136.3        | 113.4        | 179.7        | 98.5          | 0.0           | 0.0           | 0.0           | 938    |
| MT98    | 65.8         | 30.0          | 47.4         | 180.8        | 241.3        | 220.1        | 107.6        | 180.5        | 101.9         | 0.0           | 0.0           | 0.0           | 1175   |
| MT99    | 42.5         | 60.0          | 141.0        | 77.3         | 120.8        | 186.7        | 87.0         | 164.5        | 145.3         | 53.0          | 0.5           | 0.0           | 1079   |
| MT100   | 1.7          | 30.0          | 110.6        | 152.9        | 206.6        | 211.8        | 33.2         | 156.3        | 140.0         | 38.8          | 26.9          | 0.0           | 1109   |
| MT101   | 16.6         | 0.0           | 123.2        | 132.0        | 244.4        | 207.6        | 68.5         | 179.9        | 102.6         | 0.0           | 0.0           | 0.0           | 1075   |
| MT102   | 23.9         | 38.9          | 44.8         | 124.6        | 243.0        | 188.3        | 97.6         | 116.6        | 60.3          | 28.5          | 0.0           | 0.0           | 967    |
| MT103   | 53.3         | 86.4          | 57.8         | 113.8        | 0.0          | 75.0         | 86.2         | 118.8        | 98.1          | 25.8          | 58.3          | 3.3           | 776    |
| MT104   | 60.7         | 149.5         | 99.7         | 114.0        | 0.0          | 132.0        | 229.4        | 149.4        | 100.0         | 59.3          | 67.8          | 95.3          | 1357   |
| MT106   | 0.0          | 0.0           | 0.0          | 94.1         | 119.0        | 121.7        | 22.5         | 97.2         | 34.6          | 11.3          | 0.0           | 93.2          | 594    |
| MT107   | 350.6        | 69.0          | 71.2         | 84.9         | 114.9        | 151.7        | 4.3          | 91.4         | 33.3          | 33.2          | 42.2          | 2.5           | 1049   |
| MT108   | 14.9         | 0.0           | 58.1         | 96.2         | 189.2        | 229.3        | 70.4         | 178.2        | 40.7          | 0.0           | 0.0           | 0.0           | 877    |
| MT110   | 0.0          | 0.0           | 46.3         | 86.8         | 137.7        | 0.2          | 0.0          | 67.9         | 35.8          | 32.5          | 7.9           | 0.0           | 415    |
| MTII2   | 18.5         | 0.0           | 52.8         | 75.8         | 60.3         | 138.2        | 69.6         | 135.5        | 76.0          | 41.4          | 41.2          | 20.6          | 730    |
| MT121   | 47.1         | 0.0           | 0.0          | 49.6         | 63.4         | 166.1        | 20.5         | 72.3         | 10.5          | 0.0           | 0.0           | 0.0           | 430    |
| MT126   | 1.8          | 1.0           | 0.3          | 83.9         | 210.7        | 185.4        | 31.7         | 158.3        | 65.2          | 4.2           | 0.0           | 0.0           | 743    |
| MT128   | 24.3         | 72.2          | 72.2         | 41.8         | 94.5         | 161.6        | 27.8         | 130.9        | 77.3          | 59.6          | 0.0           | 0.0           | 762    |
| MT130   | 0.9          | 2.3           | 0.7          | 111.0        | 216.7        | 190.2        | 108.8        | 149.2        | 63.9          | 29.8          | 0.0           | 0.0           | 874    |
| MT136   | 1.0          | 0.0           | 21.1         | 131.6        | 178.5        | 194.4        | 41.3         | 117.8        | 45.5          | 0.0           | 0.0           | 0.0           | 731    |
| MT140   | 2.2          | 0.0           | 0.7          | 82.6         | 180.0        | 229.6        | 55.0         | 151.0        | 51.7          | 0.5           | 0.0           | 0.0           | 753    |
| MT141   | 9.1          | 0.0           | 1.4          | 94.0         | 196.3        | 222.2        | 77.2         | 146.4        | 32.9          | 0.0           | 0.0           | 0.0           | 780    |
| MT142   | 0.4          | 0.0           | 0.0          | 67.4         | 161.3        | 136.9        | 78.2         | 107.2        | 40.5          | 0.0           | 0.0           | 0.0           | 592    |
| MT171   | 9.2          | 0.0           | 8.2          | 105.7        | 207.1        | 233.3        | 70.0         | 116.0        | 46.9          | 65.4          | 65.0          | 0.0           | 927    |
| MT174   | 6.1          | 0.0           | 0.0          | 86.5         | 152.1        | 190.0        | 102.8        | 97.4         | 49.6          | 0.0           | 0.0           | 0.0           | 685    |
| MT175   | 0.7          | 11.2          | 1.1          | 45.7         | 137.4        | 145.0        | 39.4         | 92.4         | 17.3          | 4.0           | 0.0           | 0.0           | 494    |
| Average | 20.0         | 15.0          | 31.0         | 100.0        | 172.0        | 173.0        | 74.0         | 135.0        | 79.0          | 19.0          | 12.0          | 7.0           |        |

Table 5. Concluded

(Seasonal Totals of Hours of Operation for Sites Not Measured Biweekly)

| Site | Totals | Site  | Totals | Site    | Totals |
|------|--------|-------|--------|---------|--------|
| MT7  | 503    | MT79  | 412    | MT158   | 996    |
| MTll | 608    | MT82  | 499    | MT159   | 960    |
| MT14 | 902    | MTII3 | 838    | MT166   | 704    |
| MT43 | 782    | MTll4 | 781    | MT170   | 636    |
| MT45 | 862    | MTI15 | 798    | MT173   | 966    |
| MT56 | 649    | MT119 | 770    | MT177   | 459    |
| MT69 | 603    | MT122 | 356    | MT178   | 672    |
| MT70 | 658    | MT123 | 545    | MT179   | 598    |
| MT75 | 483    | MT129 | 730    |         |        |
| MT76 | 484    | MT150 | 1137   | Average | 838    |

## Table 6. Biweekly and Seasonal Irrigation Hours, 1989 (Green River Lowlands)

| Site | 5/31-6/21 | 6/21-7/5 | 7/5-7/19 | 7/19-8/3 | 8/3-8/17 | 8/17-9/30 | Totals |
|------|-----------|----------|----------|----------|----------|-----------|--------|
| LW1  | 17        | 155      | 177      | 31       | 0        | 0         | 380    |
| LW2  | 25        | 217      | 304      | 87       | 73       | 0         | 706    |
| LW3  | 10        | 232      | 188      | 56       | 23       | 0         | 510    |
| LW4  | 0         | 240      | 247      | 0        | 49       | 0         | 537    |
| LW5  | 35        | 150      | 130      | 136      | 22       | 5         | 478    |
| LW6  | 76        | 105      | 86       | 87       | 16       | 48        | 416    |
| LW7  | 0         | 261      | 248      | 105      | 94       | 0         | 708    |
| LW13 | 1         | 209      | 224      | 77       | 58       | 1         | 569    |
| LW14 | 0         | 201      | 249      | 81       | 61       | 0         | 592    |
| LW15 | 3         | 19       | 142      | 36       | 23       | 30        | 253    |
| LW16 | 1         | 59       | 309      | 48       | 29       | 68        | 513    |
| LW17 | 0         | 73       | 276      | 66       | 43       | 50        | 508    |
| LW18 | 50        | 255      | 224      | 95       | 70       | 0         | 694    |
| LW26 | 0         | 208      | 167      | 91       | 49       | 0         | 515    |
| LW28 | -         | -        | 135      | 63       | 105      | 2         | 306    |
| LW29 | -         | -        | 92       | 70       | 95       | 1         | 259    |
| LW31 | 0         | 246      | 140      | 66       | 68       | 0         | 520    |
| LW32 | 0         | 207      | 131      | 30       | 26       | 0         | 393    |
| LW34 | 37        | 358      | 73       | 108      | 91       | 34        | 700    |
| LW35 | 18        | 260      | 97       | 245      | 268      | 96        | 985    |

| Site    | 5/31-6/21 | 6/21-715 | 7/5-7/19 | 7/19-8/3 | 8/3-8/17 | 8/17-9/30 | Totals |
|---------|-----------|----------|----------|----------|----------|-----------|--------|
| LW36    | 0         | 160      | 185      | 95       | 86       | 21        | 546    |
| LW37    | 0         | 185      | 148      | 10       | 112      | 0         | 455    |
| LW38    | 0         | 156      | 113      | 0        | 54       | 0         | 324    |
| LW39    | 0         | 267      | 81       | 0        | 0        | 0         | 348    |
| LW42    | 21        | 209      | 40       | 66       | 33       | 15        | 383    |
| LW43    | 28        | 378      | 148      | 257      | 148      | 1         | 960    |
| LW44    | 0         | 370      | 140      | 189      | 116      | 0         | 815    |
| LW45    | 1         | 358      | 94       | 126      | 0        | 0         | 579    |
| LW57    | 0         | 260      | 89       | 101      | 66       | 5         | 521    |
| LW59    | 0         | 289      | 117      | 12       | 98       | 0         | 515    |
| LW60    | 6         | 199      | 223      | 281      | 169      | 1         | 879    |
| LW63    | 33        | 309      | 157      | 99       | 50       | 78        | 724    |
| LW64    | 25        | 400      | 133      | 173      | 97       | 0         | 828    |
| Average | 12        | 226      | 161      | 91       | 69       | 14        | 573    |

## Table 6. Concluded

## Table 7. Biweekly and Seasonal Irrigation Water Use, 1989 (Havana Lowlands)

| Site | 3/1-<br>5/10 | 5/10-<br>5/24 | 5/24-<br>6/7 | 6/7-<br>6/21 | 6/21-<br>7/5 | 7/5-<br>7/20 | 7/20-<br>8/3 | 8/3-<br>8/17 | 8/17-<br>8/29 | 8/29-<br>9/14 | 9/14-<br>9/27 | 9/27-<br>10/1 | Totals |
|------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|--------|
| MT2  | 0.0          | 0.0           | 0.8          | 1.7          | 3.3          | 3.1          | 1.0          | 2.0          | 0.9           | 0.0           | 0.0           | 0.0           | 12.7   |
| MT8  | 0.2          | 0.0           | 0.5          | 3.5          | 3.9          | 2.4          | 1.9          | 1.9          | 1.4           | 0.2           | 0.0           | 0.0           | 15.9   |
| MT10 | 0.2          | 0.4           | 0.6          | 2.2          | 0.5          | 0.0          | 0.4          | 1.3          | 0.8           | 0.4           | 1.0           | 0.0           | 7.9    |
| MT26 | 0.0          | 0.0           | 0.5          | 1.5          | 3.4          | 2.9          | 0.9          | 2.8          | 1.7           | 0.0           | 0.0           | 0.0           | 13.7   |
| MT27 | 0.6          | 0.0           | 0.0          | 2.7          | 3.7          | 4.3          | 2.7          | 0.1          | 4.0           | 0.0           | 0.0           | 0.0           | 18.0   |
| MT28 | 0.3          | 0.0           | 0.0          | 0.0          | 2.2          | 1.1          | 0.8          | 1.1          | 0.8           | 0.0           | 0.0           | 0.0           | 6.3    |
| MT29 | 0.0          | 0.0           | 0.0          | 1.1          | 2.1          | 2.6          | 0.7          | 1.7          | 1.2           | 0.0           | 0.0           | 0.0           | 9.4    |
| MT30 | 0.0          | 0.0           | 0.0          | 1.5          | 0.0          | 1.6          | 0.0          | 1.7          | 1.0           | 0.4           | 1.0           | 0.3           | 7.6    |
| MT31 | 0.0          | 0.0           | 0.0          | 1.5          | 4.4          | 4.9          | 1.8          | 4.8          | 0.7           | 0.0           | 0.0           | 0.0           | 18.2   |
| MT32 | 0.0          | 0.0           | 0.0          | 1.2          | 3.5          | 3.9          | 1.4          | 3.8          | 0.5           | 0.0           | 0.0           | 0.0           | 14.4   |
| MT33 | 1.4          | 0.0           | 0.1          | 1.3          | 2.7          | 2.8          | 1.0          | 3.3          | 1.1           | 0.8           | 0.0           | 0.1           | 14.4   |
| MT34 | 0.0          | 1.3           | 1.0          | 1.9          | 4.4          | 2.4          | 0.0          | 2.8          | 2.4           | 0.9           | 0.0           | 0.0           | 17.0   |
| MT36 | 0.0          | 0.0           | 0.0          | 1.5          | 3.4          | 5.4          | 2.5          | 3.9          | 3.0           | 0.0           | 0.0           | 0.0           | 19.8   |
| MT37 | 0.0          | 0.0           | 0.6          | 1.3          | 4.0          | 4.1          | 0.7          | 3.3          | 2.0           | 0.9           | 0.7           | 0.0           | 17.5   |
| MT38 | 0.0          | 0.0           | 0.0          | 1.1          | 3.2          | 3.0          | 1.6          | 2.8          | 1.7           | 0.0           | 0.0           | 0.0           | 13.4   |
| MT39 | 0.0          | 0.0           | 2.0          | 1.7          | 2.2          | 0.0          | 2.1          | 1.9          | 1.5           | 0.1           | 0.0           | 0.0           | 11.5   |

