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INTRODUCTION 

A well-known relationship exists between vari­
ations in weather and variations in residential-space 
heating energy consumption (Quayle and Diaz, 1980). 
In particular, departures of weather conditions from 
"normal" can markedly affect an energy utility's 
annual heating fuel sales revenues. The colder it 
gets, the more fuel is sold by the company for space 
heating. (In the case of this report, the fuel is natural 
gas.) And the reverse occurs as temperatures warm. 

Normally, the relationship between weather and 
natural gas sales becomes problematic only when a 
gas company proposes a change in its price rate 
schedules. Such a proposal is typically brought be­
fore a state regulatory body (public utility commis­
sion), which reviews the rate change request and 
issues a ruling, either denying the request or grant­
ing it, with or without modifications. A fundamental 
issue before the reviewing body is whether or not the 
proposed rate change is predicated on extraordinary 
conditions such as "abnormal" weather. The implica­
tions of this are elaborated on below. 

The accepted protocol for an Illinois natural gas 
utility in proposing a rate change is to prepare a 
"test-year case" for the ruling body (Illinois Com­
merce Commission, or ICC). A test-year case is es­
sentially a simulation of a utility's current produc­
tion costs and sales revenues over a hypothetical 
year. Test-year cases can be based simply on histori­
cal patterns, or historical patterns can be adapted to 
project cost and revenue trends into the next year, 
thus creating a "future test-year case." 

The Pennsylvania Public Utility Commission 
(1980) ruled that "extraordinary occurrences such as 
abnormal weather conditions, atypical economic con­
ditions, or strikes should not be reflected in test year 
levels." This suggests that the occurrence of atypical 
weather conditions is not a valid basis for revising 
rates. Also implicit is that abnormally beneficial 
weather conditions (that increase sales revenues) 
will be offset by negative weather conditions during 
the time in which a particular rate schedule is in 
effect. 

Therefore it is assumed that neither of these con­
ditions should have a skewing effect on revenues 
over the life of the rates. That is, for the life of the 
rates, positive and negative weather conditions will 
be symmetrically grouped around an unchanging 
climatic mean. 

Partly in response to the above reasoning, many 
utility companies have begun developing and imple­
menting techniques to "weather-normalize" their 

revenues and costs before seeking a rate change 
ruling. Weather normalization is the adjustment of 
the test-year data to depict the level of sales and 
operating costs that would occur during a year of 
normal weather conditions if all else were equal. 

Stated differently, the purpose of weather-nor­
malization adjustments is to eliminate the impact of 
improbable weather conditions on revenues. From 
the standpoint of the natural gas utility, decreases 
in revenues that occur after normalization has been 
performed are likely to build a stronger supporting 
case for a rate change. For more on weather-nor­
malization techniques with applications to Illinois, 
see Gillan (1984). 

No single agreed-upon method is used by all util­
ity companies to weather-normalize revenues. How­
ever, most methods that are in use incorporate cli­
mate information in the form of accumulated heat­
ing degree days (HDDs). HDDs are calculated on a 
daily basis as the arithmetic difference between a 
standard base of 65°F (19.3°C) and the mean daily 
temperature (65°F minus mean daily temperature 
equals daily HDDs). If the mean daily temperature 
is greater than 65°F, then the daily HDD value goes 
to 0. 

Thus if the mean daily temperature is 55°F, there 
are 10 HDDs on that day; and if the mean daily 
temperature is 70°F, there are 0 HDDs on that day. 
Daily HDDs can be summed over longer time peri­
ods, such as months or seasons, to represent an 
index of accumulated cold. 

One obvious premise of the use of HDDs in this 
context is that people turn on their furnaces when 
the mean daily temperature drops below 65°F. The 
reliability of this premise has been widely debated, 
the most common counter-argument being that 65°F 
may be too warm for a home heating threshold 
(Lehman and Warren, 1978). 

However, it is not the purpose of this study to 
further the debate on the reliability of the 65°F HDD 
base. Rather, it is acknowledged that most of the 
energy industry accepts HDDs as they are now cal­
culated. Moreover, applied climate research has dem­
onstrated a strong correlation between accumulated 
HDDs and energy usage (Quayle and Diaz, 1980). 

Several specific techniques have evolved for 
weather normalizing. Indeed, many regulatory com­
missions have developed basic criteria for evaluating 
various aspects of normalizations. For example, with 
respect to climate data, questions naturally arise 
concerning which climate reporting stations were 
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used, as well as the manner in which the data were 
integrated within the normalization models. 

