HFSmit

WEY LIBRARY

OF INVESTIGATION 33

OF ILLINOIS M G. STRATTON, Governor

c.

ISW

RI-38 copy 2 loan

> DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, Director

> > Cloud Distribution and Correlation with Precipitation in Illinois

2204 GRIFFITH CHAMPAIGN, IL O

BY S. A. CHANGNON, JR., AND F. A. HUFF

ILLINOIS STATE WATER SURVEY WILLIAM C. ACKERMANN, Chief

> URBANA 1957

DATE	DUE

.

ALED			
	- 1	1	
	1		
	╾┼━╌╼────		
	· ·		
		╾┿╌╍╌	
			_
	╼╄╾╌╼		
			1
			╾╾┼╾╌╍╌╍
	1		
	-+	<u>_</u>	

ISWS RI-33 copy 2 loan SWS1103	Changnon, Stanley A.,]r. CLOUD DISTRIBUTION AND CORRELATION WITH PRECIPITATION IN ILLINOIS
--	--

ILLINOIS STATE WATER SURVEY LIBRA 2204 GRIFFITH DRIVE CHAMPAIGN, IL 61820 DEMCO REPORT OF INVESTIGATION 33

STATE OF ILLINOIS WILLIAM G. STRATTON, Governor

DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, *Director*

CLOUD DISTRIBUTION AND CORRELATION WITH PRECIPITATION IN ILLINOIS

BY S. A. CHANGNON, JR., AND F. A. HUFF

STATE WATER SURVEY DIVISION

WILLIAM C. ACKERMANN, Chief

URBANA

1957

Printed by authority of State of Illinois

TABLE OF CONTENTS

Introduction	1
Acknowledgments	2
Description of Available Data	3
Data Collection	3
Number of Layers of Clouds Amount and Type of Clouds in Each Layer Total Sky Cover	3 4 4
Data Presentation	5
Cloud Types Cloud Cover Cloud Data Entries on IBM Punch Cards Available Punch Card Data, Stations and Years of Record	5 5 6 7
Limitations of Data	11
Data Collection	11
Obscuration Nocturnal Limits on Cloud Identification Observer Error in Distinguishing Cloud Types Data Presentation	11 11 12 12
Entry of Only Predominant Cloud Type in Any Layer Three-Hourly Data Entries	12 13
Method of Data Treatment	13
Cloud Types Selected for Analysis Analytical Treatment of the Data Limitations Frequencies of Cloud Types	13 13 17
Annual Cloud Frequencies	17
Low Clouds Middle Clouds High Clouds	17 17 18

Page

Table of Contents (Cont'd)Pa	ge
Monthly and Seasonal Variations in Cloud Frequencies	30
Low Clouds	35
Middle Clouds	36
High Clouds	36
Diurnal Variations of Clouds	37
Annual and Monthly. Variations in Cloud Amounts	43
Low Clouds	46
Middle Clouds	46
High Clouds	47
Comparison of Monthly Cloud Amounts and Frequencies	48
Low Clouds	48
	57
	57 58
Relation Between Frequencies and Amounts	0
Correlations Between Clouds and Precipitation	65
Seasonal Correlations between Cloud and Precipitation Amounts	65
Correlations between Daily Cloud and Precipitation Amounts	68
Correlations between Frequency of Clouds and Precipitation	74
Relation between Cirrus, Cumulonimbus and Precipitation	75
Dry Period Cloudiness	79
References	83
ILLUSTRATIONS	
Figure Pa	ge
1. Reference Map	9
2. Average Annual Occurrences of Low Cloud Types Expressed	
	19
3. Average Annual Occurrences of Middle and High Cloud	
Types Expressed as Percent of Total Possible Obser-	
vations	21
4. Average Hourly Occurrences of Cumulus	31
5. Average Hourly Occurrences of Cumulonimbus	31

Illustrations (Cont'd)

Figure		Page
6.	Average Hourly Occurrences of Stratocumulus	31
7.	Average Hourly Occurrences of Nimbostratus	33
8.	Average Hourly Occurrences of Altocumulus	33
9.	Average Hourly Occurrences of Altostratus	33
10.	Average Hourly Occurrences of Cirrus, Cirrostratus, and Cirrocumulus	33
11.	Diurnal Pattern of Cumulus and Cumulonimbus at Springfield, July	39
12.	Diurnal Pattern of Strat cumulus at Springfield, January and July	39
13.	Diurnal Pattern of Altocumulus at Springfield, January and July	39
14.1	Diurnal Pattern of Cirriform Clouds at Springfield, January and July	39
15.	Comparison of Average Monthly Occurrences and Average Tenths Coverage of Cumulus, 1949–55	49
16.	Comparison of Average Monthly Occurrences and Average Tenths Coverage of Cumulonimbus, 1949-55	51
17.	Comparison of Average Monthly Occurrences and Average Tenths Coverage of Stratocumulus, 1949-55	53
18.	Comparison of Average Monthly Occurrences and Average Tenths Coverage of Nimbostratus, 1949-55	55
19.	Comparison of Average Monthly Occurrences and Average Tenths Coverage of Altostratus, 1949-55	59
20.	Comparison of Average Monthly Occurrences and Average Tenths Coverage of Altocumulus, 1949-55	61
21.	Comparison of Average Monthly Occurrences and Average Tenths Coverage of Cirriform Clouds, 1949-55	63
22.	Seasonal Frequency Comparisons Between Point Precipita- tion and Cu Cb Sc at Springfield	77
23.	May - September Frequency Comparisons Between Point Precipitation and Cu Cb at Springfield	77

Illustrations (Cont'd)

Figure

24.	May – September Frequency Comparisons Between Point Precipitation and Cb at Springfield	77
25.	May - September Frequency Comparisons Between Areal Mean Precipitation and Cb at Springfield	77

TABLES

Table	Page
1. Available Cloud Data on IBM Cards	8
2. Multiples Used to Estimate Total Cloud Occurrences at Peoria and Terre Haute	16
3. Average Monthly and Annual Number of Hourly Cloud Occurrences, 1949-55	23
4. Monthly and Annual Maxima of Hourly Cloud Occurrences, 1949-55	26
5. Monthly and Annual Minima of Hourly Cloud Occurrences, 1949-55	28
6. Diurnal Distribution of Clouds at Springfield 1949-54	41
7. Average Monthly and Annual Number of Tenths Coverage	44
8. Average Number of Tenths Coverage Per Hourly Occurrence	58
9. Seasonal Correlation Coefficients Between Cloud Amounts and Monthly Precipitation at Springfield	66
10. Comparison Between Monthly Cloud Amounts and Normality of Monthly Rainfall at Springfield, May-September, 1951-55	68
11. Seasonal Correlation Coefficients Between Low Cloud Amounts and Monthly Precipitation at Four Stations	69
12. Correlation Coefficients Between Daily Cloud Amounts and Daily Precipitation	70
13. Median Low Cloudiness, Expressed as Percent of Normal, For Various Values of Daily Precipitation	72
14. Distribution of Low Clouds on Days with Precipitation Exceeding 0.25 Inch During 1951-55	73

Tables	(Cont'd)	Page
15.	Correlation Between Cloud and Precipitation Frequencies at Springfield	74
16.	Cumulonimbus Relationships to Daily Precipitation	76
17.	Median Percent of Average Cloudiness For Dry Periods of Five Days or Longer	80
18.	Distribution of Low Clouds in Dry Periods of Five Days or Longer, 1951-55, Combining Four Stations	82

INTRODUCTION

The solution of hydrologic problems and the design of hydrologic structures is dependent to a large extent upon the expected distribution of precipitation in both time and space. Much remains unknown about the causes and distribution of precipitation. As part of a general program to obtain greater understanding and knowledge of the precipitation process and its behavior in Illinois, a climatological study was made of clouds, the source of surface precipitation.

From this study, climatological descriptions of the frequency and amount of various cloud types over the State were obtained. Included in the study are means and extremes for monthly, seasonal and annual periods. Diurnal patterns have also been established. In addition to compilation of the climatological statistics, investigation was made of the direct relationship between clouds and surface precipitation.

1

IBM punch card data for seven U. S. Weather Bureau stations and one U. S. Air Force station in or near Illinois were used in the study. Over 442,000 hourly cards containing data for 1949 through 1955 were processed. Some card data previous to 1949 was available but not considered suitable for this analysis. Stations analyzed include Chicago, Moline, Peoria, Springfield, Rantoul, St. Louis, Terre Haute, and Evansville.

ACKNOWLEDGMENTS

This report was prepared under the direction of William C. Ackermann, Chief of the Illinois State Water Survey. Research was accomplished under the general guidance of Glenn E. Stout, Head, Meteorology Section.

Within the Meteorology Section, special credit is due to Richard G. Semonin for suggestions and assistance and to Ruth Cipelle for analysis. Several research assistants aided in tabulation and routine analysis of data.

The cooperation of the United States Weather Bureau in supplying IBM punch cards used in this study is acknowledged.

DESCRIPTION OF AVAILABLE DATA

Detailed cloud observations are made at first-order United States Weather Bureau stations and major Air Force Bases. These cloud observations are made and recorded according to detailed instructions in WBAN Circular N.¹ To understand and evaluate the research performed, it is necessary to review the Circular N instructions that pertain to cloud observations.

DATA COLLECTION

At most first-order United States Weather Bureau stations and Air Force Bases, observations of sky conditions are made on an hourly basis. From an outdoor vantage point with no obstructions an observer makes the observations of sky conditions. These hourly observations are sometimes supplemented by extra observations at the station and by pilot reports. Instruments such as ceiling lights, celiometers, and balloons are used as observing aids. Observed data include the number of cloud layers, the cloud types in each layer, cloud type amounts in each layer, and the total sky cover.

Number of Layers of Clouds

From one to four layers of clouds and obscuring phenomena can be recorded at each observation. These layers are observed and recorded in an ascending order. For the determination of. stratification, the clouds or obscuring phenomena whose bases are at approximately the same level are regarded as a single layer. The layer may be continuous or composed of detached elements. The term layer does not imply that a clear, horizontal space exists between layers, nor that the clouds composing each layer are of the same type. Cumuliform type of clouds developing below other clouds often reach and penetrate the cloud layers above them. By horizontal extension swelling cumulus or cumulonimbus may form stratocumulus, altocumulus, or cirrus. When clouds are formed in this manner and attached to a parent cloud, these clouds are regarded as a separate layer only if their bases appear horizontal and at a different level from the parent cloud. Frequent observations and differences in the direction of cloud movement aid in the detection of upper layers above a lower layer.

Amount and Type of Clouds in Each Layer

Cloud amounts are evaluated in terms of fractional portions of the entire sky area above the apparent horizon that is covered by the cloud. The amount of sky covered by clouds in each particular layer aloft is determined without regard for the amount covered by the intervening lower layers.

Cloud types in each layer are observed. If more than one cloud type is in evidence in a single layer the predominating or significant type is recorded.

Total Sky Cover

The total sky cover or the summation of the amounts in each layer is determined. In addition, the total amount of opaque sky cover, which is the proportion hidden by all clouds, is entered.

4

DATA PRESENTATION

Cloud Types

Fourteen cloud types are used to describe the sky cover. These are stratus, fractostratus, cumulus, fractocumulus, cumulonimbus, cumulonimbus mammatus, stratocumulus, nimbostratus, altostratus, altocumulus, altocumulus castellatus, cirrus, cirrostratus, and cirrocumulus.

Cloud Cover

At each observation, the total sky cover which is at and below the level of the highest visible layer is entered. If clouds are present at more than four levels, data for levels above the fourth layer are not entered.

The sky cover observed at each level is entered to the nearest tenth of coverage. Since a series of frequent observations and/or pilot reports often indicate the existence of layers above a broken or overcast layer, amounts for each layer are not necessarily the amounts visible at the exact time of the observation. Furthermore, the sum of the number of tenths of the layers may exceed 10. However, the total sky cover cannot exceed 10/10. For example, layer 1 could report 0.4 stratocumulus coverage and layer 2 could report 0.9 altocumulus cover, but the total sky cover entry would be 10/10 (overcast). When lower layers hide more than 0.9 of the sky, unknown is entered in the amount column for layers above and the type entries are omitted. When two or more types occur at the same level, their combined amounts are entered as the layer amount.

Cloud Data Entries on IBM Punch Cards

The United States Weather Bureau has developed an IBM card with a format designed to align itself with the WBAN-10 data sheet used for recording hourly surface observations. The card used for entry of hourly surface observations is named Card Type No, 1, Cloud data in written records are transferred to the Type No. 1 card. On this card the type, amount, and height of the clouds for each layer are entered according to Instructions in Circular N, In addition, the total amount of sky cover is entered. The punching instructions are given in the WBAN Manual of Card Punching.²

Cards with cloud data were generally available for the period beginning in either January or July of 1948 and continuing to the present. During the 8-year period with card records available for this study the Weather Bureau made several changes In the cloud codes, the observing manuals, and the procedures used for recording cloud observations. Prior to June 1, 1951, cloud data were not entered on every hourly card. The procedure was to enter cloud information on card Type No. 1 only every third hour (card) at the hours of 00, 03, 06, 09, 12, 15, 18, and 21 local standard time. Beginning with June 1, 1951 cards at each hour had complete cloud data entries.

Two other changes in procedure were made which had an effect on the reporting of certain cloud types. The first of these was a revision on July 1, 1948 in the procedure used to record the cloud observations on climatological observation forms. This new procedure called for the recording of cloud observations on WBAN Form 10B. The new method adopted on July 1, 1948 differed principally from prior procedures due to the use of a 4-layer recording system, as opposed to the low-middle-high classification of clouds which had been in use formerly.

More changes in the cloud recording and data entry system on punch cards occurred with the revision of instructions in Circular S^3 on January 1, 1949. The major change made at this time, which affects cloud climatological analyses, was the revisions in the definitions of cirrostratus, altostratus, and cirrus. This change was made to aid in differentiating cirrostratus from cirrus and altostratus.