## Table 7. Continued

| Site  | 3/1-<br>5/10 | 5/10-<br>5/24 | 5/24-<br>6/7 | 6/7-<br>6/21 | 6/21-<br>7/5 | 7/5-<br>7/20 | 7/20-<br>8/3 | 8/3-<br>8/17 | 8/17-<br>8/29 | 8/29-<br>9/14 | 9/14-<br>9/27 | 9/27-<br>10/1 | Totals |
|-------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|--------|
| MT41  | 0.1          | 0.0           | 0.1          | 1.3          | 3.5          | 1.5          | 0.4          | 2.4          | 0.9           | 0.0           | 0.0           | 0.0           | 10.2   |
| MT46  | 0.6          | 0.0           | 0.0          | 1.9          | 3.8          | 4.2          | 2.4          | 3.6          | 2.3           | 0.0           | 0.0           | 0.0           | 18.8   |
| MT47  | 0.3          | 0.0           | 0.0          | 1.9          | 4.8          | 4.4          | 1.7          | 2.3          | 2.3           | 0.0           | 0.0           | 0.0           | 17.9   |
| MT50  | 0.0          | 0.2           | 0.0          | 1.8          | 3.5          | 2.7          | 0.6          | 1.1          | 0.9           | 0.8           | 1.1           | 0.6           | 13.3   |
| MT51  | 0.1          | 0.0           | 0.7          | 2.3          | 4.2          | 3.0          | 3.0          | 2.6          | 0.2           | 0.2           | 0.2           | 0.0           | 16.5   |
| MT53  | 0.4          | 0.0           | 0.0          | 2.6          | 3.6          | 2.2          | 2.3          | 2.5          | 1.3           | 0.0           | 0.0           | 0.0           | 14.9   |
| MT54  | 0.1          | 0.0           | 0.0          | 2.3          | 3.5          | 3.7          | 3.8          | 2.6          | 1.1           | 0.0           | 0.0           | 0.0           | 17.0   |
| MT57  | 0.6          | 0.8           | 0.2          | 2.6          | 2.7          | 4.4          | 0.3          | 2.6          | 0.0           | 0.0           | 0.0           | 0.0           | 14.1   |
| MT58  | 0.1          | 0.0           | 0.3          | 2.0          | 3.7          | 3.1          | 2.7          | 2.6          | 1.3           | 0.0           | 0.0           | 0.0           | 15.8   |
| MT59  | 1.2          | 0.5           | 0.5          | 1.2          | 2.0          | 3.0          | 1.0          | 3.0          | 1.4           | 1.0           | 0.3           | 0.0           | 15.2   |
| MT60  | 0.5          | 0.7           | 0.0          | 1.6          | 2.6          | 1.7          | 0.1          | 1.7          | 1.1           | 0.7           | 1.0           | 0.7           | 12.4   |
| MT61  | 0.5          | 0.0           | 0.0          | 1.7          | 3.1          | 4.3          | 1.3          | 2.7          | 3.1           | 0.0           | 0.0           | 0.0           | 16.7   |
| MT62  | 0.3          | 0.0           | 0.5          | 2.5          | 5.1          | 4.8          | 2.0          | 2.9          | 1.5           | 0.0           | 0.0           | 0.0           | 19.5   |
| MT63  | 0.3          | 0.0           | 1.3          | 1.8          | 2.3          | 3.4          | 0.6          | 1.6          | 1.6           | 0.9           | 0.8           | 0.4           | 14.9   |
| MT66  | 0.0          | 0.0           | 0.2          | 1.0          | 1.6          | 1.7          | 0.6          | 1.6          | 0.6           | 0.0           | 0.0           | 0.0           | 7.3    |
| MT71  | 0.1          | 0.0           | 0.0          | 1.8          | 2.5          | 3.5          | 0.2          | 3.0          | 1.2           | 0.1           | 0.0           | 0.0           | 12.4   |
| MT72  | 0.1          | 0.0           | 0.0          | 0.8          | 0.8          | 1.8          | 0.4          | 1.3          | 0.2           | 0.0           | 0.0           | 0.0           | 5.4    |
| MT77  | 0.7          | 0.7           | 0.9          | 1.4          | 1.4          | 2.1          | 0.3          | 2.0          | 1.2           | 0.3           | 0.0           | 0.0           | 10.9   |
| MT81  | 0.0          | 0.0           | 0.0          | 1.1          | 2.7          | 4.0          | 1.0          | 1.5          | 1.5           | 0.0           | 0.0           | 0.0           | 11.8   |
| MT90  | 0.0          | 0.0           | 0.0          | 0.6          | 2.4          | 2.9          | 0.7          | 2.3          | 1.1           | 0.3           | 0.0           | 0.0           | 10.3   |
| MT96  | 0.4          | 1.0           | 3.7          | 4.8          | 4.3          | 2.6          | 1.0          | 2.3          | 2.2           | 1.4           | 1.4           | 0.0           | 25.1   |
| MT97  | 0.0          | 0.0           | 0.4          | 1.7          | 4.6          | 2.2          | 1.9          | 2.9          | 1.6           | 0.0           | 0.0           | 0.0           | 15.4   |
| MT98  | 1.1          | 0.5           | 0.8          | 3.0          | 4.0          | 3.6          | 1.8          | 3.0          | 1.7           | 0.0           | 0.0           | 0.0           | 19.2   |
| MT99  | 0.7          | 1.0           | 2.3          | 1.3          | 2.0          | 3.1          | 1.4          | 2.7          | 2.4           | 0.9           | 0.0           | 0.0           | 17.7   |
| MT100 | 0.0          | 0.5           | 1.8          | 2.5          | 3.4          | 3.5          | 0.5          | 2.6          | 2.3           | 0.6           | 0.4           | 0.0           | 18.2   |
| MT101 | 0.3          | 0.0           | 2.4          | 2.6          | 4.8          | 4.1          | 1.3          | 3.5          | 2.0           | 0.0           | 0.0           | 0.0           | 21.1   |
| MT102 | 0.5          | 0.8           | 0.9          | 2.4          | 4.7          | 3.6          | 1.9          | 2.3          | 1.2           | 0.6           | 0.0           | 0.0           | 18.7   |
| MT103 | 1.4          | 2.2           | 1.5          | 3.0          | 0.0          | 1.9          | 2.2          | 3.1          | 2.6           | 0.7           | 1.5           | 0.1           | 20.2   |
| MT104 | 1.6          | 3.9           | 2.6          | 3.0          | 0.0          | 3.4          | 6.0          | 3.9          | 2.6           | 1.5           | 1.8           | 5.1           | 35.3   |
| MT106 | 0.0          | 0.0           | 0.0          | 1.6          | 2.0          | 2.1          | 0.4          | 1.7          | 0.6           | 0.2           | 0.0           | 1.6           | 10.2   |
| MT107 | 8.5          | 1.7           | 1.7          | 2.1          | 2.8          | 3.7          | 0.1          | 2.2          | 0.8           | 0.8           | 1.0           | 0.1           | 25.6   |
| MT108 | 0.3          | 0.0           | 1.3          | 2.2          | 4.4          | 5.3          | 1.6          | 4.1          | 0.9           | 0.0           | 0.0           | 0.0           | 20.2   |
| MT110 | 0.0          | 0.0           | 1.1          | 2.0          | 3.2          | 0.0          | 0.0          | 1.6          | 0.8           | 0.7           | 0.2           | 0.0           | 9.6    |

## Table 7. Continued

| Site    | 3/1-<br>5/10 | 5/10-<br>5/24 | 5/24-<br>6/7 | 6/7-<br>6/21 | 6/21-<br>7/5 | 7/5-<br>7/20 | 7/20-<br>8/3 | 8/3-<br>8/17 | 8/17-<br>8/29 | 8/29-<br>9/14 | 9/14-<br>9/27 | 9/27-<br>10/1 | Totals |
|---------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|--------|
| MT112   | 0.3          | 0.0           | 0.8          | 1.2          | 1.0          | 2.2          | 1.1          | 2.1          | 1.2           | 0.7           | 0.7           | 0.3           | 11.5   |
| MT121   | 0.8          | 0.0           | 0.0          | 0.8          | 1.1          | 2.8          | 0.3          | 1.2          | 0.2           | 0.0           | 0.0           | 0.0           | 7.3    |
| MT126   | 0.0          | 0.0           | 0.0          | 1.2          | 3.1          | 2.7          | 0.5          | 2.3          | 1.0           | 0.1           | 0.0           | 0.0           | 10.9   |
| MT128   | 0.4          | 1.0           | 1.0          | 0.6          | 1.4          | 2.3          | 0.4          | 1.9          | 1.1           | 0.9           | 0.0           | 0.0           | 11.0   |
| MT130   | 0.0          | 0.0           | 0.0          | 1.4          | 2.8          | 2.5          | 1.4          | 1.9          | 0.8           | 0.4           | 0.0           | 0.0           | 11.3   |
| MT136   | 0.0          | 0.0           | 0.3          | 1.7          | 2.3          | 2.5          | 0.5          | 1.5          | 0.6           | 0.0           | 0.0           | 0.0           | 9.2    |
| MT140   | 0.0          | 0.0           | 0.0          | 1.3          | 2.9          | 3.7          | 0.9          | 2.4          | 0.8           | 0.0           | 0.0           | 0.0           | 12.2   |
| MT141   | 0.1          | 0.0           | 0.0          | 1.5          | 3.2          | 3.6          | 1.2          | 2.4          | 0.5           | 0.0           | 0.0           | 0.0           | 12.6   |
| MT142   | 0.0          | 0.0           | 0.0          | 0.8          | 1.9          | 1.6          | 0.9          | 1.3          | 0.5           | 0.0           | 0.0           | 0.0           | 6.9    |
| MT171   | 0.1          | 0.0           | 0.1          | 1.4          | 2.7          | 3.1          | 0.9          | 1.5          | 0.6           | 0.9           | 0.9           | 0.0           | 12.2   |
| MT174   | 0.2          | 0.0           | 0.0          | 2.8          | 4.9          | 6.2          | 3.3          | 3.2          | 1.6           | 0.0           | 0.0           | 0.0           | 22.3   |
| MT175   | 0.0          | 0.2           | 0.0          | 0.8          | 2.5          | 2.7          | 0.7          | 1.7          | 0.3           | 0.1           | 0.0           | 0.0           | 9.1    |
| Average | 0.4          | 0.3           | 0.6          | 1.8          | 2.9          | 3.0          | 1.3          | 2.4          | 1.3           | 0.3           | 0.2           | 0.0           |        |

## Seasonal Totals of Irrigation Water Use for Sites Not Measured Biweekly

| Site | Totals | Site  | Totals | Site    | Totals |
|------|--------|-------|--------|---------|--------|
| MT7  | 5.7    | MT79  | 7.2    | MT158   | 25.2   |
| MT11 | 15.1   | MT82  | 9.3    | MT159   | 36.4   |
| MT14 | 15.1   | MT113 | 13.7   | MT166   | 13.8   |
| MT43 | 18.9   | MT114 | 13.3   | MT170   | 16.8   |
| MT45 | 17.9   | MT115 | 15.4   | MT173   | 25.6   |
| MT56 | 13.2   | MT119 | 9.2    | MT177   | 7.1    |
| MT69 | 7.4    | MT122 | 6.1    | MT178   | 10.9   |
| MT70 | 12.4   | MT123 | 6.3    | MT179   | 9.0    |
| MT75 | 8.0    | MT129 | 10.2   |         |        |
| MT76 | 7.9    | MT150 | 18.5   | Average | 14.5   |

|         | (inches)  |          |          |          |          |           |        |  |  |  |
|---------|-----------|----------|----------|----------|----------|-----------|--------|--|--|--|
| Site    | 5/31-6/21 | 6/21-7/5 | 7/5-7/19 | 7/19-8/3 | 8/3-8/17 | 8/17-9/30 | Totals |  |  |  |
| LW1     | 0.2       | 2.2      | 2.5      | 0.4      | 0.0      | 0.0       | 5.4    |  |  |  |
| LW2     | 0.4       | 3.2      | 4.5      | 1.3      | 1.1      | 0.0       | 10.4   |  |  |  |
| LW3     | 0.2       | 3.4      | 2.8      | 0.9      | 0.3      | 0.0       | 7.5    |  |  |  |
| LW4     | 0.0       | 1.9      | 2.0      | 0.0      | 0.4      | 0.0       | 4.3    |  |  |  |
| LW5     | 0.6       | 2.7      | 2.3      | 2.4      | 0.4      | 0.1       | 8.4    |  |  |  |
| LW6     | 1.0       | 1.3      | 1.1      | 1.1      | 0.2      | 0.6       | 5.3    |  |  |  |
| LW7     | 0.0       | 2.5      | 2.4      | 1.0      | 0.9      | 0.0       | 6.8    |  |  |  |
| LW13    | 0.0       | 4.2      | 4.4      | 1.6      | 1.1      | 0.0       | 11.3   |  |  |  |
| LW14    | 0.0       | 3.3      | 4.1      | 1.3      | 1.0      | 0.0       | 9.8    |  |  |  |
| LW15    | 0.1       | 0.3      | 2.4      | 0.6      | 0.4      | 0.5       | 4.4    |  |  |  |
| LW16    | 0.0       | 1.1      | 5.7      | 0.9      | 0.5      | 1.2       | 9.4    |  |  |  |
| LW17    | 0.0       | 0.8      | 2.8      | 0.7      | 0.4      | 0.5       | 5.2    |  |  |  |
| LW18    | 0.6       | 2.9      | 2.6      | 1.0      | 0.8      | 0.0       | 7.9    |  |  |  |
| LW26    | 0.0       | 3.1      | 2.5      | 1.3      | 0.7      | 0.0       | 7.6    |  |  |  |
| LW28    |           |          | 2.3      | 1.1      | 1.8      | 0.0       | 5.2    |  |  |  |
| LW29    |           |          | 1.3      | 1.0      | 1.4      | 0.0       | 3.7    |  |  |  |
| LW31    | 0.0       | 3.9      | 2.2      | 1.0      | 1.1      | 0.0       | 8.2    |  |  |  |
| LW32    | 0.0       | 3.2      | 2.0      | 0.5      | 0.4      | 0.0       | 6.1    |  |  |  |
| LW34    | 0.5       | 4.4      | 0.9      | 1.3      | 1.1      | 0.4       | 8.6    |  |  |  |
| LW35    | 0.2       | 2.6      | 1.0      | 2.4      | 2.7      | 1.0       | 9.8    |  |  |  |
| LW36    | 0.0       | 2.5      | 2.9      | 1.5      | 1.4      | 0.3       | 8.6    |  |  |  |
| LW37    | 0.0       | 2.5      | 2.0      | 0.1      | 1.5      | 0.0       | 6.3    |  |  |  |
| LW38    | 0.0       | 2.7      | 1.9      | 0.0      | 0.9      | 0.0       | 5.6    |  |  |  |
| LW39    | 0.0       | 3.1      | 0.9      | 0.0      | 0.0      | 0.0       | 4.0    |  |  |  |
| LW42    | 0.3       | 2.6      | 0.5      | 0.8      | 0.4      | 0.2       | 4.8    |  |  |  |
| LW43    | 0.3       | 3.5      | 1.4      | 2.4      | 1.4      | 0.0       | 8.9    |  |  |  |
| LW44    | 0.0       | 6.1      | 2.3      | 3.1      | 1.9      | 0.0       | 13.3   |  |  |  |
| LW45    | 0.0       | 5.4      | 1.4      | 1.9      | 0.0      | 0.0       | 8.8    |  |  |  |
| LW57    | 0.0       | 15.1     | 5.2      | 5.9      | 3.8      | 0.3       | 30.2   |  |  |  |
| LW59    | 0.0       | 6.4      | 2.6      | 0.3      | 2.2      | 0.0       | 11.4   |  |  |  |
| LW60    | 0.0       | 0.7      | 0.8      | 0.9      | 0.6      | 0.0       | 3.0    |  |  |  |
| LW63    | 0.5       | 4.7      | 2.4      | 1.5      | 0.8      | 1.2       | 11.1   |  |  |  |
| LW64    | 0.3       | 5.2      | 1.7      | 2.3      | 1.3      | 0.0       | 10.9   |  |  |  |
| Average | 0.3       | 2.5      | 2.5      | 1.0      | 0.5      | 0.1       | 6.9    |  |  |  |

## Table 8. Biweekly and Seasonal Irrigation Water Use, 1989 (Green River Lowlands)

# Table 9. Generalization of Soil Permeabilities(Havana Lowlands)

(percent of total irrigated area)

| Site | Rapid | Moderately<br>rapid<br>to rapid | Moderate to<br>moderately<br>rapid | Moderate |
|------|-------|---------------------------------|------------------------------------|----------|
| MT2  | 61    | 18                              | 21                                 | -        |
| MT8  | 35    | 27                              | 38                                 | -        |
| MT10 | 25    | 10                              | 65                                 | -        |
| MT26 | 88    | 12                              | -                                  | -        |
| MT27 | 100   | -                               | -                                  | -        |
| MT28 | -     | -                               | -                                  | 100      |
| MT29 | 5     | 3                               | 75                                 | 17       |
| MT30 | -     | -                               | 100                                | -        |
| MT31 | 10    | 76                              | 14                                 | -        |
| MT32 | 85    | -                               | 15                                 | -        |
| MT33 | 33    | 10                              | 57                                 | -        |
| MT34 | 40    | 12                              | 48                                 | -        |
| MT36 | 12    | 86                              | 2                                  | -        |
| MT37 | 71    | 12                              | 17                                 | -        |
| MT38 | 72    | 27                              | 1                                  | -        |
| MT39 | 43    | 26                              | 31                                 | -        |
| MT41 | 14    | 86                              | -                                  | -        |
| MT46 | -     | 85                              | 15                                 | -        |
| MT47 | 70    | 30                              | -                                  | -        |
| MT50 | 30    | 14                              | 56                                 | -        |
| MT51 | 3     | 75                              | 22                                 | -        |
| MT53 | -     | 100                             | -                                  | -        |
| MT54 | 17    | 52                              | 31                                 | -        |
| MT57 | -     | -                               | 100                                | -        |
| MT58 | 54    | 21                              | 11                                 | 14       |
| MT59 | 60    | 17                              | 23                                 | -        |
| MT60 | 52    | 20                              | 23                                 | 5        |
| MT61 | 38    | 27                              | 35                                 | -        |
| MT62 | 87    | 13                              | -                                  | -        |
| MT63 | 50    | 15                              | 35                                 | -        |
| MT66 | 5     | -                               | 95                                 | -        |

## Table 9. Concluded

| Site  | Rapid | Moderately<br>rapid<br>to rapid | Moderate to<br>moderately<br>rapid | Moderate |
|-------|-------|---------------------------------|------------------------------------|----------|
| MT62  | 87    | 13                              | -                                  | -        |
| MT71  | 34    | 17                              | 17                                 | 32       |
| MT72  | -     | 35                              | 25                                 | 40       |
| MT77  | -     | 100                             | -                                  | -        |
| MT81  | 34    | 10                              | 35                                 | 21       |
| MT90  | 93    | 7                               | -                                  | -        |
| MT96  | 94    | 5                               | 1                                  | -        |
| MT97  | 97    | -                               | 3                                  | -        |
| MT98  | 100   | -                               | -                                  | -        |
| MT99  | 96    | 4                               | -                                  | -        |
| MT100 | 92    | 2                               | 6                                  | -        |
| MT101 | 94    | 3                               | 3                                  | -        |
| MT102 | 83    | 3                               | 14                                 | -        |
| MT103 | 100   | -                               | -                                  | -        |
| MT104 | 100   | -                               | -                                  | -        |
| MT106 | 6     | -                               | 94                                 | -        |
| MT107 | 18    | -                               | 82                                 | -        |
| MT108 | 56    | 7                               | 37                                 | -        |
| MT110 | 40    | 10                              | 50                                 | -        |
| MT112 | 45    | 21                              | 34                                 | -        |
| MT121 | -     | -                               | -                                  | 100      |
| MT126 | 8     | 92                              | -                                  | -        |
| MT128 | 30    | 14                              | 56                                 | -        |
| MT130 | 18    | 29                              | 53                                 | -        |
| MT136 | 15    | 72                              | 13                                 | -        |
| MT140 | 65    | 5                               | 30                                 | -        |
| MT141 | 69    | 20                              | 11                                 | -        |
| MT142 | 35    | 60                              | 5                                  | -        |
| MT171 | 80    | 20                              | -                                  | -        |
| MT174 | 70    | 30                              | -                                  | -        |
| MT175 | -     | 20                              | 78                                 | 2        |

## Table 10. Generalization of Soil Permeabilities (Green River Lowlands) (percent of total irrigated area)

|      |             |            | Moderate to         |          |             |
|------|-------------|------------|---------------------|----------|-------------|
| Sita | Papid       | Moderately | moderately<br>rapid | Moderate | Moderate to |
| Sile | ларіа<br>29 |            | 7 <i>apia</i>       | Moderale | Slow        |
|      | 28          | 4          | 20                  | 48       | -           |
| LW2  | 11          | 11         | 31                  | 43       | 4           |
| LW3  | 38          | 6          | 6                   | 50       | -           |
| LW4  | -           | -          | 11                  | 89       | -           |
| LW5  | 14          | 86         | -                   | -        | -           |
| LW6  | 66          | 20         | -                   | 14       | -           |
| LW7  | 58          | 20         | 6                   | 14       | 2           |
| LW13 | 50          | 34         | -                   | 16       | -           |
| LW14 | 24          | 76         | -                   | -        | -           |
| LW15 | 30          | 70         | -                   | -        | -           |
| LW16 | 19          | 63         | -                   | 18       | -           |
| LW17 | 22          | 73         | 5                   | -        | -           |
| LW18 | 8           | 70         | -                   | 14       | 8           |
| LW26 | -           | 3          | 8                   | 74       | 15          |
| LW28 | 5           | 54         | 29                  | 12       | -           |
| LW29 | -           | 55         | 45                  | -        | -           |
| LW31 | -           | 25         | 75                  | -        | -           |
| LW32 | -           | -          | 100                 | -        | -           |
| LW34 | 15          | 5          | 80                  | -        | -           |
| LW35 | 7           | 70         | 23                  | -        | -           |
| LW36 | -           | 15         | 85                  | -        | -           |
| LW37 | -           | 7          | 73                  | 20       | -           |
| LW38 | 3           | 17         | 67                  | 13       | -           |
| LW39 | -           | -          | -                   | 100      | -           |
| LW42 | -           | 26         | 52                  | 22       | -           |
| LW43 | 5           | 95         | -                   | -        | -           |
| LW44 | 7           | 69         | 24                  | -        | -           |
| LW45 | -           | 45         | 55                  | -        | -           |
| LW57 | 1           | 64         | 25                  | 10       | -           |
| LW59 | 6           | 20         | 30                  | 44       | -           |
| LW60 | 2           | 4          | 69                  | 25       | -           |
| LW63 | 7           | 32         | 47                  | 14       | -           |
| LW64 | 8           | 92         | -                   | -        | -           |

|      | Fe        | et below land si | ırface    | Absolute differences in water levels |                             |                           |  |  |
|------|-----------|------------------|-----------|--------------------------------------|-----------------------------|---------------------------|--|--|
| Site | Fall 1988 | Spring 1989      | Fall 1989 | Fall 1988 to<br>Spring 1989          | Spring 1989 to<br>Fall 1989 | Fall 1988 to<br>Fall 1989 |  |  |
| MT1  | 33.93     | 34.04            | 34.62     | 0.11                                 | 0.58                        | 0.69                      |  |  |
| MT2  | 16.88     | 16.98            | 17.25     | 0.10                                 | 0.27                        | 0.37                      |  |  |
| MT5  | 22.70     | 22.88            | 23.51     | 0.18                                 | 0.63                        | 0.81                      |  |  |
| MT6  | 36.52     | 36.49            | 37.00     | 0.03                                 | 0.51                        | 0.48                      |  |  |
| MT9  | -         | 31.45            | 32.73     | -                                    | 1.28                        | -                         |  |  |
| MT11 | -         | 28.56            | -         | -                                    | -                           | -                         |  |  |
| MT12 | -         | 45.45            | 46.27     | -                                    | 0.82                        | -                         |  |  |
| MT13 | -         | 49.89            | 50.93     | -                                    | 1.04                        | -                         |  |  |
| MT15 | -         | 36.55            | 37.36     | -                                    | 0.81                        | -                         |  |  |
| MT18 | -         | 71.03            | 71.14     | -                                    | 0.11                        | -                         |  |  |
| MT20 | -         | 34.48            | 35.40     | -                                    | 0.92                        | -                         |  |  |
| MT21 | -         | 31.76            | 32.95     | -                                    | 1.19                        | -                         |  |  |
| MT22 | -         | 21.70            | 21.98     | -                                    | 0.28                        | -                         |  |  |
| MT23 | -         | 22.94            | 23.23     | -                                    | 0.29                        | -                         |  |  |
| MT24 | -         | 21.13            | 21.39     | -                                    | 0.26                        | -                         |  |  |
| MT26 | -         | 30.86            | 32.13     | -                                    | 1.27                        | -                         |  |  |
| MT27 | 14.02     | 14.75            | 15.82     | 0.73                                 | 1.07                        | 1.80                      |  |  |
| MT29 | -         | 18.55            | 18.74     | -                                    | 0.19                        | -                         |  |  |
| MT30 | -         | 13.97            | 14.27     | -                                    | 0.30                        | -                         |  |  |
| MT31 | 12.00     | 12.75            | 13.04     | 0.75                                 | 0.29                        | 1.04                      |  |  |
| MT32 | 7.42      | 8.03             | 8.20      | 0.61                                 | 0.17                        | 0.78                      |  |  |
| MT35 | 12.48     | 12.12            | 13.51     | 0.36                                 | 1.39                        | 1.03                      |  |  |
| MT37 | -         | 15.80            | 15.58     | -                                    | 0.22                        | -                         |  |  |
| MT39 | -         | 13.90            | 14.53     | -                                    | 0.63                        | -                         |  |  |
| MT40 | -         | 22.35            | 23.27     | -                                    | 0.92                        | -                         |  |  |
| MT41 | -         | 10.48            | 10.74     | -                                    | 0.26                        | -                         |  |  |
| MT51 | 15.11     | 14.74            | 15.15     | 0.37                                 | 0.41                        | 0.04                      |  |  |
| MT52 | 15.60     | 15.10            | 15.89     | 0.50                                 | 0.79                        | 0.29                      |  |  |
| MT54 | 14.80     | 14.54            | 15.37     | 0.26                                 | 0.83                        | 0.57                      |  |  |
| MT55 | 27.66     | 27.86            | 28.38     | 0.20                                 | 0.52                        | 0.72                      |  |  |
| MT57 | 13.36     | 13.12            | 13.48     | 0.24                                 | 0.36                        | 0.12                      |  |  |
| MT59 | -         | 16.72            | 17.28     | -                                    | 0.56                        | -                         |  |  |
| MT60 | -         | 12.26            | 12.79     | -                                    | 0.53                        | -                         |  |  |

## Table 11. Nonpumping Water Levels, 1988-1989 (Havana Lowlands)

|       | Fe        | et below land su | <u>irface</u> | Absolute differences in water levels |                             |                           |  |  |  |
|-------|-----------|------------------|---------------|--------------------------------------|-----------------------------|---------------------------|--|--|--|
| Site  | Fall 1988 | Spring 1989      | Fall 1989     | Fall 1988 to<br>Spring 1989          | Spring 1989 to<br>Fall 1989 | Fall 1988 to<br>Fall 1989 |  |  |  |
| MT61  | 11.72     | 12.12            | 12.46         | 0.40                                 | 0.34                        | 0.74                      |  |  |  |
| MT62  | 20.84     | 21.11            | 20.52         | 0.27                                 | 0.59                        | 0.32                      |  |  |  |
| MT63  | 20.69     | 18.99            | 19.42         | 1.70                                 | 0.43                        | 1.27                      |  |  |  |
| MT64  | -         | 30.09            | 31.14         | -                                    | 1.05                        | -                         |  |  |  |
| MT65  | -         | 27.98            | 28.25         | -                                    | 0.27                        | -                         |  |  |  |
| MT66  | -         | 22.73            | 23.20         | -                                    | 0.47                        | -                         |  |  |  |
| MT68  | -         | 18.60            | 18.92         | -                                    | 0.32                        | -                         |  |  |  |
| MT69  | -         | 7.66             | 7.79          | -                                    | 0.13                        | -                         |  |  |  |
| MT73  | -         | 8.89             | 8.94          | -                                    | 0.05                        | -                         |  |  |  |
| MT74  | -         | 32.57            | 33.54         | -                                    | 0.97                        | -                         |  |  |  |
| MT75  | -         | 11.24            | 11.56         | -                                    | 0.32                        | -                         |  |  |  |
| MT77  | -         | 53.26            | 54.16         | -                                    | 0.90                        | -                         |  |  |  |
| MT80  | -         | 52.39            | 54.20         | -                                    | 1.81                        | -                         |  |  |  |
| MT83  | 11.76     | 11.38            | 11.93         | 0.38                                 | 0.55                        | 0.17                      |  |  |  |
| MT84  | -         | 13.68            | 14.10         | -                                    | 0.42                        | -                         |  |  |  |
| MT85  | -         | 16.97            | 17.46         | -                                    | 0.49                        | -                         |  |  |  |
| MT86  | -         | 21.25            | 21.85         | -                                    | 0.60                        | -                         |  |  |  |
| MT87  | -         | 14.04            | 14.43         | -                                    | 0.39                        | -                         |  |  |  |
| MT88  | 19.00     | 20.40            | 21.09         | 1.40                                 | 0.69                        | 2.09                      |  |  |  |
| MT89  | 12.58     | 13.78            | 14.49         | 1.20                                 | 0.71                        | 1.91                      |  |  |  |
| MT91  | -         | 14.74            | 15.43         | -                                    | 0.69                        | -                         |  |  |  |
| MT92  | -         | 17.68            | 18.79         | -                                    | 1.11                        | -                         |  |  |  |
| MT99  | -         | 33.19            | 34.83         | -                                    | 1.64                        | -                         |  |  |  |
| MT100 | -         | 16.14            | 17.18         | -                                    | 1.04                        | -                         |  |  |  |
| MT101 | -         | 17.18            | 17.99         | -                                    | 0.81                        | -                         |  |  |  |
| MT102 | -         | 23.64            | -             | -                                    | -                           | -                         |  |  |  |
| MT106 | 16.30     | 15.93            | 15.72         | 0.37                                 | 0.21                        | 0.58                      |  |  |  |
| MT108 | -         | 13.38            | 13.90         | -                                    | 0.52                        | -                         |  |  |  |
| MT110 | -         | -                | 15.35         | -                                    | -                           | -                         |  |  |  |
| MT114 | -         | 14.70            | 15.59         | -                                    | 0.89                        | -                         |  |  |  |
| MT117 | 19.45     | 18.84            | 18.93         | 0.61                                 | 0.09                        | 0.52                      |  |  |  |
| MT118 | -         | 36.66            | 35.09         | -                                    | 1.57                        | -                         |  |  |  |
| MT119 | -         | 42.83            | 44.53         | -                                    | 1.70                        | -                         |  |  |  |