AVAILABLE PUNCH CARD DATA, STATIONS AND YEARS OF RECORD

Eight stations in and near Illinois had sufficient card data to be used in climatological analysis. Seven of the stations are U. S. Weather Bureau first-order stations and one is an Air Force Base. In general, card records with cloud data were available from approximately July 1, 1948 through December 31, 1955 at the eight stations. Due to operational changes during this period, two of the stations did not have complete records. As mentioned previously, all Type No. 1 cards prior to June 1, 1951 from the seven U. S. Weather Bureau first-order stations had cloud data entries only every third hour. However, all cards from Chanute Air Force Base during this period had cloud data. Beginning on June 1, 1951, most stations had complete cloud data entries on every hourly card. Stations used in the analysis, their years of record, their call leters, and

7

inconsistencies in their records are listed in Table 1. The call letters will be frequently used in figures and tables as abbreviations. Station locations are shown in Figure 1.

TABLE 1

AVAILABLE CLOUD DATA ON IBM CARDS

<u>Stations</u>	Period of Av Card Da Beginning		Inconsistencies in Card Records
Chicago (CHI) Moline (MLI) Rantoul (RAN)	1/1/49 1/1/48	12/31/55 12/31/55	
(Chanute AFB) Peoria (PIA)	7/1/48	12/31/55	Beginning 4/15/52 only 19 cards available per day (none for hours 0100-0500 inclusive). Beginning 8/1/53 only 15 cards available per day (none for hours 2100-0500 inclusive).
Springfield (SPI) Terre Haute (HUF)	1/1/49 5/1/48	12/31/55 7/31/54	Beginning 1/1/52 only 16 cards available per day (none for hours 2100-0400 inclusive). Data collection ended on 7/31/54.
St. Louis (STL)	7/1/48	12/31/55	011 // 51/ 54.
Missouri Evansville (EVV) Indiana	7/1/48	12/31/55	

The three out-of-state stations used in this study were selected because of insufficient Illinois stations to adequately define the areal distribution of clouds in the state. These three stations are near Illinois and their cloud data are considered to be representative of conditions in nearby Illinois areas. Unfortunately, stations with cloud data were not available in or near the southern extremity of Illinois.

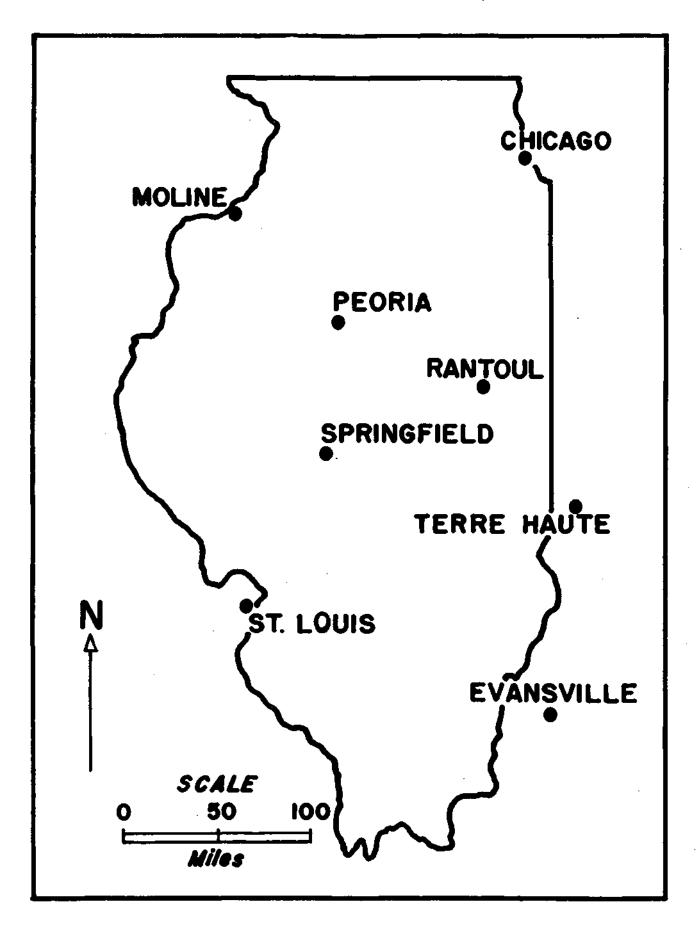


FIG. 1 REFERENCE MAP

LIMITATIONS OF DATA

DATA COLLECTION

Obscuration

The inability to accurately observe and measure the cloud types and amounts in layers above lower cloud layers obviously limits the use of the data. A broken to overcast low cloud layer may obscure middle and high clouds, while broken to overcast middle cloud layers will often obscure high clouds. Smoke and haze also contribute to obscuration of clouds. For this reason, the data on low cloud occurrences are more accurate and representative than occurrence data on middle and high clouds. Middle and high clouds are underestimated, but can be used for relative comparison of distributions in time and space, since all stations are subject to the same observational limitations.

Nocturnal Limits on Cloud Identification

It is obvious that visual cloud observations from both the ground and air are limited at night by darkness. Even cloud amounts in the lower layers are more difficult to measure at night than during daylight. If more than one or two cloud layers exist, the cloud types and amounts in the upper layers will probably not be observed. Cirriform clouds are very difficult to detect at night even when they are the only cloud type present. This difficulty in detecting clouds at night is revealed by results of a study in Arizona⁴, which indicates the number of reports of cirriform clouds increases directly with the lunar altitude.

Observer Error in Distinguishing Cloud Types

Cloud types have variable appearances at different times. The inability to distinguish between certain forms leads to subjective error in the recording of types. Three pairs of clouds are considered to be the major sources of these errors. Cirrostratus and altostratus appearing separately or at the same time are often hard to differentiate, as are high-level stratocumulus and low-level altocumulus. High-level altocumulus and cirrocumulus are also difficult to differentiate.

DATA PRESENTATION

Entry of Only Predominant Cloud Type in Any Layer

When more than one cloud type appears in a layer only the predominating type is reported. This data presentation method automatically limits the analysis of the data. First, some clouds go unreported. This problem is especially acute on days of cumulus and cumulonimbus, altostratus and altocumulus, and cirrus, cirrostratus, or cirrocumulus. Secondly, the predominant type is assigned the total amount of sky coverage of both types in the layer. For instance, 0.2 altostratus and 0.4 altocumulus is reported as 0.6 altocumulus.

This recording procedure makes it impossible to determine the true individual cloud frequencies. Only the frequency with which a cloud type is a predominating type in its layer can be determined. Consequently, grouping of clouds in the low, middle and high categories was resorted to frequently in compiling representative statistics.

Three-Hourly Data Entries

The entering of cloud data on only every third card for firstorder station data prior to June 1, 1951 hinders use of this data in conjunction with data entered on every card. This problem is especially acute in the reporting of cloud amounts, as amount of coverage varies considerably from hour-to-hour.

METHOD OF DATA TREATMENT

Cloud Types Selected for Analysis

Although 14 types of clouds are entered on the type No. 1 card, nine types comprised approximately 95 percent of the total cloud observations. These are cumulus, cumulonimbus, stratocumulus, nimbostratus, altostratus, altocumulus, cirrus, cirrostratus, and cirrocumulus. The analysis was confined to these nine cloud types. The three high cloud types were grouped into a single classification, cirriform, for the purposes of this study. This grouping was a result of the change in the recording procedures in January 1949. Stratocumulus, altocumulus, and the cirriform group have a relatively large frequency of occurrence, each averaging over 2000 occurrences per year. Cumulus, cumulonimbus, nimbostratus, and altostratus have considerably fewer annual occurrences, but were selected because of their known relationships with precipitation.

Analytical Treatment of the Data Limitations

Data Collection Methods. All three limitations in the data collection (obscuration, night cloud observations, and human identification errors) have their greatest effect on the recording of middle and high clouds. These limitations have very little effect on the reporting of low clouds. Obscuration obviously is not a problem in the reporting of the low clouds, and the problem of cloud detection at night also does not appreciably affect the low clouds. The night detection of vertically-growing low clouds is even less of a problem, because these clouds do not predominate at night except for cumulonimbus during the thunderstorm season. However, when cumulonimbus do occur at night, associated lightning frequently helps to illuminate them.

All three of the data collection limitations affect observations of middle and high clouds. However, the inaccuracies in identification of high cloud types have been eliminated by grouping the three types. In some analyses, the two middle cloud types (altostratus and altocumulus) have also been grouped.

There is no procedure for eliminating or solving the problems inherent in the data collection methods. However, the middle and high cloud data can be used for areal distribution comparisons, since all stations are subject to the same observational limitations. The observations provide a measure of the relative magnitude of events over the state.

Data Presentation Methods, The problem created by the recording of only the predominant cloud type in a single layer, when two or more types are present, is difficult to evaluate. No suitable technique is available for estimating true occurrence values from the existing card data. However, the cloud types expected to be troublesome can be pre-determined from knowledge of their occurrence patterns.

14

In the low cloud category, cumulus, cumulonimbus, and stratocumulus can occasionally be expected to occur simultaneously in the same layer. Therefore, some analysis was done by grouping these types and treating the group as a single cloud category. Cumulonimbus is the most important rain-producing cloud type in Illinois, and when present with cumulus or stratocumulus is usually more significant and predominant because of size. Therefore, the reporting of cumulonimbus occurrences may be assumed to be more accurate than those for cumulus.

Because of conditions associated with the presence of stratocumulus, the number of occurrences of stratocumulus is not believed to be seriously affected by the recording of only the predominating type in a layer. Nimbostratus is usually associated with altostratus, but the altostratus is often above the nimbostratus in another layer. Consequently, the predominant problem is not serious.

The major difficulty from recording only predominating cloud types is in the recording of altocumulus and altostratus. Altocumulus and altostratus are often present at the same time, but not always in the same layer. However, altocumulus often develops from dissolving altostratus, thereby creating both types in the same layer. The two cloud types have been combined, where appropriate, to minimize this error. Since the high cloud types have been grouped into a single classification, there is no effect from this limitation.

As mentioned previously, satisfactory card data were available for every third hour at the first-order stations from January 1, 1949 through May 31, 1951. For frequency determinations, this limitation was overcome by multiplying the number of occurrences by three during each 29-month period. However, this method was not considered satisfactory for analyses of cloud amounts, so only the June 1951 - December 1955 data were used for this purpose.

As indicated in Table 1, Peoria and Terre Haute had record periods after 1951 with less than 24 observations (cards) per day. Their frequency data after 1951 were also adjusted by use of multiples. These multiples were determined using the Springfield card data. The cards (hours) which were not available at Peoria and Terre Haute were removed from the complete Springfield card deck according to the particular months involved. This deleted data count for each cloud type was then compared to the total 24-hour count to obtain the corrective multiple. The multiples determined and used for each cloud type and each period are listed in Table 2.

TABLE 2

MULTIPLES USED TO ESTIMATE TOTAL CLOUD OCCURRENCES AT PEORIA AND TERRE HAUTE

	Peos	Peoria						
	4/15/52-7/31/53	8/1/53-12/31/55	1/1/52-7/31/54					
Cb, April-Sept. Cb, October-March Cu Sc Ns Ac As	1.31 1.05 1.01 1.35 1.36 1.31 1.29	1.95 1.22 1.02 1.52 1.47 1.51 1.51	1.55 1.21 1.00 1.43 1.51 1.36 1.30					
Cirriform	1.16	1.26	1.19					

16

FREQUENCIES OF CLOUD TYPES

ANNUAL CLOUD FREQUENCIES

Low Clouds

Considerable areal variation was exhibited in the annual frequencies of the four types of low clouds. The average number of occurrences per year of these low clouds, expressed as a percentage of the total possible observations, is shown in Figure 2. The cumulus occurrences increase from a low in northern Illinois to a high in the southeastern part of the state, while the cumulonimbus frequency increases from a low in the northeast to a high in the western region of the state. The stratocumulus distribution is the reverse of the cumulus and cumulonimbus patterns, the low occurring in the western portion and the high in the northeast part of the state. Nimbostratus have maximum annual occurrences in west-central Illinois.

The average annual frequency of low clouds for each station is shown in Table 3. Maximum and minimum annual values are given in Tables 4. and 5.

Middle Clouds

The areal variations in the annual frequency of altocumulus and altostratus combined are revealed in Figure 3a. Because of the limitations in observations of middle and high clouds described previously, the annual frequencies were grouped. The results as presented cartographically in Figure 3a, indicate that the maximum number of occurrences of middle clouds is in west-central Illinois. The average annual frequencies of altocumulus have a magnitude similar to stratocumulus. Average, maximum, and minimum annual occurrences of altostratus and altocumulus at each station are shown in Tables 3, 4, and 5.

High Clouds

The areal variability of the eirriform clouds is revealed in Figure 3b. From an area of low frequency in the northwest, a rapid increase to the southeast occurs with the maximum occurring in the central part of the state. Average, maximum, and minimum annual occurrences of the cirriform clouds at all stations are shown in Tables 3, 4, and 5.