## Table 11. Continued

|       | Feet b    | elow land surfa | ce        | Absolute differences in water levels |                             |                           |  |  |
|-------|-----------|-----------------|-----------|--------------------------------------|-----------------------------|---------------------------|--|--|
| Site  | Fall 1988 | Spring 1989     | Fall 1989 | Fall 1988 to<br>Spring 1989          | Spring 1989 to<br>Fall 1989 | Fall 1988 to<br>Fall 1989 |  |  |
| MT120 | -         | 11.06           | 11.24     | -                                    | 0.18                        | -                         |  |  |
| MT121 | -         | 7.49            | 7.55      | -                                    | 0.06                        | -                         |  |  |
| MT124 | -         | 14.81           | 15.08     | -                                    | 0.27                        | -                         |  |  |
| MT125 | -         | 17.94           | 18.12     | -                                    | 0.18                        | -                         |  |  |
| MT126 | -         | 9.86            | 10.56     | -                                    | 0.70                        | -                         |  |  |
| MT129 | -         | 10.51           | 11.45     | -                                    | 0.94                        | -                         |  |  |
| MT130 | -         | 24.16           | 25.51     | -                                    | 1.35                        | -                         |  |  |
| MT135 | -         | 5.10            | 6.44      | -                                    | 1.34                        | -                         |  |  |
| MT137 | -         | 13.53           | 14.68     | -                                    | 1.15                        | -                         |  |  |
| MT141 | -         | 16.57           | 17.62     | -                                    | 1.05                        | -                         |  |  |
| MT142 | 24.70     | 23.95           | 25.05     | 0.75                                 | 1.10                        | 0.35                      |  |  |
| MT145 | -         | 8.08            | 7.52      | -                                    | 0.56                        | -                         |  |  |
| MT147 | -         | 5.94            | 7.30      | -                                    | 1.36                        | -                         |  |  |
| MT148 | -         | 41.65           | 42.69     | -                                    | 1.04                        | -                         |  |  |
| MT151 | -         | 47.76           | 48.81     | -                                    | 1.05                        | -                         |  |  |
| MT152 | -         | 57.20           | -         | -                                    | -                           | -                         |  |  |
| MT154 | -         | 46.15           | 47.47     | -                                    | 1.32                        | -                         |  |  |
| MT155 | -         | 54.77           | -         | -                                    |                             | -                         |  |  |
| MT156 | -         | 86.46           | 88.65     | -                                    | 2.19                        | -                         |  |  |
| MT160 | -         | 47.33           | 48.93     | -                                    | 1.60                        | -                         |  |  |
| MT162 | -         | 48.90           | 50.07     | -                                    | 1.17                        | -                         |  |  |
| MT165 | -         | 37.05           | -         | -                                    | -                           | -                         |  |  |
| MT168 | -         | 27.00           | 27.34     | -                                    | 0.34                        | -                         |  |  |
| MT170 | -         | 5.08            | 5.10      | -                                    | 0.02                        | -                         |  |  |
| MT171 | -         | 30.92           | 32.18     | -                                    | 1.26                        | -                         |  |  |
| MT172 | -         | 23.67           | 24.53     | -                                    | 0.86                        | -                         |  |  |
| MT173 | 9.23      | 9.52            | 9.42      | 0.29                                 | 0.10                        | 0.19                      |  |  |
| MT174 | 12.07     | 12.75           | 13.63     | 0.68                                 | 0.88                        | 1.56                      |  |  |
| MT175 | 18.26     | 17.48           | 17.41     | 0.78                                 | 0.07                        | 0.85                      |  |  |
| MT177 | -         | 15.59           | 16.64     | 1.05                                 | -                           | -                         |  |  |
| MT178 | -         | 15.33           | 15.52     | 0.19                                 | -                           | -                         |  |  |
| MT179 | -         | 12.39           | 12.62     | 0.23                                 | -                           | -                         |  |  |
| MT180 | -         | 15.86           | 16.03     | 0.17                                 | -                           | -                         |  |  |

## Table 11. Continued

|       | Feetl     | below land surfa | ice       | Absolute differences in water levels |                             |                           |  |  |
|-------|-----------|------------------|-----------|--------------------------------------|-----------------------------|---------------------------|--|--|
| Site  | Fall 1988 | Spring 1989      | Fall 1989 | Fall 1988 to<br>Spring 1989          | Spring 1989<br>to Fall 1989 | Fall 1988 to<br>Fall 1989 |  |  |
| MT183 | 15.56     | 15.81            | 16.22     | 0.25                                 | 0.41                        | 0.66                      |  |  |
| MT185 | -         | 34.33            | 35.40     | 1.07                                 | -                           | -                         |  |  |
| MT186 | -         | 46.19            | 47.21     | 1.02                                 | -                           | -                         |  |  |
| MT187 | -         | 4.90             | 4.96      | 0.06                                 | -                           | -                         |  |  |
| MT188 | -         | 5.94             | 5.95      | 0.01                                 | -                           | -                         |  |  |
| MT189 | 8.30      | -                | -         | -                                    | -                           | -                         |  |  |
| MT190 | 10.17     | -                | -         | -                                    | -                           | -                         |  |  |
| MT191 | 20.13     | 20.22            | -         | 0.09                                 | -                           | -                         |  |  |
| MT192 | 9.96      | -                | -         | -                                    | -                           | -                         |  |  |
| MT193 | -         | 19.82            | -         | -                                    | -                           | -                         |  |  |
| MT194 | 11.21     | 12.10            | -         | 0.89                                 | -                           | -                         |  |  |

Table 11. Concluded

## Table 12. Nonpumping Water Levels, 1988-1989 (Green River Lowlands)

|      | Feet below land surface |             |           | Absolute differences in water levels |                             |                           |  |
|------|-------------------------|-------------|-----------|--------------------------------------|-----------------------------|---------------------------|--|
| Site | Fall 1988               | Spring 1989 | Fall 1989 | Fall 1988 to<br>Spring 1989          | Spring 1989 to<br>Fall 1989 | Fall 1988 to<br>Fall 1989 |  |
| LW4  | -                       | 18.03       | 18.95     | -                                    | 0.92                        | -                         |  |
| LW5  | -                       | 9.13        | 9.43      | -                                    | 0.30                        | -                         |  |
| LW6  | -                       | 13.40       | 13.70     | -                                    | 0.30                        | -                         |  |
| LW8  | 14.43                   | 14.33       | 18.07     | 0.10                                 | 3.74                        | 3.64                      |  |
| LW13 | -                       | 12.81       | 13.16     | -                                    | 0.35                        | -                         |  |
| LW14 | -                       | -           | 6.72      | -                                    | -                           | -                         |  |
| LW15 | -                       | 9.85        | 11.71     | -                                    | 1.86                        | -                         |  |
| LW17 | 10.79                   | -           | -         | -                                    | -                           | -                         |  |
| LW18 | -                       | 13.15       | 13.28     | -                                    | 0.13                        | -                         |  |
| LW19 | -                       | -           | 17.96     | -                                    | -                           | -                         |  |
| LW23 | 13.21                   | 12.58       | 12.77     | 0.63                                 | 0.19                        | 0.44                      |  |
| LW24 | -                       | 10.13       | 8.48      | -                                    | 1.65                        | -                         |  |
| LW26 | -                       | -           | 97.60     | -                                    | -                           | -                         |  |
| LW27 | -                       | -           | 33.07     | -                                    | -                           | -                         |  |
| LW30 | 11.15                   | 10.80       | 10.78     | 0.35                                 | 0.02                        | 0.37                      |  |
| LW33 | 10.31                   | 10.15       | 10.12     | 0.16                                 | 0.03                        | 0.19                      |  |
| LW34 | 14.12                   | 15.08       | 15.40     | 0.96                                 | 0.32                        | 1.28                      |  |

|      | Feet      | Feet below land surface |           |                             | Absolute differences in water levels |                           |  |
|------|-----------|-------------------------|-----------|-----------------------------|--------------------------------------|---------------------------|--|
| Site | Fall 1988 | Spring 1989             | Fall 1989 | Fall 1988 to<br>Spring 1989 | Spring 1989 to<br>Fall 1989          | Fall 1988 to<br>Fall 1989 |  |
| LW35 | 12.22     | 10.76                   | 14.07     | 1.46                        | 3.31                                 | 1.85                      |  |
| LW38 | -         | -                       | 7.20      | -                           | -                                    | -                         |  |
| LW39 | -         | -                       | 11.43     | -                           | -                                    | -                         |  |
| LW40 | -         | -                       | 13.25     | -                           | -                                    | -                         |  |
| LW43 | 19.95     | 20.43                   | 20.79     | 0.48                        | 0.36                                 | 0.84                      |  |
| LW49 | 18.74     | -                       | 23.41     | -                           | -                                    | 4.67                      |  |
| LW50 | 12.30     | 11.91                   | 12.06     | 0.39                        | 0.15                                 | 0.24                      |  |
| LW57 | 13.35     | -                       | -         | -                           | -                                    | -                         |  |
| LW61 | 9.36      | 9.21                    | 9.54      | 0.15                        | 0.33                                 | 0.18                      |  |
| LW63 | 11.19     | 11.51                   | 12.31     | 0.32                        | 0.80                                 | 1.12                      |  |
| LW65 | -         | 18.34                   | 18.90     | -                           | 0.56                                 | -                         |  |
| LW66 | -         | -                       | 10.31     | -                           | -                                    | -                         |  |
| LW67 | 15.21     | -                       | 14.47     | -                           | -                                    | -                         |  |
| LW68 | -         | 9.46                    | 10.21     | -                           | 0.75                                 | -                         |  |
| LW70 | -         | 21.10                   | 24.01     | -                           | 2.91                                 | -                         |  |
| LW71 | -         | 18.35                   | 18.71     | -                           | 0.36                                 | -                         |  |
| LW72 | -         | 23.26                   | 24.05     | -                           | 0.79                                 | -                         |  |
| LW74 | -         | 1.46                    | 2.06      | -                           | 0.60                                 | -                         |  |
| LW77 | -         | 7.00                    | 9.15      | -                           | 2.15                                 | -                         |  |
| LW79 | -         | 17.47                   | 18.45     | -                           | 0.98                                 | -                         |  |
| LW78 | -         | 13.28                   | 13.68     | -                           | 0.40                                 | -                         |  |
| LW80 | -         | 15.70                   | 18.53     | -                           | 2.83                                 | -                         |  |
| LW81 | -         | 13.74                   | 14.54     | -                           | 0.80                                 | -                         |  |
| LW82 | -         | 19.36                   | 20.19     | -                           | 0.83                                 | -                         |  |
| LW83 | -         | 15.37                   | 16.19     | -                           | 0.82                                 | -                         |  |
| LW84 | -         | 9.34                    | 10.10     | -                           | 0.76                                 | -                         |  |
| LW85 | -         | 9.31                    | 10.54     | -                           | 1.23                                 | -                         |  |

## Table 12. Concluded

# Table 13. Comparison of Nonpumping Water Levels, 1960 and 1989 (Havana Lowlands) $_{(feet)}$

| Site  | Land elevation | Water table<br>elevation,<br>1960 | Measurement<br>date | Water table<br>elevation,<br>1989 | Measurement<br>date | Difference<br>1960-1989 |
|-------|----------------|-----------------------------------|---------------------|-----------------------------------|---------------------|-------------------------|
| MT1   | 493            | 462                               | 7/7/60              | 458                               | 9/26/89             | -4                      |
| MT6   | 495            | 452                               | 7/7/60              | 462                               | 9/26/89             | 10                      |
| MT32  | 458            | 452                               | 7/7/60              | 450                               | 9/26/89             | -2                      |
| MT40  | 510            | 489                               | 12/59               | 487                               | 9/26/89             | -2                      |
| MT51  | 463            | 451                               | 7/8/60              | 448                               | 9/27/89             | -3                      |
| MT55  | 504            | 481                               | 7/26/60             | 476                               | 9/27/89             | -5                      |
| MT64  | 497            | 470                               | 8/23/60             | 466                               | 9/28/89             | -4                      |
| MT68  | 503            | 492                               | 8/10/60             | 484                               | 9/27/89             | -8                      |
| MT86  | 493            | 483                               | 12/59               | 471                               | 9/27/89             | -12                     |
| MT106 | 500            | 495                               | 7/7/60              | 484                               | 9/27/89             | -11                     |
| MT111 | 502            | 491                               | 10/59               | 487                               | 9/27/89             | -4                      |
| MT117 | 516            | 500                               | 7/26/60             | 497                               | 9/27/89             | -3                      |
| MT120 | 470            | 460                               | 8/23/60             | 459                               | 9/28/89             | -1                      |
| MT121 | 467            | 460                               | 8/23/60             | 459                               | 9/28/89             | -1                      |
| MT125 | 494            | 483                               | 10/59               | 476                               | 9/28/89             | -7                      |
| MT126 | 499            | 491                               | 10/59               | 488                               | 9/26/89             | -3                      |
| MT135 | 487            | 480                               | 12/59               | 481                               | 9/26/89             | 1                       |
| MT151 | 520            | 475                               | 7/29/60             | 471                               | 9/28/89             | -4                      |
| MT154 | 510            | 465                               | 8/23/60             | 463                               | 9/28/89             | -2                      |
| MT168 | 505            | 495                               | 8/9/60              | 478                               | 9/28/89             | -17                     |
| MT171 | 468            | 440                               | 7/28/60             | 443                               | 9/27/89             | 3                       |
| MT174 | 470            | 457                               | 7/8/60              | 456                               | 9/27/89             | -1                      |
| MT180 | 500            | 490                               | 8/9/60              | 484                               | 9/27/89             | -6                      |
| MT183 | 494            | 484                               | 7/8/60              | 478                               | 9/27/89             | -6                      |

#### **Annual Irrigation Totals**

Wide variations in watering patterns were observed during the two years of study. A subset of the collected data was analyzed to gain a better understanding of the reasons for this variability. Figure 5 shows the distribution of total 1989 irrigation amounts observed at the study sites. There are many reasons why irrigation patterns might vary from year to year and among farmers. The sources of irrigation variability considered in this study were:

#### weather variations and drought

- Do farmers A and B change their watering patterns uniformly from year to year in response to weather patterns, or are they inconsistent?
- Do farmers A and B water differently in year 1 than in year 2 for reasons seemingly unrelated to the weather?

#### soil type variations

• Does farmer A water twice as much as farmer B in any given year because farmer A's soils contain a higher sand content and therefore hold less water?

#### variations in crop type

• Do farmers A and B water differently because one is growing field corn and one is growing green beans?

#### variations in individual farmer behavior

• Do farmers A and B, who are neighbors and have similar soil types, weather, and crops, water differently for unknown reasons?

#### other variations and possible inaccuracies

- Do the flowmeters work correctly?
- Do the irrigation system hour meters work correctly?
- Do irrigation farmers keep accurate records of irrigation water use?

#### Weather Variations and Drought

Dramatic differences in irrigation water use were observed during the 1988 and 1989 growing seasons. Table 14 compares irrigation water use during 1988 and 1989. Average irrigation water use was 64 percent higher during 1988 in response to a severe drought; many irrigation farmers participating in the study reported using twice as much irrigation water as they had ever used before. More variability was observed between 1988 and 1989 than



Figure 5. Distribution of total average 1989 irrigation amounts (Havana Lowlands)

during either year alone. Irrigation watering patterns were reasonably consistent throughout the region during both years because irrigation farmers appeared to respond uniformly to the prevailing weather patterns. In short, 1988 was a severe drought year and everybody watered more; 1989 was near normal and everybody watered less than they did in 1988.

## Table 14. Total Irrigation Water Use(Havana Lowlands)

(inches)

| Year | Minimum | Maximum | Mean | Standard<br>deviation |
|------|---------|---------|------|-----------------------|
| 1988 | 10.8    | 30.3    | 23.0 | 5.0                   |
| 1989 | 5.4     | 25.6    | 14.1 | 5.7                   |

#### Soil Type Variations

There was generally good correlation between total 1989 irrigation water use and soil moisture conditions as characterized by the average field capacity for the upper 36 inches of soil (figure 6). As might be expected, the lower the field capacity, the higher the irrigation water use. Table 15 shows average total irrigation applications for 1989 in a breakdown by average moisture content.

Results from this study indicate that root-zone soil moisture may explain between 44 and 65 percent of the variability in total irrigation water use. Table 16 shows correlation coefficients for a series of bivariate linear



Figure 6. Correlation between average root-zone field capacity and 1989 observed total average irrigation (Havana Lowlands)

regression experiments comparing total irrigation water use for 1989 and root-zone moisture content. Three cases are summarized in the table. Case A considers every site in the study for which soil moisture and total irrigation water use data were available. Case B narrows the sample size to consider only those sites where a single crop was grown and irrigated. Case C considers only singlecropped fields with electric-powered irrigation rigs. The rationale behind this analysis was that a higher percentage of the electric systems monitored in this study had working electric or hour meters that enabled a more accurate estimate of total irrigation water use, while a number of the diesel-powered systems had engine meters that worked only intermittently.

In addition to the general association between root-zone field capacity and irrigation water use, a common belief among the farmers participating in this study was that irrigation farmers "irrigate for their worst soil"; in other words, they irrigate the sandiest soils enough to maximize crop yields, with the understanding that they may be slightly overwatering the better soils on the same irrigated field. A series of linear regression experiments was conducted to test this hypothesis using subsets of the study data based on the percentage of the "worst" soil with the lowest average field capacity of all soil types under the irrigation rig. Most of the study sites had at least some Sparta and Plainfield soils, which have average root-zone field capacities of 2 to 3 inches, so most sites had the same worst soil covering varying percentages of the field. Total 1989 irrigation water use was compared with the average root-zone field capacities for all sites with, for example, 50 percent of all soils having average root-zone field capacities of 3 inches or less. There is some inconclusive evidence of the practice of watering for the worst soil in these study results (table 17). Generally, the higher the percentage of "bad" soil, the higher the total irrigation water use.

In addition to the analysis described above, irrigation practices were compared based on two general soil groups according to their permeability (figures 7 and 8). In the Havana Lowlands, rapidly permeable soils received an average of 16 inches of water (44 samples), while moderately permeable soils received an average of 10.2 inches of water (17 samples). Rapidly and moderately permeable soils in the Green River Lowlands received 8.5 and 7.1 inches of water, respectively (16 and 17 samples). These data suggest that the most important influence on irrigation water use at a given site is soil permeability, or soil water-holding capacity.

| Table 15. Irrigation | Water Use | Comparison by | y Soil Gr | oup, 1989 | (Havana | Lowlands) |
|----------------------|-----------|---------------|-----------|-----------|---------|-----------|
|----------------------|-----------|---------------|-----------|-----------|---------|-----------|

(inches)

| Soil<br>group | Sample<br>size | Root-zone<br>moisture | Minimum | Maximum | Mean | Standard<br>Deviation |
|---------------|----------------|-----------------------|---------|---------|------|-----------------------|
| 1             | 14             | 2.0 - 2.6             | 12.2    | 25.1    | 18.2 | 23.3                  |
| 2             | 24             | 2.7 - 3.8             | 9.2     | 22.3    | 15.5 | 63.3                  |
| 3             | 30             | 3.9 - 4.9             | 5.4     | 17.0    | 11.5 | 63.1                  |
| 4             | 8              | 5.0 - 7.0             | 6.3     | 12.4    | 8.19 | 1.9                   |

| Table             | 16. | Soil | Туре | Correlation | Coefficients, | 1989 |  |
|-------------------|-----|------|------|-------------|---------------|------|--|
| (Havana Lowlands) |     |      |      |             |               |      |  |

| Case | R     | $R^2$ | Sample size |
|------|-------|-------|-------------|
| А    | -0.66 | 0.44  | 82          |
| В    | -0.77 | 0.59  | 55          |
| С    | -0.81 | 0.65  | 39          |

### Table 17. "Worst Soil" Analysis, 1989 (Havana Lowlands)

| Percentage |        |                       |
|------------|--------|-----------------------|
| worst soil | R      | <i>R</i> <sup>2</sup> |
| 50         | -0.502 | 0.252                 |
| 40         | -0.361 | 0.130                 |
| 30         | -0.336 | 0.113                 |
| 25         | -0.277 | 0.077                 |
| 20         | -0.192 | 0.037                 |
| 15         | -0.148 | 0.022                 |
| 10         | -0.126 | 0.016                 |
| 5          | -0.063 | 0.004                 |
| 3          | -0.055 | 0.003                 |



Figure 7. Average 1989 irrigation amounts on soils with rapid versus moderate permeability (Havana Lowlands)



Figure 8. Average 1989 irrigation amounts on soils with rapid versus moderate permeability (Green River Lowlands)

### Crop Type Variations

Surprisingly little variability in average total irrigation water use was observed due to differences in crop type. However, comparisons of single- versus double-cropped fields, and of corn and soybeans on the most highly permeable soils, revealed measurable differences.

Table 18 shows 1989 total water use for the major crops. While the water amounts varied widely for all major crop groups (as evidenced by the standard deviations in the table), the mean total irrigation amounts for all crop groups were very similar. Slightly more variability is apparent when the major crop groups are categorized by crop type for corn crops (table 19) and for small vegetables (table 20); however, the total mean irrigation water uses were still fairly consistent. Even average differences between single- and double-cropped fields are small, in spite of the longer season for the double-cropped fields.

# Table 18. Average 1989 Irrigation Water Use by Major Crop Group, 1989 (Havana Lowlands)

|                  |      | (inches) |      |      |                |
|------------------|------|----------|------|------|----------------|
| Crop             | Min. | Max.     | Mean | S.D. | Sample<br>size |
| Corn             | 5.4  | 22.3     | 13.6 | 4.2  | 62             |
| Small vegetables | 7.1  | 25.6     | 14.0 | 6.2  | 12             |
| Soybeans         | 12.4 | 15.2     | 13.8 | 2.0  | 5              |

| Table 19. Average Irrigation Water Use for Corn Cro | ps, |
|-----------------------------------------------------|-----|
| 1989 (Havana Lowlands)                              |     |
| (inches)                                            |     |

|            |      | ()   |      |      |                |
|------------|------|------|------|------|----------------|
| Crop       | Min. | Max. | Mean | S.D. | Sample<br>size |
| Popcorn    | 5.4  | 20.2 | 13.0 | 4.0  | 19             |
| Field corn | 6.9  | 22.3 | 14.3 | 4.2  | 34             |
| Sweet corn | 10.2 | 18.9 | 15.0 | 3.2  | 6              |
| Seed corn  | 6.3  | 7.4  | 7.0  | 0.6  | 3              |

There are several plausible explanations. First, growing different crops simultaneously on one field is a common practice among irrigation farmers participating in this study and other farmers observed throughout the region. More than half of the study sites had more than one crop type growing simultaneously under the same irrigation system: many sites had three different crops, and one site had four different crops. Even though the water demands of these crops may differ, irrigation farmers do not alter the water amount because it is inconvenient to adjust the irrigation spray and the system speed. Second, irrigation farmers apparently do not keep records of total irrigation amounts, so they are unlikely to systematically adjust water amounts according to crop type. Third, many participating irrigation farmers reported applying the maxi-



Figure 9. Average 1989 irrigation amounts on singleversus double-cropped fields having soils with rapid permeabilities (Havana Lowlands)

## Table 20. Average Irrigation Water Use for Small Vegetable Crops, 1989 (Havana Lowlands)

|      | (inches)                   |                                                                          |                                                                                |                                                                                                 |
|------|----------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Min. | Mix.                       | Mean                                                                     | S.D.                                                                           | Sample<br>size                                                                                  |
| 7.1  | 25.1                       | 13.6                                                                     | 6.7                                                                            | 6                                                                                               |
| 9.6  | 11.5                       | 10.9                                                                     | 1.1                                                                            | 3                                                                                               |
| 10.9 | 25.6                       | 18.1                                                                     | 7.4                                                                            | 3                                                                                               |
|      | Min.<br>7.1<br>9.6<br>10.9 | <i>(inches)</i><br><i>Min. Mix.</i><br>7.1 25.1<br>9.6 11.5<br>10.9 25.6 | (inches)<br>Min. Mix. Mean<br>7.1 25.1 13.6<br>9.6 11.5 10.9<br>10.9 25.6 18.1 | (inches)<br>Min. Mix. Mean S.D.<br>7.1 25.1 13.6 6.7<br>9.6 11.5 10.9 1.1<br>10.9 25.6 18.1 7.4 |

mum amount of water possible, regardless of crop type, since their sandy soil holds so little moisture. Again, they are apparently unlikely to alter their practices according to crop type.

Comparisons were also made of single- and doublecropping methods on soils with rapid and moderate permeabilities. In the Havana Lowlands, double-cropped fields with rapid permeabilities received 18.0 inches of water (17 samples), while single-cropped fields with similar soils received 15.9 inches (27 samples) (figure 9). Double- and single-cropped fields on moderately permeable soils received 11.4 and 9.4 inches of water, respectively (7 and 10 samples) (figure 10). In the Green River Lowlands, double-cropped fields with rapid permeabilities soils received only 7.6 inches of water (2 samples), compared with 8.7 inches for single-cropped fields with



Figure 10. Average 1989 irrigation amounts on singleversus double-cropped fields having soils with moderate permeabilities (Havana Lowlands)

similar soils (14 samples) (figure 11). Double- and single-cropped fields on moderately permeable soils received 8.7 and 7.0 inches of water, respectively (2 and 15 samples) (figure 12).



Figure 11. Average 1989 irrigation amounts on singleversus double-cropped fields having soils with rapid permeabilities (Green River Lowlands)



Figure 12. Average 1989 irrigation amounts on singleversus double-cropped fields having soils wilh moderate permeabilities (Green River Lowlands)

### Variations in Individual Farmer Behavior

In addition to such physical controls over irrigation water use as weather, soil type, and crop type, there will always be some variation due to individual farmer behavior. Some irrigation farmers simply water more or less than others for reasons that are apparently unrelated to weather, crops, and soils. It is difficult to quantify behavioral variations; however, table 21 compares total 1989 irrigation water use for 11 neighboring participants in the Havana Lowlands study region. Each farmer operated three or more irrigation rigs and corn was the predominant crop. The fields were categorized according to their mean root-zone field capacity; total irrigation water use was then compared among the farmers in each group. The results suggest that even when farmers grow the same crop on similar soils and precipitation patterns are generally similar, total irrigation water use can vary significantly. Water use patterns among the three groups did, however, generally follow soil moisture conditions. Farmers 1-3 (lowest ambient soil moisture conditions) generally watered more than farmers 4-11: likewise, farmers 4-7 ("medium" average ambient soil moisture conditions) watered less than farmers 1-3 but more than farmers 8-11 (highest ambient soil moisture conditions).

#### **Other Variations**

Differences in weather, soil type, crop type, and even in farmer behavior do not explain all the variability in total irrigation water use observed in this study. Other plausible causes for variation are possible inaccuracies in both the estimated flow rates and in the hours of operation recorded off system hour meters. Irrigation well flow rates, used to compute total irrigation water use, were based on farmer-estimated flow rates. These estimates may be inaccurate due to a pump's age and deterioration. Similarly, total irrigation water use computations were also based on hours of irrigation system operation measured by the hour meters on the engines or the centerpivots. These meters, particularly the diesel engine hour meters, may have inaccurately logged the hours, causing some error in the water use calculations. For purposes of comparison, figure 13 shows the irrigation farmer-recorded irrigation applications versus the applications observed by researchers. There is a clear lack of correlation. Interviews with the farmers revealed that they often know the amount of water they apply in one revolution of the irrigation system (for example, 1/2 inch), but they often lose track of the number of revolutions the system makes in

|        | Average roo | ot-zone field capa | <u>acity (inches)</u> | Average 1989 irrigation water use (inches) |         |      |  |
|--------|-------------|--------------------|-----------------------|--------------------------------------------|---------|------|--|
| Farmer | Minimum     | Maximum            | Mean                  | Minimum                                    | Maximum | Mean |  |
| 1      | 2.1         | 2.6                | 2.3 (low)             | 15.4                                       | 25.1    | 19.4 |  |
| 2      | 2.8         | 3.1                | 3.0 (low)             | 6.9                                        | 12.6    | 10.6 |  |
| 3      | 2.6         | 3.6                | 3.2 (low)             | 17.9                                       | 18.9    | 18.4 |  |
| 4      | 3.0         | 4.0                | 3.5 (med)             | 13.4                                       | 19.8    | 16.4 |  |
| 5      | 2.4         | 4.4                | 3.6 (med)             | 12.4                                       | 19.5    | 15.3 |  |
| 6      | 2.1         | 4.4                | 3.6 (med)             | 9.6                                        | 35.3    | 18.7 |  |
| 7      | 2.9         | 4.2                | 3.7 (med)             | 13.3                                       | 15.4    | 14.1 |  |
| 8      | 4.1         | 6.2                | 5.0 (high)            | 5.4                                        | 12.4    | 9.0  |  |
| 9      | 4.1         | 7.0                | 5.5 (high)            | 6.8                                        | 13.9    | -    |  |
| 10     | 3.8         | 4.1                | 3.9 (high)            | 10.2                                       | 11.3    | 10.9 |  |
| 11     | 4.0         | 5.2                | 4.4 (high)            | 7.1                                        | 16.8    | 10.6 |  |

## Table 21. Individual Farmer Variability, 1989(Havana Lowlands)



Figure 13. Total 1989 irrigation amounts recorded by participating irrigation farmers versus total 1989 irrigation amounts observed by researchers (Havana Lowlands)

one year. This suggests that the discrepancies seen in figure 13 arise from incomplete rather than inaccurate farm records. It should be emphasized that figure 13 shows farm-recorded irrigation amounts versus observed irrigation amounts, not farmer-estimated flow rates for

computing irrigation amounts versus observed irrigation. This is an important distinction since the farmers' tendency to underestimate their irrigation water use (figure 13) does not necessarily mean that the farmer-estimated flow rates (system design flow rates), used in this study to compute irrigation water use, are inherently too low. Figure 13 simply shows what, in fact, happened during the 1989 growing season: many participating farmers kept accurate records for about a month into the growing season and then got too busy to keep complete records. Hence, their estimates of total irrigation water used in 1989 were lower than researcher observations.

#### **Seasonal Irrigation Time Series**

Researchers made biweekly visits to 61 study sites between April 26 and October 11, 1989, to track water use throughout the growing season. In the Havana Lowlands, seasonal irrigation water use averaged 14.5 inches. High water use recorded from April 1 to May 10 was reflected in initial irrigation and fertigation of crops, including the first crop of double-cropped fields. At least half the farmers in the study applied nitrogen through irrigation systems (fertigation) during this and other critical growth periods. Peak water use occurred during pollination periods in late June and early July. Decreased water use in mid- to late July reflected cloudy, rainy







#### Table 22. 1989 Pan Evaporation and Computed Evapotranspiration, 1989

(Havana Lowlands)

(inches)

|              |            |                    | <u>Crop coefficients</u> |          | <u>Evapotran</u> : | spiration |
|--------------|------------|--------------------|--------------------------|----------|--------------------|-----------|
| Time<br>step | Dates      | Pan<br>evaporation | Field corn               | Soybeans | Field corn         | Soybeans  |
| 1            | 4/26-5/9   | 1.107              | 0.46                     | 0.22     | 0.509              | 0.243     |
| 2            | 5/10-5/23  | 1.187              | 0.46                     | 0.22     | 0.546              | 0.261     |
| 3            | 5/24-6/6   | 1.223              | 0.54                     | 0.30     | 0.661              | 0.367     |
| 4            | 6/7-6/20   | 1.338              | 0.64                     | 0.37     | 0.856              | 0.495     |
| 5            | 6/21-7/4   | 1.574              | 0.82                     | 0.48     | 1.291              | 0.756     |
| 6            | 7/5-7/19   | 1.623              | 1.00                     | 0.63     | 1.623              | 1.022     |
| 7            | 7/20-8/2   | 0.991              | 1.08                     | 0.84     | 1.070              | 0.833     |
| 8            | 9/8-8/16   | 1.352              | 1.08                     | 0.98     | 1.460              | 1.325     |
| 9            | 8/17-8/28  | 0.738              | 1.03                     | 1.02     | 0.760              | 0.752     |
| 10           | 8/29-9/13  | 0.820              | 0.97                     | 0.83     | 0.795              | 0.680     |
| 11           | 9/14-9/26  | 0.713              | 0.89                     | 0.72     | 0.635              | 0.514     |
| 12           | 9/27-10/11 | 0.953              | 0.50                     | 0.40     | 0.477              | 0.381     |
|              |            |                    |                          |          |                    |           |

weather and associated lower evapotranspiration rates. Water use through August and September reflected the demands of the second crop of double-cropped fields.