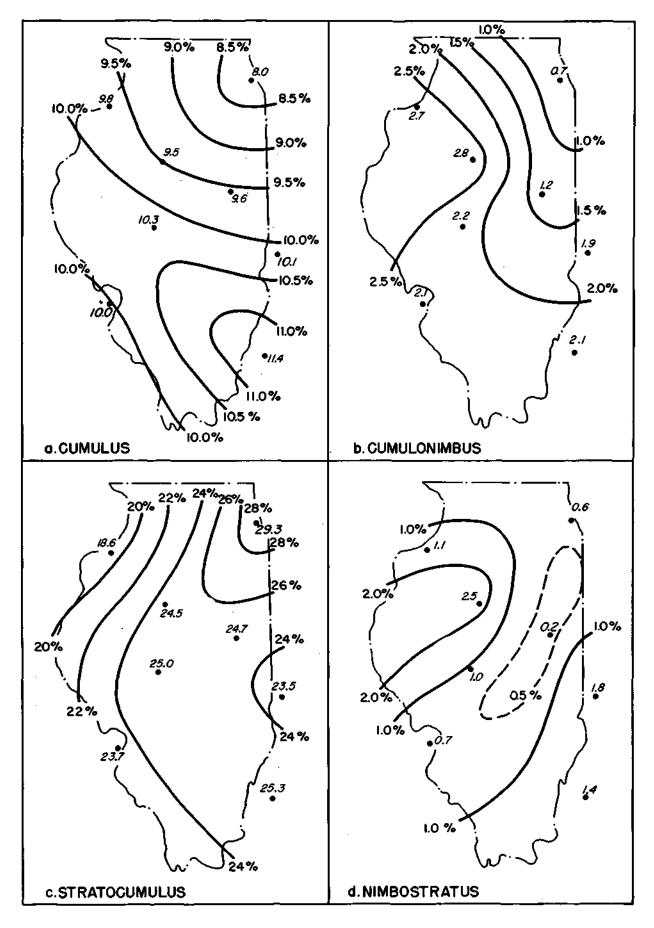


FIG.2 AVERAGE ANNUAL OCCURRENCES OF LOW CUOUD TYPES EXPRESSED AS PERCENT OF TOTAL POSSIBLE OBSERVATIONS

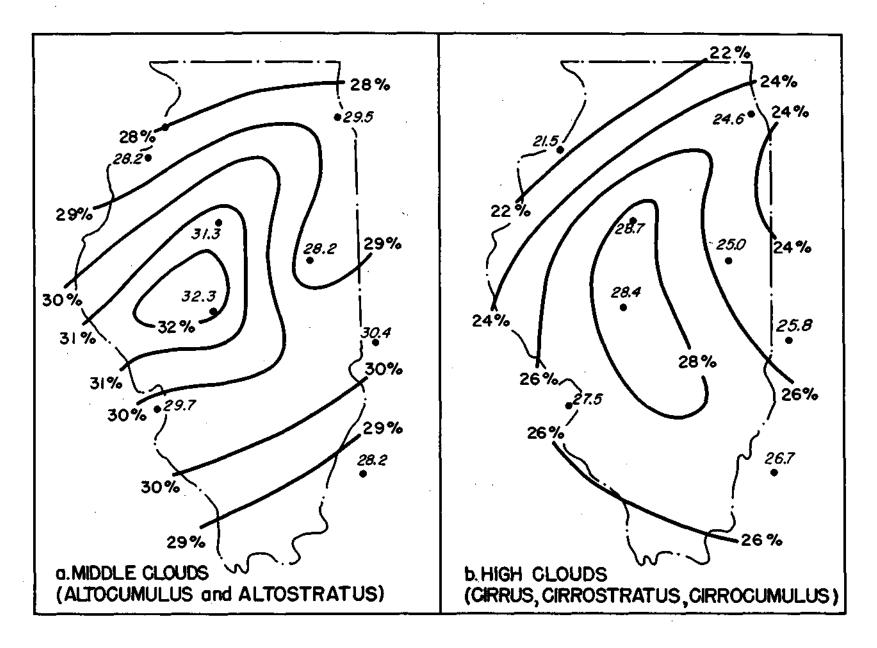


FIG. 3 AVERAGE ANNUAL OCCURRENCES OF MIDDLE AND HIGH CLOUD TYPES EXPRESSED AS PERCENT OF TOTAL POSSIBLE OBSERVATIONS

TABLE 3

AVERAGE MONTHLY AND ANNUAL NUMBER OF HOURLY CLOUD OCCURRENCES, 1949-1955

CUMULUS

	J	F	м	A	М	J	J	A	S	0	N	D	Annual
CHI MLI	2.3 8.3	10.9 10.3	32.0 41.0	54.3 70.4	69.4 124.0	110.7 146.9	152.7 168.9	152.3 145.6	76.7 76.9	27.8 36.4	6.7 21.3	3.2 6.0	702 .7 855 . 8
PIA	4.7	13.0	40.4	72.7	114.6	145.6	170.1	156.3	67.9	32.4	11.9	3.6	833.1
RAN	7.1	12.9	48.4	70 . 1	105.9 118.7	155.1	178.4	135.6	69.3 76.2	37.0	19.6	5.1	844.5
SPI HUF	15.3 4.2	15.6 12.3	45.0 41.2	68.3 71.8	126.5	153.1 153.7	171.0 184.5	150.7 153.6	79.2	49 .3 39 . 8	21.7 16.6	7 <u>.8</u> 7.0	903.0 886.2
STL	5.7	7.4	35.3	68.4	125.1	159.6	191.4	158.4	70.6	36.0	17.5	4.4	877.0
ËVV	12.7	14.6	49.0	65.4	127.4	167.2	207.9	180.4	92.4	47.3	25.4	11.4	998.6
						CUMULO	NIMBUS						
	J	F	M	A	М	J	J	A	S	0	N	D	Annual
CHI	0 ' 1,5	0	1.7	5.0	5.1	15.4	16.0	10.2	14.8	2.2	0.2	0	61.2
MLI PIA	1.1	1.4 0.6	7•8 6•6	20.4 20.9	28.3 25.7	55.0 59.6	50.8 53.6	34.4 37.6	19.5 28.6	9•3 7•9	4.3 2.1	0.8 1.3	223 . 3 227 . 0
RAN	0.7	0.7	3.9	5.1	14.3	23.3	29.1	13.1	7.7	4.0	1.4	0.7	104.1
SPI HUF	1.1 3.8	2.0 1.0	5.7 4.3	17.0 11.5	25.7 23.2	42.9 32.5	46 .3 -42 . 5	28.5 25.0	18.7 15.0	6.3 3.6	3.7 4.6	1.5 2.6	195.7
STL	0.3	0.6	5.6	13.9	22.1	37.6	46.5	29.3	16.1	5.3	2.6	0.6	170.4 181.0
EVV	:2.9	1.0	6.9	14.6	22.1	39.9	43.5	31.3	14.0	3.3	5.0	2.0	182 . 3

• • •

TABLE 3 (Cont'd)

AVERAGE MONTHLY AND ANNUAL NUMBER OF HOURLY CLOUD OCCURRENCES, 1949-1955

STRATOCUMULUS

	J	F	М	A	M	J	J	<u>A</u>	S	0	<u>N</u>	D	Annual
CHI	280.0	265.0	287.0	261.0	176.0	121.0	119.0	167.0	155.0	204.0	310.0	277.0	2564.1
MLI	151.4	135.8	179.1	154.1	119.6	87.9	74.9	94.5	114.2	136.5	196.9	163.0	1632.8
PIA	226.6	197.4	249.7	231.6	159.0	112,3	93.9	108.0	118.9	173.1	255.7	228.1	2145.7
RAN	211.4	199.4	247.6	247.6	193.1	Щ5.7	99.9	112.3	120.7	139 <u>.9</u>	238.7	205.0	2161.3
SPI	254.6	214.9	243.4	238.4	162.1	134.6	106.7	111.5	120.0	136.7	245.8	251.7	2193.3
HUF	235.5	231.5	233.8	227.7	150.2	100.3	86.0	89.4	119.6	111.2	222.0	244.4	2055.8
STL	276.7	181.9	202.9	208.3	151.4	117.0	104.9	97.5	125.9	147.5	210.0	266.8	2080.1
EAA	264.3	238.1	248.0	237.0	159.1	125.0	81.9	83.8	117.5	158.9	8 2144	254.1	2217.9

NIMBOSTRATUS

-

.

	J	\mathbf{F} -	M	A	M	J	J	A	S	0	N	D	Annual
CHI	8.9	5.0	10.7	4.9	3.3	1,1	0.5	2.7	1.2	1.3	5.5	7.0	50.7
MLI	10.9	15.6	17.9	8.9	11.8	3.1	0.9	1.9	0.8	8.3	5.9	10.0	94.5
PIA	34.0	34.0	40.9	26.0	12.4	5.4	4.0	4.1	3.6	16.3	16.4	23.7	221.0
RAN SPI	0.6	2.1	1.1	1.1	1.0	1.7	0.3	0,6	0.4	5.6	1.4	0.0	16.0
HUF	19.7	11.3	11.9	7.5	4.5	1.4	0.3	1.9	1.5	4.7	8.2	13.5	84.1
STL	23 . 2 4 . 9	16.7 8.6	29.0 12.7	19•8 8•4	7.8	2.3	2.5	9.0	4.0	9.0	14.8	18.0	159.6
EVV	32.4	13.3	10.4	9•4	5•9 8•3	0.7 4.9	0.9 2.0	2.0	0.5	3.6	4.0	7.6	59.0
<u> </u>	J + + + + + + + + + + + + + + + + + + +		1004	704		447	4.00	2.1	4.6	11.3	15.5	16.8	118.3

TABLE 3 (Cont'd)

AVERAGE MONTHLY AND ANNUAL NUMBER OF HOURLY CLOUD- OCCURRENCES, 1949-1955

ALTOCUMULUS

	J	F	M	A	М	J	J	A	S	0	N	D	Annual
CHI	97.3	110,0	128.3	156.9	239.0	244.9	267.0	213.3	193.7	158.2	128.3	110.7	2089.0
MLI	107.6	115.9	120.4	140.7	206.4	203.8	222.8	219.0	170.5	156.4	135.5	105.9	1908.8
PIA	154.7	146.4	156 . 9	190.6	281.9	267.1	281.4	294.0	222.9	192.1	176.1	161.3	2538.4
RAN	100.9	108.9	102.6	131.1	182.3	177.4	212.4	214.1	181.4	157.9	129 <u>.3</u>	115.3	1813.6
SPI	170.3	156.7	160.3	212.0	26 7.8	273.3	324.0	297.5	221.5	205.5	172.5	158 <u>.5</u>	2611.7
HUF	116.8	138.0	155.3	185.7	227.7	220.3	252.3	260.4	194.4	169.0	158.2	158.8	2233.6
STL	116.0	117.0	131.6	168.1	204.1	207.3	236.1	238.5	163.8	165.0	124.4	121.4	1985.8
EVV	113.4	121.7	133.9	175.6	200.1	206.1	235.4	262.8	184.8	139.0	130 . 5	137.9	2065.6

ALTOSTRATUS

	J	F	м	A	М	J	J	A	S	0	N	D	Annual
CHI	54.7	44.4	54.6	49.4	46.0	38.3	42.3	32.8	34.8	32.8	39.3	39.3	491.8
MLI	69.4	54.5	63.1	57.8	46.9	41.8	19.6	27.8	22.8	29.9	58.3	62.0	541.6
PIA	36.0	24.0	26.7	17.5	14.7	17.6	12.6	8.4	7.3	11.6	19.9	16.7	213.4
RAN	53.1	48.9	60.6	53.9	74.7	80.1	51.3	53.0	46.0	48.1	39.6	46.6	656.1
SPI	32.8	16.1	29.9	19.4	18 . 1	16.4	7.8	13.3	8.2	16.7	19.8	28.5	220.9
HUF	45.0	39.3	45.5	46.8	30.5	36.8	26.2	31.0	17.8	25.0	34.6	37.0	425.4
STL	68.0	42.6	49.0	57.1	62.3	57.6	43.4	48.4	31.6	32.6	45.4	54.5	587.0
EVV	<u>33.</u> Ц	39.6	58.1	32.7	հեթուց	32.4	27.8	22.1	28.9	24.3	38.1	42.8	406.7

CIRRIFORM

	J	F	М	A	М	J	J	A	S	0	N	D	Annual
CHI	139.4	114.7	143.0	159.9	237.7	304.4	248.5	215.3	173.7	160.7	143.8	116.3	2156.4
MLI	147.9	107.0	130.7	139.0	184.6	229.0	208.3	170.4	140.9	149.9	153.3	122.4	1883.3
PIA	166.0	150.6	168.0	202.6	264.6	311.1	276.9	241.0	193.6	193.4	187.3	160.3	2515.1
RAN	150.0	127.1	134.3	169.3	230.9	290.7	279.1	213.3	148.1	156.3	147 . 6	140.9	2187.7
SPI	150 .1	150.1	164.7	212.4	280.4	314.6	276.7	221.7	189.2	189.5	156.2	137.2	2465.4
HUF	129.7	144.7	143.3	188.2	277.3	308.8	273.7	220.6	167.0	182.0	150.6	126.8	2263.8
STL	147.3	.155.6	183.0	200.0	268 .1	307.1	272.1	246.6	178.0	165.9	153.5	160.8	2412.1
EVV	130.3	139.7	171.7	188.6	262.3	299.3	289.9	242.5	172.6	170.9	142.0	148.1	2335.0

TABLE 4.

MONTHLY AND ANNUAL MAXIMA OF HOURLY CLOUD OCCURRENCES, 1949-1955

<u>CUMULUS</u>

CHI MLI PIA RAN SPI HUF STL EVV	J 15 10 19 34 10 16 21	F 24 34 29 27 15 27	M 57 60 70 61 63 67 78	A 92 99 101 81 105 90 82	M 102 147 153 144 173 164 174 142	J 168 195 183 192 177 191 198 184	J 207 210 227 244 227 226 258 272	A 192 166 219 162 207 192 192 213	S 101 123 93 92 91 111 85 114	0 44 82 53 61 98 75 70 83	N 18 30 27 46 25 56 545	D 12 14 9 15 19 14 16 19	Annual 882 990 1005 1062 975 996 1025 1167
					<u>CU</u>	MULON	MBUS						
	J	F	M	<u>A</u>	M	J	J	<u>A</u>	S	0	N	D	Annual
CHI MLI PIA RAN SPI HUF STL EVV	0 96450 1026	0 MM28 MM-4	3 15 18 8 9 7 11 13	11 42 49 11 25 31 27	7 45 29 51 348 48	23 108 36 59 39 64 80	24 66 44 69 8 78 66	17 77 26 45 99 68	9 35 19 35 25 30 21	9 26 17 15 6 21 9	3 14 7 48 15 5 12	0 5406 56	75 313 299 134 250 252 327 252
					<u>STR</u>	ATOCU	MULUS						
	J	F	<u>M</u>	A	<u>M</u>	J	J	A	S	. 0	<u>N</u>	D_	Annual
CHI MLI PIA RAN SPI HUF STL EVV	424 218 332 276 321 309 420 333	317 204 274 253 285 266 205 30 4	335 228 294 297 276 273 273 306	366 248 356 324 356 324 328 258 258 323	238 184 194 270 186 183 206 214	190 158 181 248 210 139 215 195	186 119 141 155 177 117 183 126	228 150 162 142 177 110 144 123	202 198 228 296 243 174 234 213	376 267 300 232 253 142 258 282	328 258 309 324 282 269 250	408 233 331 289 361 310 327 365	3151 1954 2355 2558 2583 2583 2244 2322 2475
					NIM	BOSTR							
	<u> </u>	F	<u>M</u>	<u>A</u>	<u>M</u>			<u> </u>	S	0	<u>N</u>	D	Annual
CHI MLI PIA RAN SPI HUF STL EVV	15 22 67 40 63 78	8 26 38 21 24 24 33	22 31 84 27 54 36 27	9 24 48 6 13 30 23 21	6 35 33 15 21 18 24	7 11 15 6 4 3 12	2 3 9 1 8 3 9	7 11 8 3 9 27 13 12	6 3 9 2 6 9 1 12	8 28 36 20 9 21 17 39	12 17 27 19 30 0 26	21 18 45 26 28 15 33	76 150 354 35 120 185 104 261

TABLE 4. (Cont'd)

MONTHLY AND ANNUAL MAXIMA OF HOURLY CLOUD OCCURRENCES, 1949-1955

ALTOCUMULUS

	J	F	M	A	M	J	J	A	S	0	N	D	Annual
CHI MLI	129 151 183	186 181	165 160	192 183	279 285 355	304 273	298 239	315 262	209 217	189 191	202 153	210 191	2213 2062
PIA RAN	183 179	214 174	202 156	258 176 265	273	351 260	339 251 387	385 289	265 253 282	261 215	219 186	223 164	2705 2136
SPI HUF	211 132	253 196	189 198	265 207	351 267	369 293	387 306	387 325	282 252	270 270	204 204	237 217	2136 2793 2574
STL EVV	146 190	166 172	183	228 222	240 273	291 295	315	295 368	191	243	156 192	166 198	2163
	190	1/2	164		213	275	372		237	240	172		2250
					<u>AL</u>	TOSTR	<u>ATUS</u>						
	J	F	M	A	М	J	J	A	S	0	N	D	Annual
CHI MLI	105 105	81 69	120 117	75	96 66	84 91	87 33	63 35 18	93 45	63 54	90 65	67 110	831 630
PIA RAN	79	29	57	73 32 34 36 75 91 75	36 138	49 166	33 39 65 17	18	21 111	19 102	65 68 86	47 78	345 989
SPI	72 57 75 137	72 27	99 60	<u>36</u>	30	51	17	91 24	20	27 63	60	72	309 522
HUF STL	75 137	27 44 63 66	69 78	75 91	30 48 126	79 101	42 60	40 128	35 63	63	54 80	63 81	738
EVV	46	66	87	75	81	51	35	36	63	51	67	. 72	546
						IRRIPC							
	J	F	<u>M</u>	<u>A</u>	M	J	J	<u>A</u>	<u>S</u>	0	N	D	Annual
CHI MLI	186 201	145 144	219 155	231 211	348 216	395 276	288 296	249 2ևև	189 168	219 201	176 205	141 162	2337 2136
PIA RAN	239 212	195 204	190 166	296 294	315 278	360	335 364	2111 281 265	257 192	231 229	233 207	232 185	2785 2682
SPI	192	198	210	351 286	354	397 388	335 345	266	270	279	194	221 165	28/12
HUF STL	158 181	165 179	177 219	326	393 320	388 365	312	250 298	207 236	222 255	209 191	231	2343 2741 2563
EVV	147	171	240	304	321	374	333	296	228	231	186	201	2563

TABLE 5

MONTHLY AND ANNUAL MINIMA OF HOURLY CLOUD

OCCURRENCES, 1949-1955

<u>CUMULUS</u>

	J	F	M	A	М	J	J	_A	<u>s</u>	0	N	D	Annual
CHI MLI PIA RAN SPI HUF STL EVV	0 2 0 3 0 1 3	30433630	17 21 27 32 27 18 21 35	220 536 538 512 52 52 512 512 512 512 512 512 512 5	15 87 85 64 99 78 78 107	12 115 118 100 125 129 132 149	91 128 83 125 99 125 88 154	79 108 112 100 101 132 121 132	396952441 356441	10 6 20 21 20 13 21	0 10 2 3 15 9 15 18	0 30 H 3 30 3	528 762 720 711 793 782 754 835
		_			<u>CU</u>	MULON	NIMBUS				_		
	<u>J</u>	F	M	A	M	J	J	<u>A</u>	S	_0	<u>N</u>	D	Annual
CHI MLI PIA RAN SPI HUF STL EVV	0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 30 0 30 0 0	02914000	0 17 5 10 9 10 3	12 43 37 15 25 24 21	36 21 34 28 12 13	3 14 23 11 12 9 8	1 8 12 9 8 9 6	023000000	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0	39 195 211 43 139 118 120 108
					<u>STR</u>	ATOCU.	MULUS						
	J	F	<u>м</u> 197	A 170	M	Ĵ	J 87	<u>A</u>	S	0	<u>. N</u>	D	Annual
CHI MLI PIA RAN SPI HUF STL EVV	180 93 147 142 206 164 156 220	F 195 96 99 157 168 183 124 180	197 128 184 167 148 186 124 212	170 57 162 140 156 147 110 151	102 60 120 152 123 102 102 123	57 57 54 65 63 37 31	07420 4420 5695 445	A 89 81 48 47 49 75 47 58	5 73 39 48 31 67 22 57	0 123 638 74 543 27 50	226 167 216 181 200 173 137 144	183 110 150 121 119 186 201 165	2207 1359 1863 1752 1814 1860 1708 2021
					NI	MBOST	<u>RATUS</u>						
CHI	J 0	F	<u>M</u>	<u>A</u>	M		J 0	<u>A</u>	<u>s</u>	0	<u>N</u>		Annual
MLI PIA RAN SPI HUF STL EVV	0 MUO 6 UO M	0 12 0 1 5 0 0	14 05 17 0	0 3 0 3 0 3 0 1	0 0 0 0 0 0 1	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000	000000000000000000000000000000000000000	0900302	051 10250 1	Annual 33 24 89 5 51 120 16 26

TABLE 5 (Cont'd)

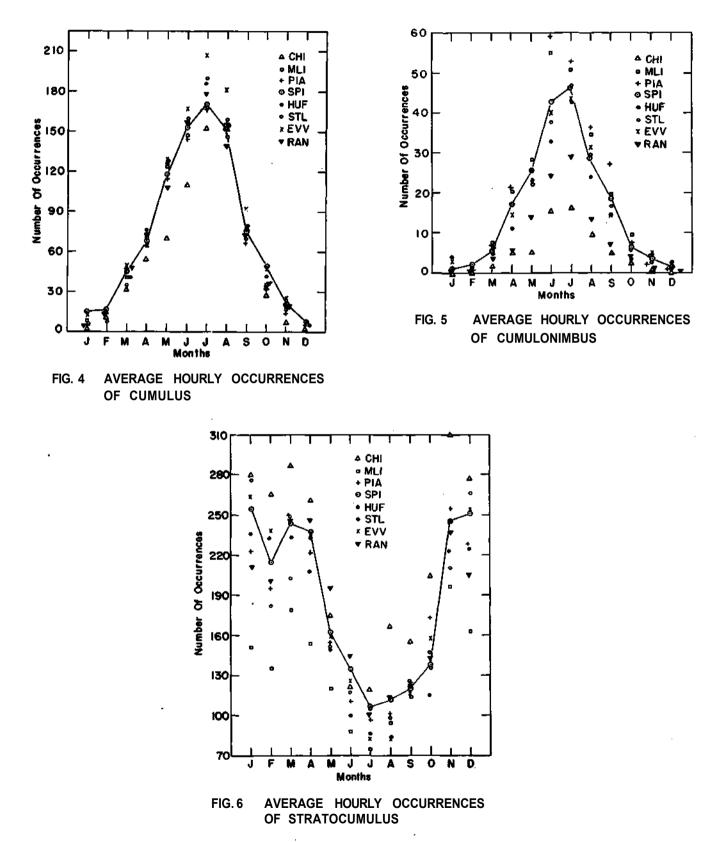
MONTHLY AND ANNUAL MINIMA OF HOURLY CLOUD

OCCURRENCES, 1949-1955

ALTOCUMULUS

J 39 84 111 42 123 102 66 79	F 45 93 60 90 81 78 85	M 106 85 122 71 123 120 103 111	A 74 144 99 170 165 122 160	M 162 211 141 210 139 129 147	J 216 129 191 79 212 174 120 139	J 228 204 225 124 225 216 165 180	A 127 218 140 226 137 174 193	S 138 187 127 134 129 117 97	0 127 86 144 113 159 79 118 55	N 94 109 147 75 140 114 85 102	D 64 76 55 83 56 97	Annual 1944 1738 2359 1487 2465 1787 1754 1826
				<u>AL</u>	TOSTR	ATUS						
J	F	М	A	M	J	J	A	S	0	N	D	Annual
26 35 21 15 17 30 18	19 23 12 29 11 36 27 17	15 36 55 14 23 21 38	14 36 29 20 28 23	15 19 21 8 15 24 14	8 18 30 28 18 22 17	15405158 21585 15	10 7 26 23 8 3	11 3 0 18 1 7 11 2	10 9 22 2 2 6 12 6	7 18 0 17 6 22 4 4	18 145 18 145 14 25 21	218 360 95 427 129 324 379 267
				<u>C</u>	IRRIF	<u>ORM</u>						
J	F	M	A	M	J	J	A	S	0	N	<u>D</u>	Annua 1
99 87 93 75 96 72 87 102	84 68 84 121 123 114 105	85 100 134 101 111 101 94 124	96 102 159 98 138 117 122 141	183 130 181 186 228 218 219 215	249 165 252 214 254 237 240 240	172 128 204 205 229 201 201 240	163 123 180 124 196 196 192 184	116 114 159 75 149 138 112 106	92 99 154 107 147 156 138 135	120 111 147 94 125 108 126 105	76 70 94 102 115 94 97 96	1964 1715 2286 1542 2147 2134 1957 2209
	39 84 111 42 123 102 66 79 J 26 35 8 21 15 17 30 18 J 99 87 93 75 96 287	39 62 84 45 111 93 42 60 123 90 102 81 66 78 79 85 J F 26 19 35 23 8 12 21 29 15 11 17 36 30 27 18 17 J F 99 84 87 68 93 84 75 56 96 121 72 123 87 114	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

MONTHLY AND SEASONAL VARIATIONS IN CLOUD FREQUENCIES


As expected, cumulus and cumulonimbus have a maximum number of occurrences during the warmer months. June and July peaks are observed throughout Illinois., Among the middle clouds, altocumulus has maximum occurrences in the summer. Also, the most frequent occurrences of cirrus, cirrostratus, and cirrocumulus are recorded during the warmer half-year, the peak being reached in June.

Two types of low clouds, stratocumulus and nimbostratus, have their maximum frequencies in the colder half-year, October through March. Stratocumulus exhibits two maxima separated by three months. The first and principal maximum occurs in November or January and the second in March. The nimbostratus maximum is in March. Altostratus occurs most frequently in January.

Of the low cloud group, stratocumulus and nimbostratus have a minimum number of occurrences in the warmer half-year. The stratocumulus minimum occurs in either July or August, while September is the month of fewest occurrences of nimbostratus. Altostratus also reaches a minimum in the July-September period.

Cumulus and cumulonimbus, low clouds which exhibit strong vertical growths, occur least in the winter months, December through February. The altocumulus and high cloud minima also occur in winter.

A comparison of the average monthly frequency of various cloud types was made for eight stations. Frequencies were expressed in percent of possible occurrences. Results are summarized in Figures 4 to 10 and Table 3, which shows the average monthly sequence

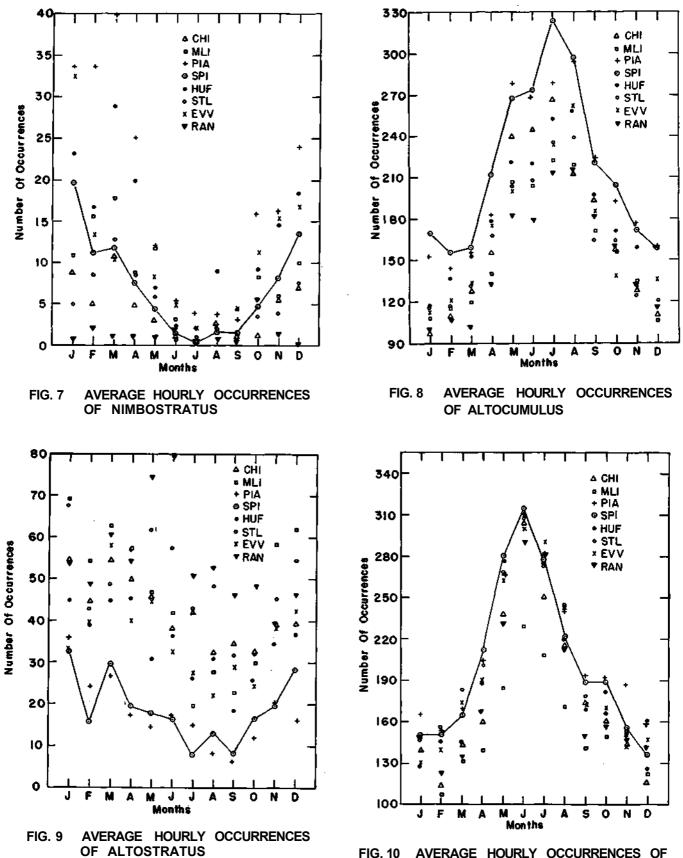


FIG. 10 AVERAGE HOURLY OCCURRENCES OF CIRRUS, CIRROSTRATUS, AND CIRROCUMULUS

of frequencies at the several stations for the various cloud types. In Figures 4 to 10, 28 curves have been drawn for the Springfield data to represent the general monthly cloud distributions. Other stations are represented by points only. Monthly maximum values at each station are shown in Table 4 and monthly minimum values are listed in Table 5.