Pan evaporation measurements from the Sand Field versus computed evapotranspiration for field corn (figure 14) and soybeans (figure 15) were based on the crop

coefficients shown in table 22. A relatively cool period in early July drove evapotranspiration and irrigation amounts down at a time during the growing season when both quantities might normally be at their peak. Figure 16 compares computed field corn evapotranspiration and observed irrigation applications on cornfields. It is significant to note that irrigation applications dropped during early July in accordance with decreased evaporative demands. A similar pattern was observed for soybean fields (figure 17). Again, there was a decrease in both evapotranspiration and irrigation in early July. For figures 18 and 19, rainfall was added to irrigation amounts during each 2-week time step; the total was then compared to evapotranspiration.

Figures 18 and 19 show that the irrigation farmers participating in this study were, on the average, adept at



Figure 16. 1989 field corn evapotranspiration versus average irrigation amounts on field corn sites (Havana Lowlands)



Figure 18. 1989 field corn evapotranspiration versus average irrigation amounts plus rainfall on field corn sites (Havana Lowlands)

applying generally appropriate amounts of irrigation water at the right times. While this may suggest that the farmers formally schedule their irrigation applications, few of the participants actually kept records of water use or reported use of any formal scheduling method. Most reported observing ("looks dry") and feeling ("feels dry") their soil to determine when to irrigate. Irrigation farmers "know their land" and know from experience the appropriate amount of water that their soil and cropping patterns require.



Figure 17. 1989 soybean evapotranspiration versus average irrigation amounts on soybean fields (Havana Lowlands)



Figure 19. 1989 soybean evapotranspiration versus average irrigation amounts plus rainfall on soybean fields (Havana Lowlands)

## CONCLUSIONS

A two-year study was conducted of irrigation water use and scheduling practices in Illinois during the 1988 and 1989 growing seasons. Estimates of irrigation water use for each irrigation system in the study were based on metered hours of irrigation system operation and rate of system flow. Flow rate information was based on irrigation system design flow ratings. In most cases, that information was provided by the irrigation farmer from system installation records, hence, the term "farmer-estimated flow rates" used in this report. Farmer-estimated flow rates should not be confused with farm-recorded irrigation amounts, which were found to be incomplete records of water use.

Attempts were made to independently validate the farmer-estimated flow rates using both external and internal flow monitoring devices at a number of study sites. For many reasons, flowmeter results were found to be inconsistent with the design flow rates, and they were seldom replicated during subsequent measurements. Flowmeter results were not used in this study to compute total irrigation water use.

In general, irrigation amounts were found to be highly variable for many reasons. Tracing the causes for this variation was somewhat complicated because irrigation farmers generally do not keep complete records of irrigation applications. Several specific study results, however, stand out as significant.

First, ambient soil moisture conditions (root-zone field capacity) largely control farmers' decisions about how much irrigation water to apply. Average root-zone field capacity generally correlated well with total irrigation amounts: the lower the field capacity, the higher the irrigation amount. There was additional evidence that farmers may irrigate for their worst or sandiest soil with the lowest moisture-holding capacity, even if that means overwatering the better soils slightly. Generally, the larger the proportion of worst soil in one field, the higher the total irrigation amounts; this association became significantly weaker as the proportion of worst soil in the field decreased.

Second, weather also appears to control farmers' decisions about irrigation. A greater degree of variability was observed in irrigation amounts from year to year than from farmer to farmer within one year. This suggests that irrigation farmers respond uniformly to changes in the weather such as normal versus drought conditions. One assumes that if a severe drought affected one portion of an irrigated region but not another, variations between the two regions would be similar to those observed between a normal year and a drought year.

Third, farmers do not appear to vary their irrigation amounts significantly on different crops. There are several possible reasons for this. Farmers may not take time to adjust the irrigation amounts for different crops growing in a single field. They may not know how much water they apply on any given crop, making it difficult to vary that amount according to crop type. Or they may apply as much water as they can, no matter what crop they are growing.

Fourth, irrigation farmers may display some idiosyncratic behavior; they may water the same crop on similar soils under similar weather conditions differently. This study did not attempt to explain this variability in farmer behavior other than to simply recognize its presence.

Fifth, there is nothing like experience. The participants applied appropriate amounts of irrigation water to their crops at the right times with respect to rainfall and evaporative loss. Because there was no evidence of gross overwatering or underwatering, one might conclude that the irrigation farmers are (1) keeping close track of their irrigation water use and (2) using a formal scheduling program to determine when to turn on their irrigation systems. In most instances, however, neither assumption is true. Irrigation farmers are making accurate decisions about irrigation based on experience-gained knowledge of their soils' moisture characteristics.

With the growing importance of irrigation throughout Illinois, farmers and water resources managers must understand the basics. What amounts of irrigation water are applied in a normal year? What amounts are applied in a drought year? Are irrigation practices efficient? What are the irrigation scheduling tools? Gaining answers to questions such as these will bring both irrigation farmers and water resources managers closer to an appreciation of irrigation's potential impact on Illinois water resources.

## REFERENCES

- Bowman, J.A., and M.A. Collins. 1987. Impacts of irrigation and drought on Illinois ground-water resources. Illinois State Water Survey Report of Investigation 109, 31p.
- Bowman, J.A., F.W. Simmons, and B.C. Kimpel. 1991. *Irrigation in the Midwest: Lessons from Illinois.* Journal of Irrigation and Drainage Engineering (in press).
- Cravens, S.J., and S.D. Wilson. 1989. Irrigation development and management alternatives of a dolomite aquifer in Northeastern Illinois. Water Resources Bulletin, 25(2). 1073-1083.
- Cravens, S.J., S.D. Wilson, and R.C. Barry. 1990. Regional assessment of the ground-water resources in Eastern Kankakee and Northern Iroquois Counties. Illinois State Water Survey Report of Investigation 111,86p.
- Fehrenbacher, J.B., J.D. Alexander, I.J. Jansen, R.G. Darmody, R.A. Pope, M.A. Flock, E.E. Voss, J.W. Scott W.F. Andrews, and L.J. Bushue. 1984. Soils of Illinois. Bulletin 778, University of Illinois at Urbana-Champaign, Agricultural Experiment Station and the Soil Conservation Service, U.S. Department of Agriculture, 85p.
- Foster, J.W. 1956. *Groundwater geology of Lee and Whiteside Counties, Illinois.* Illinois State Geological Survey Report of Investigation 194, 67p.
- Hanson, R. 1955. Ground-water resources in Lee and Whiteside Counties. Illinois State Water Survey Report of Investigation 26, 67p.

- Kirk, J.R. 1987. *Water withdrawals in Illinois*, 1986. Illinois State Water Survey Circular 167, 43p.
- Scott, J.T., Jr., J.A.K. Taylor, and J.B. Braden. 1986. Analysis of potential for supplemental irrigation in Southern Illinois. University of Illinois Water Resources Center Research Report 198, 54p.
- Sipp, S.K., W.D. Lembke, C.D. Boast, M.D. Thorne, and P.N. Walker. 1984. Water management on claypan soils in the Midwest. University of Illinois Water Resources Center Research Report 186, 66p.
- Stout, G.E., P.N. Walker, W.D. Goetsch, M.D. Thorne, E.C. Benham, T.A. Austin, J. Golchin, Z. Shahvar, C.E. Anderson, H.P. Johnson, R.H. Shaw. O. Arjmand, W.L. Miller, R.L. Clouser, P. Erhabor, J. Sobek, V.R. Eidman, P.N. Wilson, and C.C. Sheaffer. 1983. *Efficient use of water for irrigation in the Upper Midwest*. University of Illinois Water Resources Center Research Report 176, 57p.
- Walker, P.N., M.D. Thorne, E.C. Benham, and W.D. Goetsch. 1981. Optimization of water use for field crop production in the Upper Midwest. University of Illinois Water Resources Center Research Report 159, 60p.
- Walker, W.H., R.E. Bergstrom, and W.C. Walton. 1965. Preliminary report on the ground-water resources of the Havana Lowlands region in West-Central Illinois. Illinois State Water Survey and Illinois State Geological Survey Cooperative Ground-Water Report 3, 61p.

| Appendix A. Hav | vana Lowlands | Irrigation S | Study Site | Characteristics |
|-----------------|---------------|--------------|------------|-----------------|
|-----------------|---------------|--------------|------------|-----------------|

| Site | Center-pivot<br>(CP) or<br>traveling gun<br>system (TG) | Pressure<br>high (H),<br>med (M),<br>or low (L) | Diesel (D)<br>or electric (E) | Irrigated<br>acreage | Flow<br>rate<br>(gpm) | First crop                                 | Second crop | Well<br>depth<br>(ft) |
|------|---------------------------------------------------------|-------------------------------------------------|-------------------------------|----------------------|-----------------------|--------------------------------------------|-------------|-----------------------|
| MT1  | СР                                                      | L                                               | Е                             | 160                  | 950                   | Popcorn                                    |             | 62                    |
| MT2  | СР                                                      | L                                               | Е                             | 120                  | 1100                  | Popcorn                                    |             | 126                   |
| MT5  | СР                                                      | L                                               | Е                             | 132                  | 950                   | Popcorn                                    |             | 110                   |
| MT6  | СР                                                      | L                                               | Е                             | 61                   | 700                   | Popcorn                                    |             | 94                    |
| MT7  | СР                                                      | Н                                               | Е                             | 224                  | 1150                  | Popcorn                                    |             | 73                    |
| MT8  | СР                                                      | L                                               | D                             | 120                  | 1100                  | Green beans                                | Green beans | 100                   |
| MT9  | СР                                                      | Н                                               | Ε                             | 135                  | 1100                  | Field corn, wheat, sweet corn              |             | 108                   |
| MT10 | СР                                                      | L                                               | Е                             | 32                   | 300                   | Green beans                                | Green beans | 90                    |
| MT11 | СР                                                      | Н                                               | Е                             | 98                   | 1100                  | Green beans, popcorn                       | Sweet corn  | 91                    |
| MT12 | СР                                                      | Н                                               | Е                             | 132                  | 900                   | Popcorn                                    |             | 92                    |
| MT13 | СР                                                      | Н                                               | Е                             | 130                  | 1000                  | Popcorn, field corn                        |             | 60                    |
| MT14 | СР                                                      | L                                               | Е                             | 132                  | 1000                  | Sweet corn, field corn                     | Green beans | -                     |
| MT15 | СР                                                      | L                                               | Е                             | 80                   | 1000                  | Popcorn                                    |             | -                     |
| MT16 | СР                                                      | Н                                               | Е                             | 70                   | 900                   | Popcorn                                    |             | 95                    |
| MT18 | СР                                                      | Н                                               | Е                             | 13                   | 1000                  | Green beans, seed corn                     | Sweet corn  | 102                   |
| MT19 | СР                                                      | Н                                               | D                             | 32                   | 450                   | Popcorn                                    |             | -                     |
| MT20 | СР                                                      | Н                                               | D                             | 32                   | 450                   | Field corn                                 |             | 123                   |
| MT21 | СР                                                      | Н                                               | D                             | 64                   | 900                   | Popcorn                                    |             | 107                   |
| MT22 | СР                                                      | Н                                               | D                             | 140                  | 900                   | Field corn,<br>popcorn, soybeans,<br>wheat |             | 113                   |
| MT23 | СР                                                      | Н                                               | D                             | 140                  | 900                   | Green beans, field corn                    | Green beans | 127                   |
| MT24 | СР                                                      | Н                                               | D                             | 140                  | 600                   | Popcorn, field corn, soybeans              |             | 113                   |
| MT26 | СР                                                      | Н                                               | D                             | 145                  | 900                   | Field corn                                 |             | 129                   |
| MT27 | СР                                                      | L                                               | Е                             | 145                  | 900                   | Popcorn                                    |             | 92                    |
| MT28 | СР                                                      | L                                               | D                             | 180                  | 1050                  | Seed corn                                  |             | -                     |
| MT29 | СР                                                      | Н                                               | Е                             | 160                  | 900                   | Popcorn, field corn                        |             | 120                   |
| MT30 | СР                                                      | Н                                               | Е                             | 40                   | 400                   | Wheat                                      | Sweet corn  | -                     |
| MT31 | TG                                                      | Н                                               | D                             | 63                   | 450                   | Popcorn, field corn, soybeans              |             | 73                    |
| MT32 | СР                                                      | Н                                               | D                             | 97                   | 550                   | Field corn                                 |             | 73                    |
| MT33 | СР                                                      | L                                               | D                             | 80                   | 650                   | Sweet corn                                 | Sweet corn  | 113                   |