Low Clouds

<u>Cumulus</u>. All station distributions (Fig. 4) show extremely close association, indicating a minimum frequency in December and January and a maximum in July. Only Chicago tends to have appreciably lower percentages, but these occur only from April through July.

<u>Cumulonimbus</u>. The distributions for cumulonimbus (Fig. 5) are similar with a minimum occurring In the December-February period. The occurrence maximum is July for all stations except Moline and Peoria, which reach their maximum in June. Chicago has the lowest number of occurrences in all months. All other stations have monthly averages which are not significantly different.

Stratocumulus. The monthly values (Fig. 6) are highest in the period from November through April, and lowest from June through August. Two distinct cold season maxima are observed with the higher of the two in the November-January period. In this period, the northernmost stations peak in November and the more southerly stations peak In January. The second maximum Is reached in March at all stations. The principal maximum appears in central and southern Illinois about two months later than in northern Illinois.

The occurrence of the minimum also varies regionally. The minimum in the northern area occurs in July, while the three southernmost stations have their minima in August. In all months except May and June, Chicago has the highest number of occurrences, while Moline has the lowest in all months except August and October.

<u>Nimbostratus</u>. Although appreciable variation in number of occurrences exists, nimbostratus shows similar trends at all stations, with a maximum in late winter and early spring and a low in late summer (Fig. 7). In all months except June and October, Rantoul has a significantly lower number of occurrences than the other stations.

Middle Clouds

<u>Altocumulus</u>. The values for all stations are similar, but considerable monthly variation in the magnitude of station occurrences is present (Fig. 8). The months of maximum occurrence are July and August. Minimums occur in the December-February period.

<u>Altostratus</u>. The distribution of altostratus (Fig. 9) shows trends which are almost a converse of those indicated by the altocumulus curves. At most stations, the altostratus principal maximum is reached in January with March having a secondary maximum. However, the highest monthly average occurs in June at Rantoul. For each month, the eight stations exhibit a wide range in their average frequency. Peoria and Springfield have fewer occurrences than the other stations.

High Clouds

The monthly occurrences (Fig. 10) at all stations are similar for cirriform clouds, but the magnitude of occurrences varies

considerably during some months. The month of maximum activity is June. A small secondary winter maximum occurs in January at the northern Illinois stations and in December at the southernmost stations.

DIURNAL VARIATION OF CLOUDS

The diurnal variations of low, middle, and high clouds are illustrated in Table 6 and Figures 11 to 14. As would be expected, cumulus (Fig. 11) show a tendency to Increase rapidly during the later forenoon, reaching a maximum frequency during early to midafternoon, and then decreasing rapidly In the late afternoon and early evening. A lag of several hours exists between the cumulus and cumulonimbus peaks. The cumulonimbus (Fig. 11) reach a frequency peak In the late afternoon or early evening, and show a secondary peak during the middle of the night in the thunderstorm season from late spring to early fall. The secondary peak is probably associated with the nocturnal thunderstorms which penetrate western Illinois. The diurnal variation of stratoeumulus varies with the season. Referring to Figure 12, it is seen that the January maximum is reached around raid-day and the minimum at nighto During July, there are double peaks occurring during the early forenoon and late afternoon, with a minimum frequency during mid-afternoon at the time of maximum cumulus development.

Figure 13 indicates that the diurnal pattern of middle clouds also varies with the season. This figure shows that altocumulus has January maxima during mid-forenoon and late afternoon, while during July the maxima tend to occur during the early forenoon and late afternoon. The cirriform clouds (Fig. 14) show a maximum in the afternoon and a minimum during the night. Unfortunately, the pronounced night minimum with the cirriform or high clouds is partly due to observational difficulties which have been discussed previously. This observational difficulty is present to a lesser extent in night observations of middle clouds. Consequently, the middle and high cloud distributions represent only relative magnitudes.

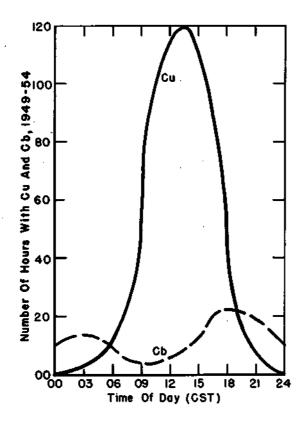


FIG. 11 DIURNAL PATTERN OF CUMULUS AND CUMULONIMBUS AT SPRINGFIELD, JULY

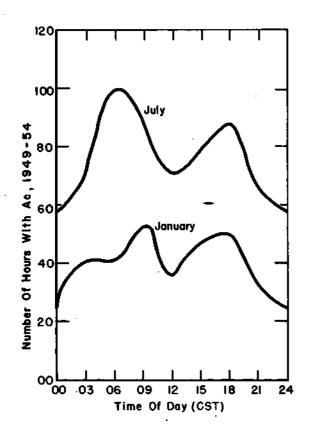


FIG. 13 DIURNAL PATTERN OF ALTO-CUMULUS AT SPRINGFIELD, JANUARY AND JULY

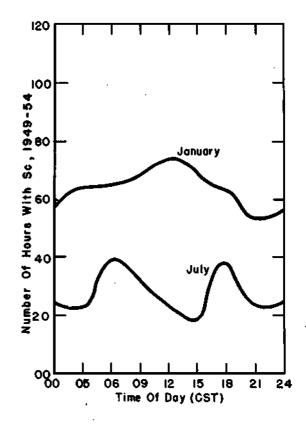


FIG. 12 DIURNAL PATTERN OF STRATO-CUMULUS AT SPRINGFIELD, JANUARY AND JULY

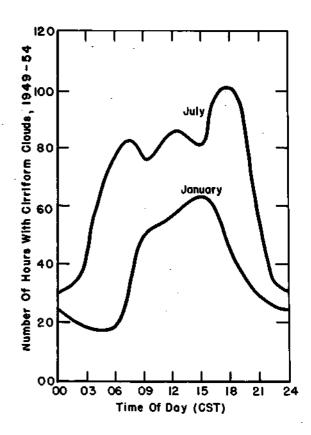


FIG. 14 DIURNAL PATTERN OF CIRRIFORM CLOUDS AT SPRINGFIELD, JANUARY AND JULY

DIURNAL DISTRIBUTION OF

CLOUDS AT SPRINGFIELD, 1949-1954

Time Number of Occurrences (CST) January	Time Number of Occurrences (CST) February
Cu Cb Sc Ns As Ac CiCsCc	Cu Cb Sc Ns As Ac CiCsCc
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Time Number of Occurrences	Time Number of Occurrences
(CST) March Cu Cb Sc Ns As Ac CiCsCc	(CST) April Cu Cb Sc Ns As Ac CiCsCc
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Time Number of Occurrences (CST) May	Time Number of Occurrences (CST) June
Cu Cb Sc Ns As Ac CiCsCc	Cu Cb Sc Ns As Ac CiCsCc
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE 6 (Cont'd)

DIURNAL DISTRIBUTION OF

CLOUDS AT SPRINGFIELD, 1949-1954

Time Number of Occurrences (CST) July								Time (CST)	Nu	Number of Occurrences August					
• •	Cu	СÞ	S¢	Ns	Ås	Ac	CiCsCc	•	Cu	СЪ	Sc				CiCsCc
00 03 06 09 12 15 18 21	0 22 53 115 110 41 7	10 14 9 35 12 22 19	242 392 324 178 23	2 0 0 1 1 0 0	32002020	58 71 100 89 71 79 88 66	30 44 78 76 85 81 101 54	00 03 06 12 15 18 21	1 0 53 115 106 41 2	8 7 35 8 10 14	19 36 32 24 25 20	1 0 1 1 1 0	እ እ እ እ እ እ እ እ እ እ እ እ እ እ	46 58 89 75 91 50	26 22 64 76 85 78 80 30

Time (CST)	Number of Occurrences September	Time Number of Occurrences (CST) October
•	Cu Cb Sc Ns As Ac CiCsCc	Cu Cb Sc Ns As Ac CiCsCc
00 03 06 09 12 15 18 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Time (CST)	Nu	mbo		of (vemb		irre	ences	Time (CST)	Number of Occurrences December						ences
•	Cu	СЪ	Sc	Ns	As	Ac	CiCsCc	, ,	Cu	СЪ				Ac	CiCsCc
00 03 06 09 12 15 18 21	0 0 15 16 14 0 0	0 1 0 0 1 0 2 2	5376698295555555555555555555555555555555555	1 1 1 3 2 2 3	52435954	31625555779 352555779	26 15 259 65 40 23	00 03 06 09 12 15 18 21	0 0 0 8 6 4 1 0	0 0 0 0 2 1 0	541 595 67 68 67 67	55321524	42648083	326 339 446 54	23 16 13 48 65 24

ANNUAL AND MONTHLY VARIATIONS IN CLOUD AMOUNTS

Six of the eight stations had satisfactory data on cloud amounts, but only 55 months of data were available at each station except Rantoul which had 84. months (1949-1955) of data. The cloud amount analyses were restricted to monthly and annual averages (Table 7) because of the limited periods of data. Cloud amounts are expressed in tenths of sky cover in each layer at the hourly observation time. Annual and monthly amounts then represent the summation of the hourly sky covers for the entire period, expressed in tenths.

Since Rantoul was the only station with data for the entire 1949-1955 period, monthly and annual averages were prepared for this 7-year period, in addition to the averages for the June 1951-December 1955 period. The June 1951-December 1955 Rantoul averages were used in Table 7 in order that they would be comparable to those of the five first-order stations which are based on this period. Except for nimbostratus which contributes only a very small percentage of the total clouds, the 1949-1955 Rantoul averages were in reasonable agreement with the shorter period averages considering the relatively short sampling periods involved. The annual short-period averages differed from the annual 1949-1955 period averages by the following percentages:

Cumulus	+ 2	Altocumulus	- 7
Cumulonimbus	+14	Altostratus	-13
Stratocumulus	- 4	Cirriform	+ 7
Nimbostratus	+24		

AVERAGE MONTHLY AND ANNUAL NUMBER OF TENTHS COVERAGE

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CHI 6 MLI 21		CUMULUS												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MLI 21	J F M			A S		N	D	Annual						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									1812						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SPI 26			455 455 1											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				399 475					2169						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EVV 56	56 73 198	241 522	673 770	664 343				3722						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>RAN 35</u>	<u>35 67 199</u>	<u> 291 483 </u>	618 725	<u>597 301 </u>	173	94	21	3688						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J	J F M	<u>A M</u>			0	<u>N</u>	D	Annual						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 0 7			44 22	.7			222						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6 9 46				65 57									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 9 10							798						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		21 10 51		226 174					924						
J F M A M J J A S O N D Ann CHI 2347 2052 2005 1639 1336 786 579 904 739 1386 1959 2093 17, MLI 1355 1270 1337 1202 1022 632 452 573 632 1114 1434, 1383 12, 1385 1270 1337 1202 1022 632 452 573 632 1114 1434, 1383 12, 1383 12, 1383 12, 1383 12, 138 138, 132,					93 55		12		728						
CHI 2347 2052 2005 1639 1336 786 579 904 739 1386 1959 2093 17, MLI 1355 1270 1337 1202 1022 632 452 573 632 1114 1434 1383 12, SPI 1796 1667 1668 1533 1003 740 376 528 506 906 1639 1826 13, STL 1808 1236 1242 1138 .951 545 348 384 435 837 1323 1892 11, EVV 2063 1698 1609 1409 998 566 346 367 419 949 1580 1964 13,			—												
MLI 1355 1270 1337 1202 1022 632 452 573 632 1114 1434 1383 12, SPI 1796 1667 1668 1533 1003 740 376 528 506 906 1639 1826 13, STL 1808 1236 1242 1138 .951 545 348 384 435 837 1323 1892 11, EVV 2063 1698 1609 1409 998 566 346 367 419 949 1580 1964 13,	J	·····	· · · · · · · · · · · · · · · · · · ·				N	D	Annual						
SPI 1796 1667 1668 1533 1003 740 376 528 506 906 1639 1826 13,5 STL 1808 1236 1242 1138 .951 545 348 384 435 837 1323 1892 11,5 EVV 2063 1698 1609 1409 998 566 346 367 419 949 1580 1964 13,5		2347 2052 2005			904 739	1386			17,757						
STL 1808 1236 1242 1138 .951 545 348 384 435 837 1323 1892 11, EVV 2063 1698 1609 1409 998 566 346 367 419 949 1580 1964 13,									12,061						
EVV 2063 1698 1609 1409 998 566 346 367 419 949 1580 1964 13,			1138 .951	545 348			1323		11,618						
RAN 1514 1543 1544 1414 1211 807 417 495 514 823 1536 1497 12,		2063 1698 1609				949	1580		13,622						
		1514 1543 1544				823	1536		12,918						
NIMBOSTRATUS	EVV 2063			NIMBOSTRATUS											
	EVV 2063					0			Annual						
CHI 54 16 82 32 30 9 3 21 12 20 35 24 353	EVV 2063 RAN 1514 J	and the second statement of the Statemen		<u>J J</u>	<u>A S</u>	•		1	353						
MLI 130 137 169 39 136 19 2 19 3 50 59 84 850	EVV 2063 RAN 1514 J CHI 54	54 16 82	32 30	9 3	21 12		35	24	272						
STL 25 37 59 69 68 3 5 22 2 36 25 $\frac{112}{10}$	EVV 2063 RAN 1514 J CHI 54 MLI 138	54 16 82 138 137 169	32 30	9 3 19 2	21 12 19 3	50	59	84	353 850						
EVV 106 90 52 53 49 24 0 0 1 17 95 88 483	EVV 2063 RAN 1514 CHI 54 MLI 138 SPI 119	54 16 82 138 137 169 119 79 67	32 30	9 3 19 2	21 12 19 3 3 6	50 28	59 61	84 102	544						
EVV 106 90 52 53 49 24 0 0 1 17 95 88 483 RAN 10 16 5 15 17 10 0 6 0 68 21 0 173	EVV 2063 RAN 1514 J CHI 54 MLI 138 SPI 119 STL 25	54 16 82 138 137 169 119 79 67 25 37 59	32 30 39 136 54 55 69 68	93 192 41 35	21 12 19 3 3 6 22 2	50 28 36	59 61 25	84 102 54	550 544 419 483						

TABLE 7 (Cont'd)

AVERAGE MONTHLY AND ANNUAL NUMBER OF TENTHS COVERAGE

ALTOCUMULUS

	J	F	M	A	м	J	J	A	S	0	N	D	Annual
CHI	628	778	736	993	1217	1116	1377	1302	1132	797	749	186	11,802
MLI	632	816	692	682	982	1026	941	1076	805	724	744	611	9536
SPI	981	893	835	952	1190	1011	1216	1451	986	943	825	1005	12,390
STL	770	623	794	755	921	716	896	1056	696	652	576	661	8850
EVV	1097	1070	1020	1306	1546	1491	1489	2071	1313	984	1011	1099	15,012
RAN	771	96 5	691	931	<u>1282</u>	<u>1331</u>	1497	1579	1349	1019	826	901	12,790
						ALTOSI	RATUS						
	J	F	M	A	м	J	J	A	S	0	N	D	Annual
CHI	296	270	262	329	261	215	164	145	153	168	169	284	2323
MLI	482	383	334	451	210	225	102	163	123	175	277	446	3075
SPI	176	88	119	113	84	84	47	55	53	102	161	173	1013
STL	420	291	286	304	331	254	192	274	125	146	246	325	2907
EVV	330	248	<u>і</u> ці,6	284	333	220	183	נּאָנ	<u>1</u> 11	128	274	268	2874
RAN	354	379	458	<u> </u>	586	543	365	<u> </u>	268	<u>418</u>	271	<u>318</u>	<u>4432</u>
						CIRRI	FORM						
	J	F	M	A	M	J	J	A	s	0	N	D	Annual
CHI	955	686	653	1012	1070	1570	1246	1130	822	749	890	774	11,393
MLI	731	519	561	708	714	1041	804	705	560	549	779	588	8237
SPI	749	670	563	925	992	1221	1307	1083	721	760	805	802	10,864
STL	760	718	738	1014	1145	1327	1062	916	614	569	721	749	10,323
EVV	1164	1331	1344	1787	2145	2645	2531	2071	1327	1340	1138	1098	19,799
RAN	1462	1320	1211	1894	2111	2804	2500	1961	1370	1279	1411	1301	20,757

-

LOW CLOUDS

Evansville had the highest annual average number of tenths of cumulus, 3722, and also the highest monthly averages in each month except March and April when Rantoul and Moline ranked first. Chicago had the lowest average with 1812 tenths per year, and also had the lowest monthly averages in nine months.

Moline had the highest annual average of cumulonimbus with 1229 tenths. The monthly patterns show a latitudinal distribution. Evansville was highest in December and January while Springfield was highest from February through April and In September. Moline led in the remaining months. Chicago had the lowest annual and monthly averages.

Chicago had the highest annual average of stratocumulus and monthly averages are highest in all months except June. St. Louis with 11,618 tenths per year had the lowest average. The lowest monthly averages are centered in the west-northwest in winter and in the south-southeast in summer.

The annual average of nimbostratus reached a maximum at Moline, while Rantoul had the lowest annual average. The predominating monthly high and low average values showed considerable stationto-station variation.

MIDDLE CLOUDS

The highest average annual number of tenths of altocumulus, 15,012, occurred at Evansville. St. Louis with an average of 8850 per year had the lowest average. Evansville also had the highest monthly averages in all months except July, September, and October

when the Rantoul averages were highest. St. Louis had the lowest averages in nine months.

The altostratus maximum average was 4432 tenths per year at Rantoul. Rantoul monthly averages were highest in seven months, principally those in the warmer half-year, while Moline had the highest values in the, other five months. Springfield had the lowest annual average, 1013, and also had the lowest monthly values in all months.

HIGH CLOUDS

Rantoul had the highest annual average of cirriform clouds with a value of 20,757 tenths. Evansville and Rantoul had the highest average monthly values, each with 6 months. Moline with 8237 tenths per year had the lowest annual average and also had the lowest monthly averages in all months except November.

COMPARISON OF MONTHLY CLOUD AMOUNTS AND FREQUENCIES

To examine the relationship between the number of monthly occurrences and the monthly amount of sky cover for each cloud type, monthly data from two stations were compared graphically. Chicago and St. Louis were selected to obtain data which should reveal any areal differentiations in the relationships. It is logical to assume that frequency of occurrence should have a close relationship with the total amount of clouds.

LOW CLOUDS

In Figure 15, curves for cumulus frequency and amount at Chicago and St. Louis are presented. At both stations there is an excellent agreement between the curves, with amounts and number of occurrences both reaching a maximum in July. Comparison curves for cumulonimbus are shown in Figure 16, and, in general, the curves are closely associated. However, at Chicago the amount maximum occurs in June while the occurrence maximum is recorded in July.

The curves of stratocumulus from both stations (Fig. 17) also exhibit a close association. At St. Louis, the December-January maximum holds for both occurrences and amounts. However, at Chicago the occurrence maximum is in November while the coverage maximum occurs in January.

The nimbostratus curves for both stations are shown in Figure 18. The Chicago curves show a close association except in December. The nimbostratus curves for St. Louis do not show the close association between cloud frequencies and amounts that was obtained for Chicago.

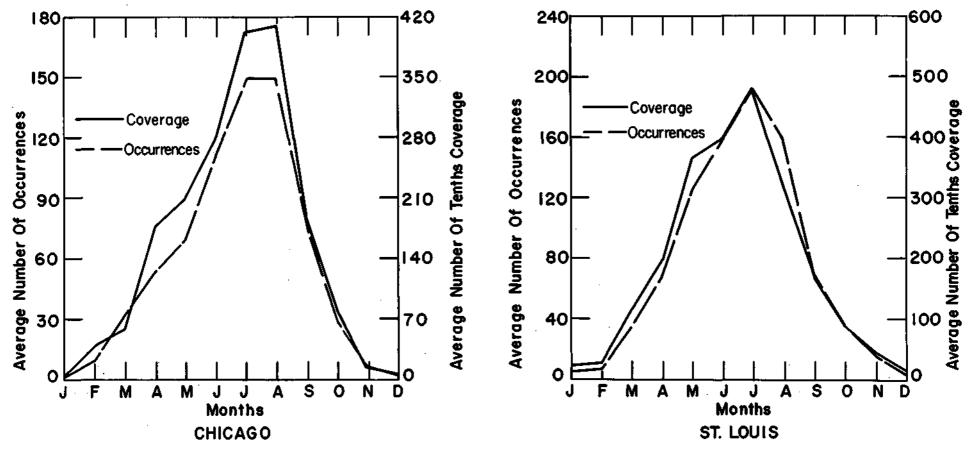
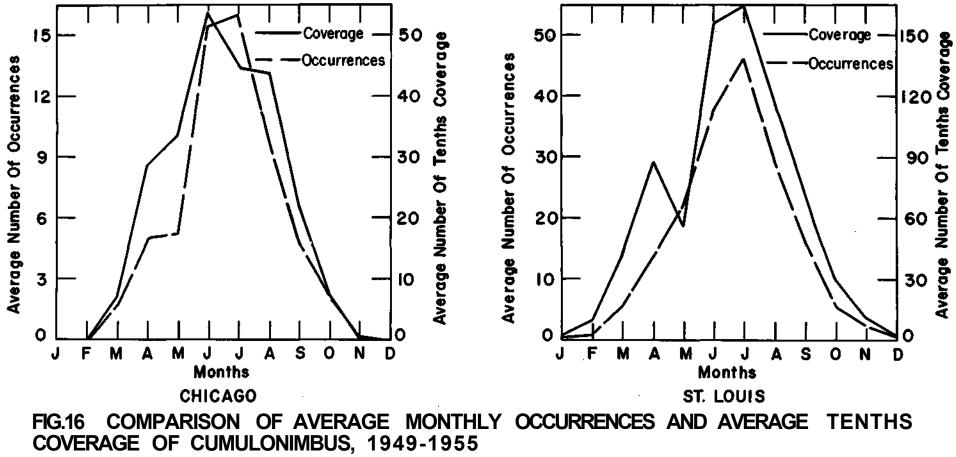



FIG. 15 COMPARISON OF AVERAGE MONTHLY OCCURRENCES AND AVERAGE TENTHS COVERAGE OF CUMULUS, 1949-1955

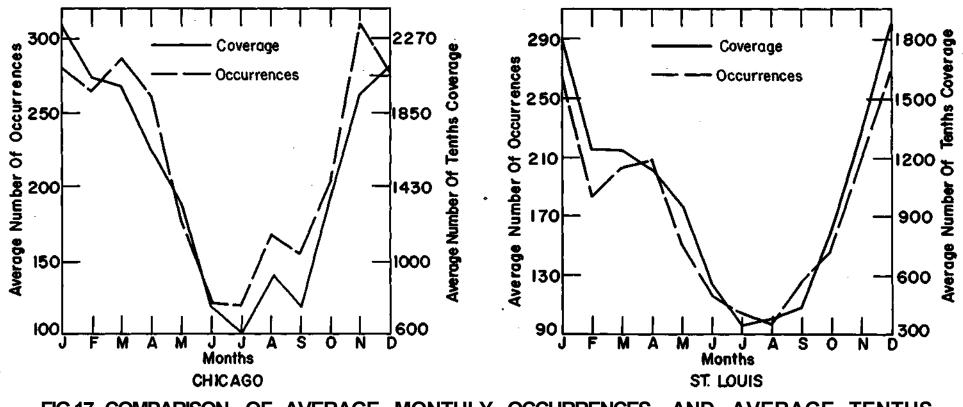


FIG.17 COMPARISON OF AVERAGE MONTHLY OCCURRENCES AND AVERAGE TENTHS COVERAGE OF STRATOCUMULUS, 1949-1955

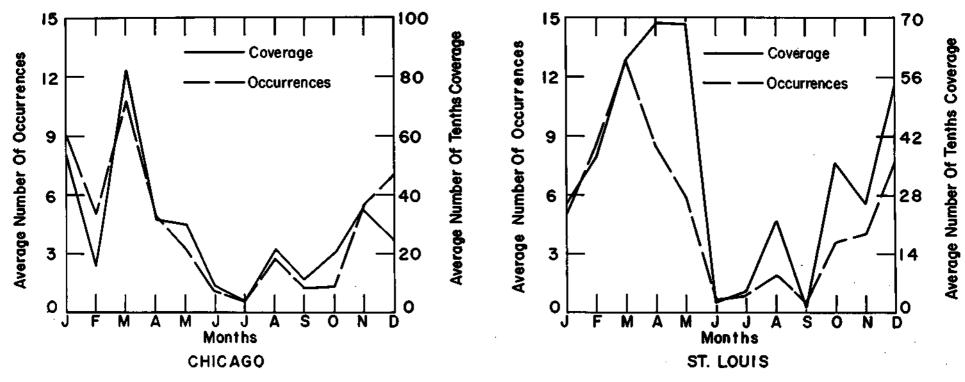


FIG. 18 COMPARISON OF AVERAGE MONTHLY OCCURRENCES AND AVERAGE TENTHS COVERAGE OF NIMBOSTRATUS, 1949-1955

MIDDLE CLOUDS

Except for minor variations, the altostratus frequency and amount curves at both Chicago and St, Louis are much the same (Fig, 19). At St. Louis, a January maximum occurs with both frequency and total amounts, while September is the month for minimum number of occurrences and cloud amounts. At Chicago, the altostratus coverage has its maximum in April, and the occurrence maximum is in January. Other minor curve trend differences occur throughout the year in Chicago. The coverage minimum occurs in August while the occurrence minimum is in October.

The altocumulus graphs are presented in Figure 20, The frequency and amount curves at Chicago have a fairly close association except for trend differences in March and December. Both have their peak in July and their minimum in January. The altocumulus frequency and amount data for St. Louis are in poor agreement. The minimum for occurrences is January which agrees with Chicago while the amount minimum occurs in November, At St, Louis the maximum for both conditions is reached in August.