| Site | Center-pivot<br>(CP) or<br>traveling gun<br>system (TG) | Pressure<br>high (H),<br>med (M),<br>or low (L) | Diesel (D) or<br>electric (E) | Irrigated<br>acreage | Flow<br>rate<br>(gpm) | First crop                                 | Second crop | Well<br>Depth<br>(ft) |
|------|---------------------------------------------------------|-------------------------------------------------|-------------------------------|----------------------|-----------------------|--------------------------------------------|-------------|-----------------------|
| MT1  | СР                                                      | L                                               | Е                             | 160                  | 950                   | Popcorn                                    |             | 62                    |
| MT2  | СР                                                      | L                                               | Е                             | 120                  | 1100                  | Popcorn                                    |             | 126                   |
| MT5  | СР                                                      | L                                               | Е                             | 132                  | 950                   | Popcorn                                    |             | 110                   |
| MT6  | СР                                                      | L                                               | Е                             | 61                   | 700                   | Popcorn                                    |             | 94                    |
| MT7  | СР                                                      | Н                                               | Е                             | 224                  | 1150                  | Popcorn                                    |             | 73                    |
| MT8  | СР                                                      | L                                               | D                             | 120                  | 1100                  | Green beans                                | Green beans | 100                   |
| MT9  | СР                                                      | Н                                               | Ε                             | 135                  | 1100                  | Field corn, wheat, sweet corn              |             | 108                   |
| MT10 | СР                                                      | L                                               | Е                             | 32                   | 300                   | Green beans                                | Green beans | 90                    |
| MT11 | СР                                                      | Н                                               | Е                             | 98                   | 1100                  | Green beans, popcorn                       | Sweet corn  | 91                    |
| MT12 | СР                                                      | Н                                               | Е                             | 132                  | 900                   | Popcorn                                    |             | 92                    |
| MT13 | СР                                                      | Н                                               | Е                             | 130                  | 1000                  | Popcorn, field corn                        |             | 60                    |
| MT14 | СР                                                      | L                                               | Е                             | 132                  | 1000                  | Sweet corn, field corn                     | Green beans | -                     |
| MT15 | СР                                                      | L                                               | Е                             | 80                   | 1000                  | Popcorn                                    |             | -                     |
| MT16 | СР                                                      | Н                                               | Е                             | 70                   | 900                   | Popcorn                                    |             | 95                    |
| MT18 | СР                                                      | Н                                               | Е                             | 13                   | 1000                  | Green beans, seed corn                     | Sweet corn  | 102                   |
| MT19 | СР                                                      | Н                                               | D                             | 32                   | 450                   | Popcorn                                    |             | -                     |
| MT20 | СР                                                      | Н                                               | D                             | 32                   | 450                   | Field corn                                 |             | 123                   |
| MT21 | СР                                                      | Н                                               | D                             | 64                   | 900                   | Popcorn                                    |             | 107                   |
| MT22 | СР                                                      | Н                                               | D                             | 140                  | 900                   | Field corn,<br>popcorn,<br>soybeans, wheat |             | 113                   |
| MT23 | СР                                                      | Н                                               | D                             | 140                  | 900                   | Green beans, field corn                    | Green beans | 127                   |
| MT24 | СР                                                      | Н                                               | D                             | 140                  | 600                   | Popcorn, field corn, soybeans              |             | 113                   |
| MT26 | СР                                                      | Н                                               | D                             | 145                  | 900                   | Field corn                                 |             | 129                   |
| MT27 | СР                                                      | L                                               | Е                             | 145                  | 900                   | Popcorn                                    |             | 92                    |
| MT28 | СР                                                      | L                                               | D                             | 180                  | 1050                  | Seed corn                                  |             | -                     |
| MT29 | СР                                                      | Н                                               | Ε                             | 160                  | 900                   | Popcorn, field corn                        |             | 120                   |
| MT30 | СР                                                      | Н                                               | Е                             | 40                   | 400                   | Wheat                                      | Sweet corn  | -                     |
| MT31 | TG                                                      | Н                                               | D                             | 63                   | 450                   | Popcorn, field corn, soybeans              |             | 73                    |
| MT32 | СР                                                      | Н                                               | D                             | 97                   | 550                   | Field corn                                 |             | 73                    |
| MT33 | CP                                                      | L                                               | D                             | 80                   | 650                   | Sweet corn                                 | Sweet corn  | 113                   |

| Site | Center-pivot<br>(CP) or<br>traveling gun<br>system (TG) | Pressure<br>high (H),<br>med (M),<br>or low (L) | Diesel (D) or<br>electric (E) | Irrigated<br>acreage | Flow<br>rate<br>(gpm) | First crop                             | Second crop              | Well<br>depth<br>(ft) |
|------|---------------------------------------------------------|-------------------------------------------------|-------------------------------|----------------------|-----------------------|----------------------------------------|--------------------------|-----------------------|
| MT34 | СР                                                      | L                                               | D                             | 80                   | 650                   | Popcorn, sweet corn                    | Sweet corn               | 113                   |
| MT36 | СР                                                      | L                                               | Е                             | 36                   | 400                   | Field corn                             |                          | 85                    |
| MT37 | СР                                                      | L                                               | D                             | 200                  | 1600                  | Field corn,<br>soybeans, sweet<br>corn | Cucumbers                | 105                   |
| MT38 | СР                                                      | L                                               | D                             | 120                  | 700                   | Popcorn, field corn                    |                          | 90                    |
| MT39 | СР                                                      | Н                                               | Е                             | 140                  | 1000                  | Cucumbers, wheat                       | Cucumbers,<br>lima beans | 107                   |
| MT40 | СР                                                      | Н                                               | Е                             | 60                   | 800                   | Cucumbers                              | Cucumbers                | 118                   |
| MT41 | СР                                                      | Н                                               | Е                             | 268                  | 1250                  | Green beans, sweet corn, soybeans      | Green beans, cucumbers   | 108                   |
| MT42 | СР                                                      | L                                               | Е                             | 32                   | 300                   | Field corn                             |                          | -                     |
| MT43 | СР                                                      | L                                               | Е                             | 32                   | 350                   | Sweet corn                             | Sweet corn               | 100                   |
| MT44 | СР                                                      | L                                               | Е                             | 32                   | 300                   | Field corn                             |                          | 95                    |
| MT45 | СР                                                      | L                                               | Е                             | 32                   | 300                   | Field corn                             |                          | 100                   |
| MT46 | СР                                                      | L                                               | Е                             | 32                   | 300                   | Field corn                             |                          | -                     |
| MT47 | СР                                                      | Н                                               | Е                             | 32                   | 400                   | Popcorn                                |                          | 90                    |
| MT48 | СР                                                      | L                                               | Е                             | 40                   | 300                   | Field corn                             |                          | 80                    |
| MT49 | СР                                                      | Н                                               | Е                             | 40                   | 300                   | Field corn                             |                          | 80                    |
| MT50 | СР                                                      | L                                               | Е                             | 145                  | 900                   | Sweet corn                             | Green beans              | 63                    |
| MT51 | СР                                                      | L                                               | D                             | 130                  | 1000                  | Field corn                             |                          | 76                    |
| MT52 | СР                                                      | L                                               | Е                             | 45                   | 500                   | Field corn                             |                          | 79                    |
| MT53 | СР                                                      | L                                               | Е                             | 25                   | 500                   | Field corn                             |                          | 79                    |
| MT54 | СР                                                      | L                                               | D                             | 130                  | 1200                  | Field corn                             |                          | 88                    |
| MT55 | СР                                                      | L                                               | Е                             | 130                  | 950                   | Popcorn                                |                          | 116                   |
| MT56 | СР                                                      | L                                               | Ε                             | 65                   | 600                   | Popcorn, Field corn                    |                          | 115                   |
| MT57 | СР                                                      | Н                                               | Е                             | 130                  | 1250                  | Popcorn                                |                          | 82                    |
| MT58 | СР                                                      | L                                               | Е                             | 290                  | 1650                  | Field corn                             |                          | 126                   |
| MT59 | СР                                                      | L                                               | Ε                             | 130                  | 1000                  | Soybeans                               |                          | -                     |
| MT60 | СР                                                      | Н                                               | D                             | 130                  | 850                   | Soybeans                               |                          | -                     |
| MT61 | СР                                                      | L                                               | Ε                             | 130                  | 950                   | Field corn, popcorn                    |                          | -                     |
| MT62 | СР                                                      | Н                                               | D                             | 100                  | 800                   | Field corn, popcorn                    |                          | 106                   |
| MT63 | СР                                                      | L                                               | Ε                             | 130                  | 800                   | Popcorn, wheat                         | Sweet corn               | 40                    |
| MT64 | СР                                                      | Н                                               | Е                             | 135                  | 900                   | Pumpkins, popcorn                      |                          | -                     |
| MT65 | СР                                                      | Н                                               | Е                             | 95                   | 800                   | Field corn,<br>soybeans                |                          | 104                   |

| Site | Center-pivot<br>(CP) or<br>traveling gun<br>system (TG) | Pressure<br>High (H)<br>med (M),<br>or low (L), | Diesel (D)<br>or electric (E) | Irrigated<br>acreage | Flow<br>rate<br>(gpm) | First crop                     | Second crop | Well<br>depth<br>(ft) |
|------|---------------------------------------------------------|-------------------------------------------------|-------------------------------|----------------------|-----------------------|--------------------------------|-------------|-----------------------|
| MT66 | СР                                                      | L                                               | E                             | 131                  | 800                   | Popcorn, field corn, soybeans  |             | 115                   |
| MT67 | СР                                                      | L                                               | Е                             | 101                  | 800                   | Popcorn, soybeans              |             | 118                   |
| MT68 | СР                                                      | L                                               | Е                             | 141                  | 800                   | Popcorn                        |             | 105                   |
| MT69 | СР                                                      | L                                               | E                             | 108                  | 600                   | Seed corn, field corn          |             | -                     |
| MT70 | СР                                                      | Н                                               | D                             | 108                  | 850                   | Field corn,<br>soybeans        |             | 103                   |
| MT71 | СР                                                      | L                                               | Е                             | 50                   | 800                   | Popcorn                        |             | 113                   |
| MT72 | СР                                                      | L                                               | Е                             | 98                   | 800                   | Popcorn, soybeans, field corn  |             | 113                   |
| MT74 | СР                                                      | L                                               | Е                             | 134                  | 1000                  | Green beans, field corn        |             | 91                    |
| MT75 | СР                                                      | Н                                               | D                             | 134                  | 1000                  | Field corn,<br>soybeans        |             | 105                   |
| MT76 | СР                                                      | Н                                               | D                             | 136                  | 1000                  | Field corn,<br>soybeans        |             | 113                   |
| MT77 | СР                                                      | L                                               | Е                             | 130                  | 900                   | Peas, seed corn                | Sweet corn  | 94                    |
| MT78 | СР                                                      | Н                                               | Е                             | 130                  | 800                   | Pumpkins, green<br>beans       |             | -                     |
| MT79 | СР                                                      | Н                                               | Е                             | 114                  | 900                   | Seed corn                      |             | -                     |
| MT80 | СР                                                      | Н                                               | E                             | 126                  | 900                   | Seed corn,<br>soybeans         |             | 94                    |
| MT81 | СР                                                      | Н                                               | E                             | 105                  | 1000                  | Field corn,<br>soybeans        |             | 102                   |
| MT82 | СР                                                      | Н                                               | E                             | 118                  | 1000                  | Field corn,<br>soybeans, wheat |             | 124                   |
| MT83 | СР                                                      | Н                                               | D                             | 200                  | 800                   | Pasture                        |             | 102                   |
| MT84 | TG                                                      | Н                                               | E                             | 60                   | 500                   | Field corn,<br>soybeans        |             | -                     |
| MT85 | TG                                                      | Н                                               | Е                             | 40                   | 450                   | Field corn                     |             | 40                    |
| MT86 | СР                                                      | L                                               | Е                             | 140                  | 800                   | Field corn,<br>soybeans        |             | -                     |
| MT87 | СР                                                      | L                                               | Е                             | 105                  | 800                   | Field corn, green<br>beans     |             | 65                    |
| MT90 | СР                                                      | Н                                               | D                             | 160                  | 1050                  | Soybeans, field corn           |             | 106                   |
| MT92 | СР                                                      | М                                               | Е                             | 105                  | 1000                  | Popcorn                        |             | 97                    |
| MT93 | СР                                                      | М                                               | Е                             | 35                   | 400                   | Potatoes                       | Cucumbers   | -                     |
| MT94 | СР                                                      | М                                               | E                             | 35                   | 400                   | Potatoes                       | Cucumbers   | -                     |
| MT95 | СР                                                      | М                                               | Е                             | 35                   | 400                   | Cucumbers                      | Sweet corn  | 91                    |

| Site  | Center-pivot<br>(CP) or<br>traveling gun<br>system (TG) | Pressure<br>High (H)<br>med (M),<br>or low (L), | Diesel (D)<br>or electric (E) | Irrigated<br>acreage | Flow<br>rate<br>(gpm) | First crop              | Second crop            | Well<br>depth<br>(ft) |
|-------|---------------------------------------------------------|-------------------------------------------------|-------------------------------|----------------------|-----------------------|-------------------------|------------------------|-----------------------|
| MT96  | СР                                                      | М                                               | Е                             | 280                  | 2300                  | Green beans, potatoes   | Green beans,<br>peas   | 114                   |
| MT97  | СР                                                      | М                                               | Е                             | 135                  | 1000                  | Field corn              |                        | -                     |
| MT98  | СР                                                      | М                                               | Е                             | 135                  | 1000                  | Field corn              |                        | 120                   |
| MT99  | СР                                                      | М                                               | Е                             | 135                  | 1000                  | Peas, field corn        | Field corn, sweet corn | 125                   |
| MT100 | СР                                                      | М                                               | Е                             | 135                  | 1000                  | Sweet corn              | Sweet corn             | 93                    |
| MT101 | СР                                                      | М                                               | Е                             | 135                  | 1200                  | Field corn              |                        | -                     |
| MT102 | СР                                                      | М                                               | Е                             | 160                  | 1400                  | Pumpkins,<br>cantelope  |                        | 120                   |
| MT103 | СР                                                      | L                                               | Е                             | 34                   | 400                   | Wheat, sweet corn       |                        | 95                    |
| MT104 | СР                                                      | Н                                               | Е                             | 34                   | 400                   | Wheat, sweet corn       |                        | 97                    |
| MTI05 | СР                                                      | Н                                               | Е                             | 36                   | 375                   | Popcorn                 |                        | -                     |
| MT106 | СР                                                      | Н                                               | Е                             | 103                  | 800                   | Sweet corn              | Green beans            | 65                    |
| MT107 | СР                                                      | Н                                               | Е                             | 34                   | 375                   | Peas                    | Cucumbers              | -                     |
| MT108 | СР                                                      | Н                                               | Е                             | 72                   | 750                   | Popcorn                 |                        | -                     |
| MT110 | СР                                                      | Н                                               | Е                             | 72                   | 750                   | Cucumbers               | Cucumbers              | 117                   |
| MTII2 | СР                                                      | Н                                               | D                             | 140                  | 1000                  | Cucumbers               | Cucumbers              | -                     |
| MTI13 | СР                                                      | Н                                               | Е                             | 135                  | 1000                  | Field corn              |                        | 125                   |
| MTll4 | СР                                                      | Н                                               | Е                             | 135                  | 1000                  | Field corn              |                        | 105                   |
| MTII5 | СР                                                      | Н                                               | Е                             | 35                   | 375                   | Field corn              |                        | 102                   |
| MTll6 | СР                                                      | Н                                               | Е                             | 135                  | 1000                  | Field corn              |                        | 68                    |
| MT118 | СР                                                      | Н                                               | D                             | 135                  | 1000                  | Green beans             | Green beans            | 114                   |
| MT119 | СР                                                      | L                                               | Е                             | 130                  | 700                   | Field corn,<br>popcorn  |                        | 100                   |
| MT120 | СР                                                      | L                                               | D                             | 170                  | 1000                  | Field corn              |                        | 118                   |
| MT121 | СР                                                      | L                                               | D                             | 130                  | 1000                  | Field corn              |                        | -                     |
| MT122 | СР                                                      | L                                               | Е                             | 100                  | 1000                  | Seed corn               |                        | -                     |
| MT123 | СР                                                      | L                                               | Е                             | 190                  | 1000                  | Seed corn               |                        | -                     |
| MT124 | СР                                                      | L                                               | Е                             | 130                  | 900                   | Field corn              |                        | -                     |
| MT125 | СР                                                      | L                                               | Е                             | 130                  | 1000                  | Seed corn               |                        | -                     |
| MT126 | СР                                                      | Н                                               | D                             | 120                  | 800                   | Popcorn, soybeans       |                        | 105                   |
| MT127 | СР                                                      | Н                                               | D                             | 74                   | 700                   | Popcorn                 |                        | 97                    |
| MT128 | СР                                                      | L                                               | Е                             | 130                  | 850                   | Popcorn, field corn     |                        | 95                    |
| MT129 | СР                                                      | L                                               | Е                             | 134                  | 850                   | Popcorn, field corn     |                        | 105                   |
| MT130 | СР                                                      | L                                               | D                             | 145                  | 850                   | Field corn,<br>soybeans |                        | 102                   |