HIGH CLOUDS

The cirriform clouds have their frequency and amount maxima in June at both stations as shown in Figure 21. In general, the trends of the curves at both stations are similar with a few minor differences in the colder half-year. At St. Louis the amount of sky cover is lowest in October but is lowest in March at Chicago, The frequency minimum is in February at Chicago and in January at St, Louis, RELATION BETWEEN FREQUENCIES AND AMOUNTS

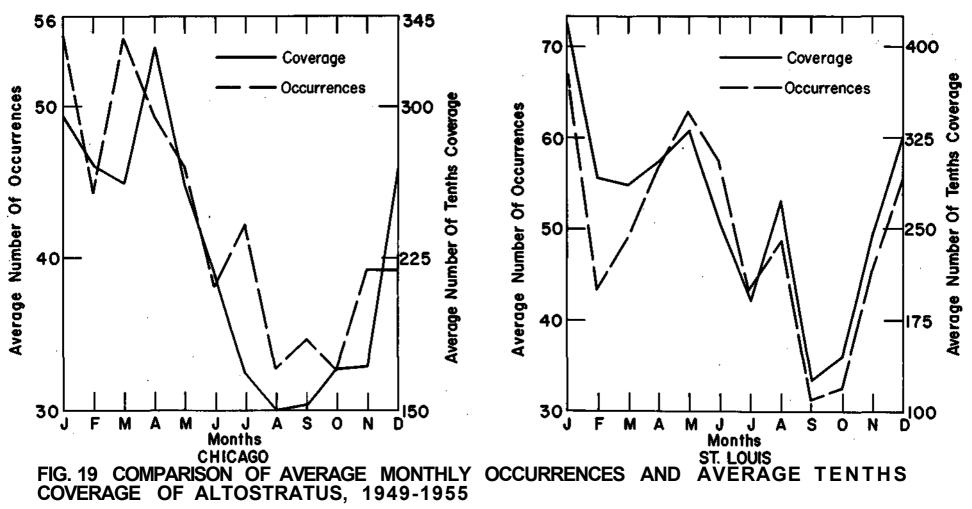
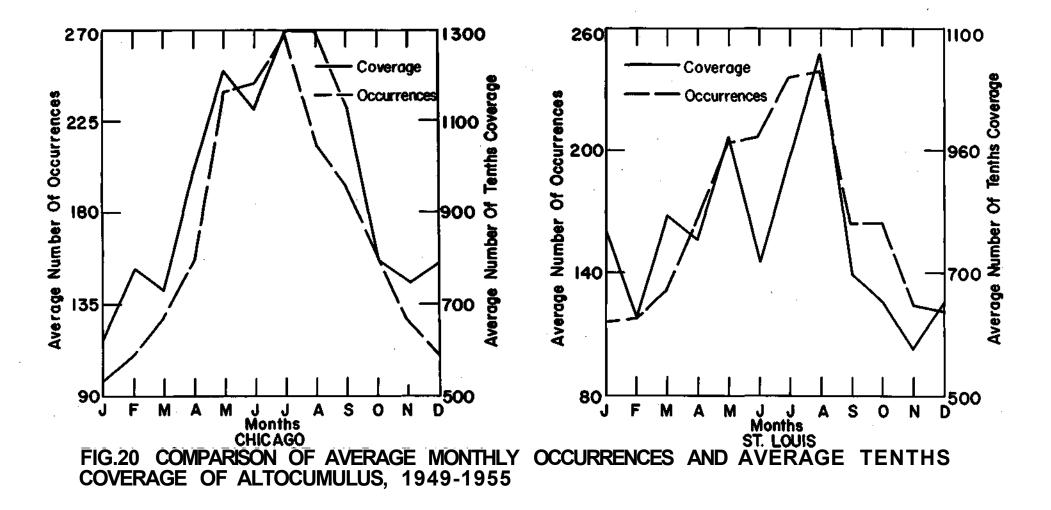
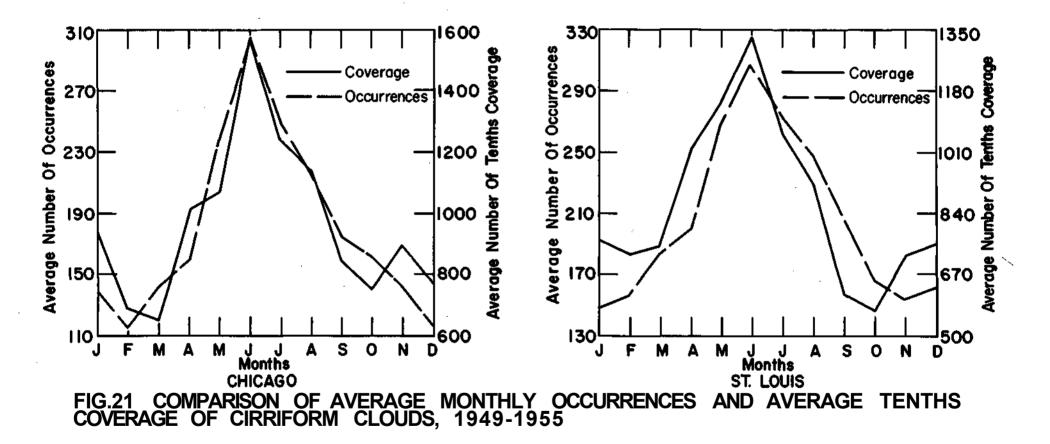

The relationship between cloud frequency and total amount of sky cover for cumulus, cumulonimbus, stratocumulus, altostratus, and cirriform clouds is excellent. However, the occurrence and coverage curves for nimbostratus and altocumulus at St. Louis show poor agreements

Table 8 shows the average annual sky cover in tenths per hourly observation for the seven major cloud types at Chicago, Moline, Springfield, and St. Louis.


TABLE	8
-------	---


AVERAGE NUMBER OF TENTHS COVERAGE PER HOURLY OCCURRENCE

	<u>Cu</u>	<u>Cb</u>	Sc	Ns	Ac	As	<u>CiCsCc</u>
CHI	2.6	3.6	6.9	6.9	5.6	4.7	5.3
MLI	3.1	5.5	7.4	8.9	5.0	5.6	4.4
SPI	2.7	5.3	6.2	6.5	4.7	4.6	4.4
STL	2.5	4.4	5.6	7.1	4.4	4.9	4.3

.

CORRELATIONS BETWEEN CLOUDS AND PRECIPITATION

As part of the Illinois cloud study, statistical correlations were determined between cloud and precipitation occurrences to obtain a measure of the dependence of precipitation upon the type, amount, and frequency of clouds. Considering the various meteorological factors involved in the precipitation process in the atmosphere and the observational limitations discussed in previous sections, consistently high correlations are not to be expected between clouds and precipitation. However, low clouds, especially cumulonimbus, might be expected to indicate a rather close association with the frequency and amount of precipitation

SEASONAL CORRELATIONS BETWEEN CLOUD AND PRECIPITATION AMOUNTS

Correlation coefficients were obtained between the monthly amount of precipitation and monthly cloud amounts. As a first step, detailed calculations of correlation coefficients were made for Springfield for the period 1951-55. Results of this analysis are shown in Table 9. Correlations of cloud amounts were made with both the monthly amount of precipitation observed at the Springfield weather station and with the areal mean precipitation, obtained from an 8-station average over a 30-mile radius about Springfield. The months were grouped into three seasons for purposes of analysis. The warm season is represented by May through September, the cold season by December through February, and the transitional seasons by October-November and March-April. Correlations between clouds and precipitation were obtained for the major cloud types and

combinations of cloud types as shown in Table 9. Reference to this table shows that, in general, the low clouds correlated best in all seasons, with cumulonimbus having the highest correlations among the low groups. Higher correlations were obtained for the warm season than for the other two periods. Correlations between the middle and high clouds were generally erratic. Although slightly higher correlation coefficients were obtained with areal precipitation in the warm season, the areal correlations, in general, showed no significant improvement over the point correlations.

TABLE 9

SEASONAL CORRELATION COEFFICIENTS BETWEEN CLOUD AMOUNTS AND MONTHLY PRECIPITATION AT SPRINGFIELD Correlation Coefficients for Point and Areal Mean Precipitation

Cloud Type	May-Sep <u>Point</u>	Area*	October and March- <u>Point</u>	-	December <u>Point</u>	-February <u>Area*</u>
Cb	0.59	0.70	0.42	0.50	0.22	0.24
Cu	0.17	0.20	0.33	0.36	0.21	0.21
Sc	0.27	0.37	0.20	0.16	0.04	-0.16
Cu,Sc,Cb	0.41	0.51	0.29	0.27	0.13	0.03
St,Fs	0.25	0.33	0.44	0.41	-0.05	-0.02
As	0.76	0.80	-0.03	-0.01	-0.04	-0.15
Ac	0.34	0.37	-0.12	-0.02	-0.15	-0.22
Ci,Cc,Cs	0.60	0.60	0.17	0.30	-0.22	-0.12

* 8-station average of monthly precipitation over 30-mile radius about Springfield.

Table 10 illustrates another method used to indicate the direct relationship between cloud and precipitation amounts. In this table, monthly cloud amounts of cumulonimbus and combined low clouds (CuCbSc) at Springfield during the 1951-55 warm season periods have been ranked from high to low values. The precipitation for each month was then expressed in percent of monthly normal and paired with the cloud amount for the corresponding month. Reference to the ranked data of Table 10 shows no consistent decrease in the rainfall percentage values with decreasing cloud amounts. However, indication of a slight general trend Is present, especially with the cumulonimbus. The average percent of normal for the first 10 ranks of cumulonimbus is 94 compared to 59 for the last 10 positions. With the combined low clouds, averages of 83 and 78, respectively, were obtained for similar combinations of ranks, A correlation coefficient of 0.57 was obtained between cumulonimbus and percent of normal rainfall, compared to 0,31 for combined low clouds.

Since low clouds gave the best correlations and observations of low clouds are most reliable, as pointed out in the section on data limitations, further tests of the low cloud data were made for Chicago, Moline, and St, Louis during the May-September period. Comparison of the results between the various stations appears in Table 11, The cumulus and cumulonimbus correlations remain reasonably stable among the four stations during the warm season. Except for Chicago, the correlations of stratocumulus and total low clouds are of a comparable magnitude among the stations.

COMPARISON BETWEEN MONTHLY CLOUD AMOUNTS AND NORMALITY OF MONTHLY RAINFALL AT SPRINGFIELD, MAY - SEPTEMBER, 1951-1955

<u>Rank</u>		lonimbus Monthly Rainfall in <u>Percent of Normal</u>		Clouds (CuCbSc) Monthly Rainfall in Percent of Normal
1 2	348	217	2062 1787	217
3	293 259	103 73	1687	73 47
ų	257	133	1558	53
5	235 217	53	1507 1460	71
7	205	53 72 50	1342	· 32 62
8 9	195	97	1310	97
.9	171	125	1148	122
10 11	170 161	16 81	1068 980	57 133
12	131	71	911	27
13	123	19	908	103
14	117 114	129	873 856	19 81
14 15 16	109	23 57	825	129
17 18	107	122	768	125
18	103	27	763	23
19 20	86 74	_62 _1.7	736 679	16 72
21	39	32	562	50

CORRELATIONS BETWEEN DAILY CLOUD AND PRECIPITATION AMOUNTS

An analysis was performed to determine whether the correlation between clouds and precipitation would improve if such correlations were accomplished on a daily rather than on a monthly basis. Table 12 shows correlation coefficients between daily precipitation and the major cloud types at Springfield and Chicago during 1951-55. In general, the daily correlations were extremely low except for

SEASONAL CORRELATION COEFFICIENTS BETWEEN LOW CLOUD AMOUNTS

AND MONTHLY PRECIPITATION AT FOUR STATIONS

	May through September			Mar	March-April, October-November						December through February				
	CHI	MLI	SPI	STL		CHI	MLI	SPI	STL		CHI	MLI	SPI	STL	
Sc	0.03	0,28	0.27	0.36		0.44	0.26	0.20	օ°յի		-0.32	0.20	0.04	0.23	
Cu	0.31	0.35	0.17	0.31		0.12	0.37	0.33	0.57		-0.25	0.64	0.21	0.25	
Съ	0.58	0.54	0.59	0.41		0.03	0.77	0.42	0.27		0,00	0.21	0.22	0.27	
	Clouds Cb _g Sc)						·								
	0.16	0.39	0.41	0.52		0.43	0.42	0.29	0.54		-0.39	0.24	0 ,13	0.24	

.

CORRELATION COEFFICIENTS BETWEEN DAILY CLOUD AMOUNTS AND DAILY PRECIPITATION

STATION Correlation Coefficients for Given Cloud Type												
	Jan	Feb.	Mar.	Apr. High	May Clouds	June (Ci Cs	July Cc)	Aug.	Sept.	Oct.	Nov.	Dec.
Springfield Chicago	-0.15 -0.13	-0.08 0.08	0.17 -0.08	-0.18 -0.01	-0.25 -0.17	-0.10 -0.06	-0.12 0.01		-0.11 -0.02	-0.13 -0.12	-	-0.03 -0.09
					Altocu	mulus						
Springfield Chicago		-0.10 -0.21	-0.08 -0.12	0.06 -0.02	0.04 0.14	0.04 -0.04	0.31 0.02	0.03 0.09	-0.06 -0.01	0.13 0.14		0.02 -0.01
					Altost	ratus						
Springfield Chicago	0.07	0.01 0.03	0.39 -0.11	-0.34 -0.12	0.05 0.03	0.07 -0.13	-0.կկ 0.կ1	-0.18 0.29	-0.23 0.25	0.53 -0.26	-0.30 -0.20	-0.14 0.01
					Stratoc	umulus						
Springfield Chicago	-0.05 -0.06	0.11 0.11	-0.08 0.06	0.13 -0.01	0.09 0.08	0 .05 0 . 18	0.02 0.12	0.05 0.22	-0.03 0.01	0.04 0.12	0.10 -0.03	0.07 -0.20
					Cumu	llus				0+		
				Apr.	May	June	July	Aug.	Sept.	Oct <u>Mar</u> .		
				0.18 0.02	-0.06 -0.10	-0.09 -0.17	0,02 -0,08	-0.06 -0.15	-0.04 -0.01	0 .15 0 .06		
Cumulonimbus												
Springfield Chicago Springfield	(Areal)			0.54 0.09 0.58	0.44 0.68 0.12	0.49 0.30 0.40	0.23 0.63 0.25	0.57 0.27 0.47	0.57 0.85 0.04	0.58 0.65 0.41		

cumulonimbus. The daily cumulonimbus correlations were of the same order of magnitude as the monthly correlations for the warm season shown in Table 11. For comparison purposes, cumulonimbus correlations on an areal basis at Springfield are shown at the bottom of Table 12. In general, the areal correlations were lower than the point correlations.