| Site  | Center-pivot<br>(CP) or<br>traveling gun<br>system (TG) | Pressure<br>High (H)<br>med (M),<br>or low (L), | Diesel (D)<br>or electric (E) | Irrigated<br>acreage | Flow<br>rate<br>(gpm) | First crop                     | Second crop                | Well<br>depth<br>(ft) |
|-------|---------------------------------------------------------|-------------------------------------------------|-------------------------------|----------------------|-----------------------|--------------------------------|----------------------------|-----------------------|
| MT136 | СР                                                      | L                                               | Е                             | 140                  | 800                   |                                |                            | -                     |
| MT140 | СР                                                      | Н                                               | D                             | 137                  | 1000                  | Popcorn, field corn            |                            | 113                   |
| MT141 | СР                                                      | L                                               | D                             | 164                  | 1200                  | Field corn, sweet com          | Sweet corn                 | -                     |
| MT142 | СР                                                      | L                                               | D                             | 132                  | 700                   | Field corn,<br>popcorn         |                            | 115                   |
| MT145 | СР                                                      | L                                               | E                             | 110                  | 700                   | Field corn,<br>popcorn         |                            | 93                    |
| MT148 | СР                                                      | Н                                               | Е                             | 102                  | 800                   | Popcorn                        |                            | 78                    |
| MT149 | СР                                                      | Н                                               | D                             | 128                  | 900                   | Field corn, sweet corn         | Green beans,<br>sweet corn | -                     |
| MT150 | СР                                                      | Н                                               | D                             | 122                  | 900                   | Melons, green<br>beans         | Melons,<br>sweet<br>corn   | 94                    |
| MT151 | СР                                                      | Н                                               | Е                             | 118                  | 800                   | Popcorn                        |                            | 119                   |
| MT152 | СР                                                      | Н                                               | E                             | 183                  | 900                   | Popcorn, field corn sweet corn | Green<br>beans             | 118                   |
| MT154 | СР                                                      | Н                                               | E                             | 112                  | 900                   | Field corn,<br>popcorn         |                            | 114                   |
| MT155 | СР                                                      | Н                                               | E                             | 137                  | 900                   | Field corn, sweet corn         | Sweet corn                 | 111                   |
| MT156 | СР                                                      | Н                                               | Е                             | 134                  | 800                   | Popcorn, sweet corn            | Sweet com                  | -                     |
| MT157 | СР                                                      | Н                                               | Е                             | 98                   | 800                   | Popcorn, sweet corn            | Sweet corn                 | -                     |
| MT158 | СР                                                      | Н                                               | D                             | 70                   | 800                   | Field corn                     |                            | 124                   |
| MT159 | СР                                                      | Н                                               | D                             | 182                  | 1200                  | Popcorn, green<br>beans        | Green beans                | 151                   |
| MT160 | СР                                                      | Н                                               | Е                             | 134                  | 900                   | Popcorn, field corn            |                            | -                     |
| MT161 | СР                                                      | L                                               | Е                             | 108                  | 700                   | Popcorn, field corn            |                            | -                     |
| MT164 | СР                                                      | Н                                               | Е                             | 37                   | 800                   | Popcorn                        |                            | 103                   |
| MT165 | СР                                                      | Н                                               | D                             | 89                   | 800                   | Popcorn, green<br>beans        | Sweet corn                 | 94                    |
| MT166 | СР                                                      | L                                               | Е                             | 90                   | 800                   | Sweet corn                     | Sweet corn                 | -                     |
| MT167 | СР                                                      | Н                                               | D                             | 107                  | 800                   | Field corn, sweet corn         | Sweet corn                 | 108                   |
| MTI68 | СР                                                      | Н                                               | Е                             | 101                  | 800                   | Seed corn                      |                            | -                     |
| MT169 | СР                                                      | Н                                               | D                             | 59                   | 700                   | Sweet corn                     | Green beans                | 114                   |
| MT170 | СР                                                      | Н                                               | Е                             | 67                   | 800                   | Sweet corn                     | Green beans                | -                     |
| MT171 | СР                                                      | Н                                               | D                             | 118                  | 700                   | Field corn,<br>popcorn, wheat  | Lima beans                 | 80                    |
| MT173 | СР                                                      | L                                               | D                             | 100                  | 1200                  | Field corn,<br>popcorn         |                            | 94                    |

| Site  | Center-pivot<br>(CP) or<br>traveling gun<br>system (TG) | Pressure<br>High (H)<br>med (M),<br>or low (L), | Diesel (D)<br>or electric (E) | Irrigated<br>acreage | Flow<br>rate<br>(gpm) | First crop             | Second crop | Well<br>depth<br>(ft) |
|-------|---------------------------------------------------------|-------------------------------------------------|-------------------------------|----------------------|-----------------------|------------------------|-------------|-----------------------|
| MT174 | СР                                                      |                                                 | D                             | 68                   | 1000                  | Field corn,<br>popcorn |             | 81                    |
| MT175 | СР                                                      | L                                               | Е                             | 114                  | 950                   | Popcorn,<br>soybeans   |             | 122                   |
| MTI77 | СР                                                      | L                                               | Е                             | 135                  | 950                   | Green beans            | Green beans | 81                    |
| MT178 | СР                                                      | L                                               | Е                             | 130                  | 950                   | Field corn             |             | 86                    |
| MT179 | СР                                                      | L                                               | Е                             | 140                  | 950                   | Field corn             |             | -                     |
| MT184 | СР                                                      | Н                                               | D                             | 125                  | 1000                  | Popcorn, field corn    |             | 106                   |

### Nonpumping Water Level Measuring Sites

| Site  | Well depth<br>(ft) | Site  | Well depth<br>(ft) | Site  | Well depth<br>(ft) |
|-------|--------------------|-------|--------------------|-------|--------------------|
| MT88  | 87                 | MT172 | -                  | MT190 | 60                 |
| MT89  | 104                | MT180 | 117                | MT191 | 100                |
| MT91  | 100                | MT183 | 96                 | MT192 | 91                 |
| MT117 | 117                | MT185 | 103                | MT193 | -                  |
| MT135 | -                  | MT186 | -                  | MT194 | 93                 |
| MT137 | 105                | MT187 | 86                 | MT195 | -                  |
| MT139 | 72                 | MT188 | 80                 |       |                    |
| MT147 | -                  | MT189 | 122                |       |                    |

## Appendix B. Green River Lowlands Irrigation Study Site Characteristics

| Site | Center-pivot (CP)<br>or traveling gun<br>system (TG) | Pressure high<br>(H) med<br>(M), or low (L), | Diesel (D) or<br>electric (E) | Irrigated<br>acreage | Flow<br>rate<br>(gpm) | First crop              | Second crop | Well depth<br>(ft) |
|------|------------------------------------------------------|----------------------------------------------|-------------------------------|----------------------|-----------------------|-------------------------|-------------|--------------------|
| LW1  | СР                                                   | Н                                            | D                             | 110                  | 700                   | Field corn,<br>soybeans |             | 45                 |
| LW2  | СР                                                   | Н                                            | D                             | 135                  | 900                   | Field corn              |             | 154                |
| LW3  | СР                                                   | Н                                            | D                             | 120                  | 800                   | Field corn              |             | 167                |
| LW4  | СР                                                   | Н                                            | D                             | 275                  | 1000                  | Seed corn,<br>soybeans  |             | 88                 |
| LW5  | СР                                                   | Н                                            | Е                             | 100                  | 800                   | Seed corn               |             | 67                 |
| LW6  | СР                                                   | Н                                            | D                             | 140                  | 800                   | Seed corn green beans,  | Green beans | 72                 |
| LW7  | СР                                                   | Н                                            | D                             | 160                  | 700                   | Field corn              |             | 480                |
| LW8  | СР                                                   | Н                                            | Е                             | 280                  | 800                   | Field corn              |             | 208                |
| LW9  | СР                                                   | Н                                            | D                             | 125                  | 1000                  | Seed corn               |             | 100                |
| LW10 | СР                                                   | Н                                            | D                             | 100                  | 550                   | Seed corn               |             | 70                 |
| LW11 | СР                                                   | Н                                            | Е                             | 135                  | 800                   | Peas                    | Sweet corn  | 100                |
| LW12 | СР                                                   | Н                                            | Е                             | 100                  | 400                   | Seed corn               |             | 40                 |
| LW13 | СР                                                   | Н                                            | D                             | 100                  | 900                   | Field corn              |             | 70                 |
| LW14 | СР                                                   | Н                                            | D                             | 120                  | 900                   | Seed corn               |             | 69                 |
| LW15 | СР                                                   | Н                                            | D                             | 90                   | 700                   | Field corn              |             | 63                 |
| LW16 | СР                                                   | Н                                            | D                             | 120                  | 1000                  | Field corn              |             | 62                 |
| LW17 | TG                                                   | Н                                            | D                             | 140                  | 650                   | Field corn              |             | 150                |
| LW18 | TG                                                   | Н                                            | D                             | 120                  | 620                   | Field corn              |             | 56                 |
| LW19 | СР                                                   | Н                                            | D                             | 200                  | 1000                  | Seed corn               |             | 125                |
| LW20 | СР                                                   | Н                                            | D                             | 141                  | 1200                  | Seed corn               |             | 190                |
| LW21 | СР                                                   | Н                                            | D                             | 172                  | 1200                  | Seed corn               |             | 190                |
| LW22 | СР                                                   | Н                                            | D                             | 150                  | 1000                  | Seed corn               |             | -                  |
| LW23 | СР                                                   | Н                                            | D                             | 160                  | 1000                  | Field corn, soybeans    |             | 76                 |
| LW24 | СР                                                   | L                                            | D                             | 180                  | 400                   | Lima beans              | Green beans | 225                |
| LW25 | СР                                                   | L                                            | D                             | 121                  | 350                   | Field corn              |             | 505                |
| LW26 | СР                                                   | Н                                            | D                             | 133                  | 900                   | Field corn              |             | 192                |
| LW27 | СР                                                   | Н                                            | D                             | 113                  | 1000                  | Field corn              |             | 141                |
| LW28 | СР                                                   | L                                            | D                             | 110                  | 850                   | Seed corn               |             | -                  |
| LW29 | СР                                                   | L                                            | Е                             | 130                  | 850                   | Seed corn               |             | -                  |
| LW30 | СР                                                   | Н                                            | Ε                             | 160                  | 900                   | Green beans, field corn | Green beans | 110                |

| Site | Center-pivot (CP)<br>or traveling gun<br>system (TG) | Pressure high<br>(H), medium<br>(m) or low (L) | Diesel (D) or<br>electric (E) | Irrigated<br>Acreage | Flow<br>rate<br>(gpm) | First crop             | Second crop | Well depth<br>(ft) |
|------|------------------------------------------------------|------------------------------------------------|-------------------------------|----------------------|-----------------------|------------------------|-------------|--------------------|
| LW31 | СР                                                   | Н                                              | Е                             | 138                  | 1000                  | Seed corn,<br>alfalfa  |             | 154                |
| LW32 | СР                                                   | Н                                              | Е                             | 78                   | 1000                  | Field corn             |             | -                  |
| LW33 | СР                                                   | Н                                              | Е                             | 135                  | 900                   | Seed corn              |             | 83                 |
| LW34 | СР                                                   | М                                              | Е                             | 108                  | 600                   | Seed corn              |             | 89                 |
| LW35 | СР                                                   | Н                                              | D                             | 135                  | 900                   | Green beans            | Green beans | 75                 |
| LW36 | СР                                                   | М                                              | Е                             | 125                  | 950                   | Seed corn              |             | -                  |
| LW37 | СР                                                   | Н                                              | Е                             | 80                   | 500                   | Soybeans               |             | 100                |
| LW38 | СР                                                   | L                                              | D                             | 90                   | 700                   | Soybeans               |             | 80                 |
| LW39 | СР                                                   | Н                                              | Е                             | 153                  | 800                   | Field corn             |             | 105                |
| LW40 | СР                                                   | Н                                              | Е                             | 62                   | 750                   | Field corn             |             | 80                 |
| LW41 | СР                                                   | Н                                              | Е                             | 233                  | 1300                  | Field corn             |             | 81                 |
| LW42 | СР                                                   | L                                              | D                             | 140                  | 800                   | Seed corn              |             | 117                |
| LW43 | СР                                                   | L                                              | D                             | 215                  | 900                   | Seed corn              |             | 117                |
| LW44 | СР                                                   | Н                                              | D                             | 135                  | 1000                  | Soybeans               |             | 89                 |
| LW45 | СР                                                   | Н                                              | D                             | 160                  | 1100                  | Seed corn              |             | 75                 |
| LW46 | СР                                                   | Н                                              | D                             | 135                  | 1200                  | Seed corn              |             | 159                |
| LW47 | СР                                                   | Н                                              | Е                             | 273                  | 1200                  | Seed corn              |             | 79                 |
| LW49 | СР                                                   | L                                              | Е                             | 40                   | 350                   | Soybeans               |             | 82                 |
| LW50 | СР                                                   | Μ                                              | Е                             | 135                  | 1200                  | Field corn             |             | 76                 |
| LW52 | СР                                                   | М                                              | Е                             | 120                  | 700                   | Green beans, seed corn | Green beans | 100                |
| LW54 | СР                                                   | М                                              | Е                             | 100                  | 700                   | Green beans, seed corn | Green beans | 80                 |
| LW55 | СР                                                   | L                                              | Е                             | 210                  | 1050                  | Seed corn              |             | 95                 |
| LW57 | СР                                                   | М                                              | Е                             | 60                   | 450                   | Seed corn              |             | 95                 |
| LW59 | СР                                                   | Н                                              | D                             | 130                  | 1000                  | Seed corn              |             | 123                |
| LW60 | СР                                                   | М                                              | Е                             | 130                  | 700                   | Seed corn              |             | 73                 |
| LW61 | СР                                                   | Н                                              | D                             | 130                  | 800                   | Seed corn              |             | 70                 |
| LW62 | СР                                                   | Н                                              | D                             | 140                  | 500                   | Field corn             |             | 122                |
| LW63 | СР                                                   | Н                                              | D                             | 130                  | 900                   | Green beans            | Green beans | 80                 |
| LW64 | СР                                                   | Н                                              | D                             | 135                  | 800                   | Field corn             |             | 98                 |
| LW65 | СР                                                   | Н                                              | D                             | 125                  | 700                   | Seed corn              |             | 102                |

## Appendix B. Concluded

|      | Well depth |      | Well depth |      | Well depth |
|------|------------|------|------------|------|------------|
| Site | (ft)       | Site | (ft)       | Site | (ft)       |
| LW66 | -          | LW73 | 168        | LW80 | 49         |
| LW67 | 70         | LW74 | 94         | LW81 | 134        |
| LW68 | 126        | LW75 | -          | LW82 | 68         |
| LW69 | -          | LW76 | 110        | LW83 | 57         |
| LW70 | -          | LW77 | 101        | LW84 | -          |
| LW71 | 186        | LW78 | 67         | LW85 | 103        |
| LW72 | 190        | LW79 | 64         | LW86 | -          |

## Nonpumping Water Level Measuring Sites