While high correlations between daily precipitation and individual cloud types were not generally obtained, a trend for the quantity of low clouds to increase with increasing precipitation amounts was observed. This trend is illustrated in Table 13 where low clouds (Cu, Cb, Sc, St, Ns) have been combined for comparison with daily precipitation on a seasonal and annual basis for four stations. In this table, daily precipitation values exceeding 0.25 inch have been grouped into two classes and compared with median values of low cloudiness, expressed as a percent of normal daily cloudiness calculated for the 1951-55 period. In general, the median value of low cloudiness during days of moderate to heavy precipitation (over 0.25 inch) is considerably above the normal median and increases with increasing precipitation. Considering the four stations combined, for example, the median cloudiness ranges from 160 percent of normal in winter to 225 percent in fall for daily amounts from 0.26 to one inch. For daily precipitation exceeding one inch, the median values generally increase, ranging from 193 percent in winter to 215 percent in fall, with an annual average of 201 percent compared to 172 percent for the lower precipitation classification.

.

. . _

MEDIAN LOW CLOUDINESS, EXPRESSED AS PERCENT OF NORMAL, FOR VARIOUS VALUES OF DAILY PRECIPITATION

Period	<u>Chicago</u>	Moline	Precipitation of (<u>St. Louis</u>	All Stations	Number of Cases
Winter	134	155	166	221	160	90
Spring	152	159	186	1 40	155	152
Summer	129	175	206	139	163	152
fall	214	251	234	243	224	95
Annual	140	175	187	186 、	172	489
		Da	aily Precipitation	over 1.00"		
Winter	128	188	175	260	193	13
Spring	220	196	182	228	208	26
Summer	260	195	124	174	183	40
Fall	203	197	167	319	215	19
Annual	21.0	194	179	242	201	98

•••

Table 14 shows the frequency distribution of low clouds on days with precipitation exceeding 0.25 inch. In this table, data for the four stations have been combined to provide average statistics for the state. Columns 2 and 3 show the average daily cloudiness, expressed in terms of percent of normal, which is equaled or exceeded for the cumulative percent of precipitation days given in column 1. For example, on 10 percent of the days with precipitation between 0.26 and one inch, the average daily cloudiness equals or exceeds 322 percent of normal; on 50 percent of the days it equals or exceeds 172 percent; and, in 80 percent of the cases the average daily cloudiness equals or exceeds 104 percent of the normal daily cloudiness.

TABLE 14

DISTRIBUTION OF LOW CLOUDS ON DAYS WITH

PRECIPITATION EXCEEDING 0.25 INCH DURING 1951-55

Cumulative Percent of Wet Days	Percent of Normal Clou Exceeded For Given Dai <u>0.26-1.00</u>	
5 10 20 30 40 50 60 70 80 90	350 322 272 241 203 172 145 118 104 72	414 338 276 244 216 201 184 142 124 93
95	48	74

CORRELATIONS BETWEEN FREQUENCY OF CLOUDS AND PRECIPITATION

Next, analysis was performed to ascertain the degree of correlation between the monthly frequencies of days with measurable precipitation and the monthly frequency of hours with clouds. Results of this analysis are illustrated in Table 15, and in Figures 22 to 25. Table 15 shows correlation coefficients between the major cloud types and frequency of measurable precipitation from 1949 through 1955 at Springfield. For this study, clouds were classified into three groups, low, middle, and high. Since the predominant type of cloud associated with precipitation varies during different periods of the year, combined cloud frequencies were considered the best for correlation. For example, cumulonimbus is the major cloud type associated with the summer, shower-type rainfall, while stratocumulus and altostratus are the most frequent clouds observed with the more stable winter precipitation in Illinois.

TABLE 15

CORRELATION BETWEEN CLOUD AND

PRECIPITATION FREQUENCIES AT SPRINGFIELD

Correlation Coefficients for Given Cloud Groups

Year	Low Clouds	Middle Clouds	High Clouds
	(Cb,Cu,Sc)	(As,Ac)	(Ci,Cs,Cc)
1949	0.19	-0.10	0.01
50	0.50	0.22	-0.09
51	0.25	-0.31	0.08
52	0.93	0.37	0.22
53	0.83	0.09	-0.21
54	0.65	0.44	0.14
55	0.54	0.82	0.36
Combined	0.54	0.16	0.04

Table 15 shows low clouds again correlating better with precipitation than the high and middle cloud groups. However, there was a wide variation in the degree of correlation from year to year, values for the low clouds ranging from 0.19 to 0.93, or from relatively low to relatively high significance from a statistical standpoint. The relationship between the low cloud types and precipitation frequency are further illustrated in the scattergrams of Figures 22 to 25. From these scattergrams, it is apparent that cumulonimbus again provided the best correlation.

RELATION BETWEEN CIRRUS, CUMULONIMBUS AND PRECIPITATION

Since cumulonimbus correlated best with both precipitation amount and frequency, further study of this cloud's relation to precipitation was undertaken, Braham⁴ and others have indicated that rainshower and thundershower development may be implemented by the presence of cirriform clouds, which act as seeding agents for lower cumuliform clouds. To investigate the cirriform seeding effect, conditions prior to the development of cumulonimbus were studied on a daily basis during the 1951-55 period at Chicago, Springfield, Moline, and St. Louis. Two conditions associated with the development of cumulonimbus were investigated. These are;

> CuCb conditions - Continuous hourly observations of cumulus were made from 1200 CST until the first cumulonimbus was reported, with no cirriform clouds reported at any hour during the day prior to the development of cumulonimbus.

 CiCb conditions - Continuous hourly observations of cirriform clouds were made from 1100 CST until cumulonimbus were first reported, either with or without cumulus in prior hours.

The rainfall associated with the cumulonimbus under each of the two conditions described above was determined at each station.

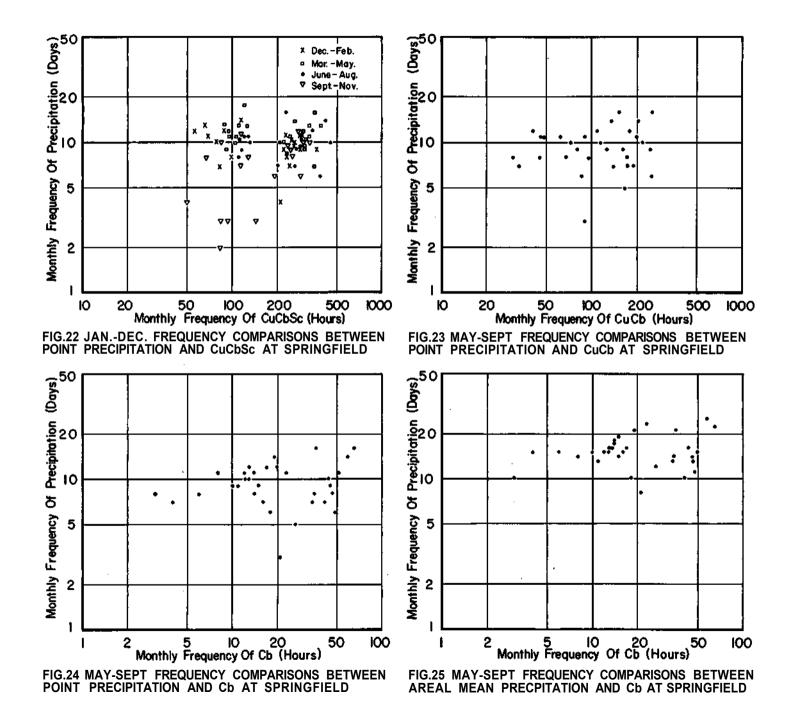

The average rainfall per storm under each of the two groups was then determined. Results of this analysis are presented in Table 16, and show that the average rainfall was greater when cirrus was present prior to cumulonimbus development.

TABLE 16

CUMULONMBUS RELATIONSHIPS TO DAILY PRECIPITATION

		CuCb		CiCb
	Number of Cases	Average Rainfall Per Case, inches	Number of Cases	Average Rainfall Per Case, inches
Chicago	10	0.34	19	0.45
Springfield	24	0.15	<u> կ</u>)լ	0.26
Moline	40	0.25	29	0.30
St. Louis	44	0.16	62	0.18
Rantoul	. 27	0.32	42	0.33

Daily Prior Condition

DRY PERIOD CLOUDINESS

An analysis was made of the cloudiness during dry periods of five days or longer. A dry day was defined as one having no measurable precipitation. To assure that no precipitation-period cloudiness was included in the dry period analysis, cloud data for the dry day following the last wet day and for the dry day preceding the first wet day following a dry period were eliminated from the analysis. Thus, a 5-day dry period was actually part of a 7-day period having no measurable precipitation, and a 10-day dry period actually extended over a 12-day period.

A study was made of the distribution of individual low and middle clouds and of grouped low, middle, and high cloud types. The analysis was accomplished for four stations on a seasonal basis, as shown in Table 17. In Table 17, the median values of the dry period cloudiness, expressed in terms of the percent of normal cloudiness for the given period, are presented for dry periods of five days or longer.

As pointed out in previous sections, observations of low clouds are considerably more accurate than those of middle and high clouds. Reference to the low cloud data in Table 17 indicates that the fewest clouds occur in spring dry periods, and that normality is most nearly approached during winter dry periods. The statistics in Table 17 may be useful in evaluating the feasibility of cloud seeding during dry periods. Since low clouds are the primary dispensors of precipitation, conditions favorable for inducing precipitation by artificial means during dry periods appear to occur

1

MEDIAN PERCENT OF AVERAGE CLOUDINESS FOR

DRY PERIODS OF FIVE DAYS OR LONGER

					WINT	ER		High	Middle	Low	Number
Stations	ST	<u>SC</u>	<u>cu</u>	CB	<u>NS</u>	AS	AC	Com- bined	Com- bined	Com- bined	of Cases
CHI MLI SPI STL Combined	33 33 19 16 30	77 93 74 72 75	0 0 0 0	0 0 0 0	0 0 0 0	82 46 40 92 66	128 90 90 107 112	107 140 140 116 132	124 97 70 105 100	67 79 65 55 66	10 17 9 16 52
					SPRIN	G					
CHI MLI SPI STL Combined	0 0 0 0	1 5 22 15 11	2 38 27 94 31	0 0 0 0	0 0 0 0	0 5 22 0	50 42 61 70 60	95 112 84 138 103	39 46 64 68 57	12 19 24 16 14	6 10 8 32
					SUMM	ER					
CHI MLI SPI STL Combined	15 0 0 0	37 26 14 9 24	63 63 110 76 75	0 10 1 13 3		4 14 0 35 4	101 97 52 53 69	98 128 117 100 111	90 85 60 69 71	43 29 33 45 40	8 15 12 17 52
FALL											
CHI MLI SPI STL Combined	0 0 0 0	45 35 6 18 25	72 35 36 34 38			5 10 0 4 0	74 69 59 69 70	115 96 90 106 95	70 58 71 63 60	49 42 14 35 33	13 20 14 20 67

most frequently in winter in the Illinois area.

The middle and high cloud statistics are, of course, affected appreciably by low cloud occurrences. The above normal values of high clouds during dry periods (Table 17) undoubtedly are related to the paucity of low clouds during such periods, which permits the observer to view upper layers more readily than in cloudy, wet weather. Middle clouds are more readily observed in dry periods also, and the statistics in Table 17 are probably affected somewhat by this condition. However, the middle and high cloud data are useful for relative comparisons among stations and between seasons.

Table 18 shows the cumulative frequency distribution of low clouds during dry periods of five days or longer. In this table, data for the four stations have been combined to obtain an average relation for the state. The values in the season columns represent average daily cloudiness during the dry periods, expressed in percent of normal for the 1951-55 period, and are maximum values for the cumulative percent of dry periods shown in Table 18. For example, during five percent of the winter dry periods, the average daily cloudiness is equal to or less than six percent of the normal cloudinesss; in 50 percent of the dry periods, the daily average does not exceed 66 percent of normal; and, during 80 percent of the winter dry periods, the average daily cloudiness is equal to or less than 96 percent of normal. The cumulative distributions of Table 18 indicate that low clouds are most uncommon during spring dry periods and most frequent in winter, with intermediate frequencies occurring in fall and summer.

DISTRIBUTION OF LOW CLOUDS IN DRY PERIODS OF FIVE DAYS OR LONGER, 1951-1955, COMBINING POUR STATIONS

Cumulative Percent of		Maximum Value of Average Daily Cloudiness for Dry Periods, Expressed as Percent of 1951-1 Normal					
Dry Periods	Winter	Spring	Summer	Fall			
5	6	0	5	0			
10	33	0	10	0			
20	45	4	15	9			
30	50	7	25	19			
40	55	11	32	28			
50	66	14	40	33			
60	73	16	43	42			
70	87	36	47	50			
80	96	67	53	67			
90	111	92	66	91			
95	129	114	116	135			

REFERENCES

- Anon., <u>Manual of Surface Observations (WBAN)</u>, Circular N, Seventh Edition, U. S, Department of Commerce, Weather Bureau, Washington, D. C., 1956.
- Annon., <u>Manual of Card Punching (WBAN)</u>, Fifth Edition
 U. S. Department of Commerce, Weather Bureau, Washington,
 D.C., 1951.
- Anon., <u>Manual of Cloud Forms and Codes for States of the</u> <u>Sky</u>, Circular S, Second Edition, U. S. Department of Commerce, Weather Bureau, Washington, D. C., 1949.
- 4. Braham, R. R. <u>Progress Report No. 2</u>, University of Arizona, Institute of Atmospheric Physics, Tucson, Arizona, 1955.