The central issue addressed in this study is the 
precise manner in which HDDs are now implemented 
within a typical Illinois weather-normalization model. 
It has been pointed out that the most critical prob­
lem in weather-normalizing sales revenues to de­
velop a test-year case is to determine what consti­
tutes "normal" weather in order to measure the de­
gree of abnormality of actual weather conditions 
(New York Public Utility Commission, 1960; Gillan, 
1984). 

The traditional approach in weather normalization 
is to use the 30-year means computed by the National 
Weather Service (NWS) for HDDs (ICC, personal 
communication, 1987). Two potential problems can 
occur in using NWS 30-year means to perform nor­
malizations, both relating to the now commonly 
accepted knowledge that climate varies over time 
scales that are shorter and longer than 30 years. 

The first problem is that the NWS 30-year means 
are calculated only once every 10 years, at the begin­
ning of a new decade. Thus it is conceivable that a 
mean describing a 30-year period that ended 10 years 
previously could be used in a current normalization. 
An example of this situation would be a hypothetical 
weather normalization performed in late 1989 that 
relies on an NWS 30-year mean constructed from 
1951-1980 data. 

The second problem, perhaps more important, is 
that it is questionable whether a 30-year averaging 
period is the ideal length for establishing the normal 
climate at any point. For example, the 30-year mean 
for 1941-1970, which might have been used in a 
1970s Illinois normalization, included the century's 
warmest temperatures and lowest HDD totals to 
that point (Changnon, 1984) and thus described a 
climatic regime different from that of the 1970s. 
Indeed, in a study conducted partly at the request of 
the ICC, Lamb and Changnon (1981) found that 
seasonal temperature normals integrated over a short 
time interval (five years) outperformed the 30-year 
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mean in predicting seasonal temperatures one year 
in advance across Illinois. 

This study had two specific objectives. First, we 
reexamined the 1981 Lamb and Changnon study to 
determine optimal HDD normals for use in the de­
velopment of test-year cases in Illinois. This involved 
a detailed examination of the spatial variation of 
optimal normals across Illinois and the specific ad­
aptation of the normals to rate-change decision 
making, both of which built onto the Lamb and 
Changnon analysis. These normals will be referred 
to as means. 

Second, a simple weather-normalization model was 
developed, and different HDD means were used in 
the model in an after-the-fact evaluation. The use of 
simulated price and sales data in this model permits 
an illustration of the relative dollar differences 
achieved through use of contrasting climate-averag­
ing periods. 

In accordance with these two objectives, this re­
port has two main sections. The first is a discussion 
of optimal means for use in Illinois weather-normali­
zation schemes. The second is an overview of the de­
velopment and implementation of a generic weather-
normalization model, along with an analysis of the 
model output. 
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A CLIMATOLOGY OF ILLINOIS HEATING DEGREE DAY NORMALS 

A primary requirement of natural gas utility 
weather-normalization models is an assessment of 
the "normality" of present and near-future climatic 
conditions. This section investigates the optimal av­
eraging period for describing the current "normal" 
climate and for predicting the climate over individ­
ual years ranging from 1 to 5 years in advance, as 
well as for predicting the average climate for the 
entire 5-year period. Five years was selected because 
that time period represents the typical upper bound­
ary for the lifetime of a given set of rates for a 
particular utility company (ICC, personal communi­
cation, 1987). 

A body of research exists on determining the nor­
mal climate and how well it can predict future cli­
mate (for example, Court, 1968; Lamb and Changnon, 
1981; Dixon and Shulman, 1984; Sabin and Shulman, 
1985). Until recently, climate has been considered 
stable, with only a random variation around some 
mean value. This mean or average value is labeled 
the "normal." This determination ties in with tradi­
tional statistical concepts of central tendency and 
implies that confidence in the mean increases with 
more observations (i.e., more years of data). There­
fore the stations with the longest records provide the 
best mean. 

As Court (1968) has pointed out, this assumption 
has two faults. First, climate is now understood to 
fluctuate over many time scales (National Academy 
of Sciences, 1975, pp. 19-23 and Appendix A), which 
can cause the standard deviation of a climate meas­
urement to increase over time. Second, longer rec­
ords are likely to include non-homogeneous data 
caused by changes in instrumentation, exposure, and 
method of observation. To minimize these effects, in 
the mid-1950s the United States adopted the 30-
year mean for first-order stations (U.S. Weather Bu­
reau, 1958) and cooperative substations (U.S. Weath­
er Bureau, 1955). 

Court (1968) suggests that the best empirical test 
of reliability for appropriate climatic means is their 
ability to predict the future. In a review of five other 
studies and his own research, he concludes that for 
predicting one year in advance, a mean of approxi­
mately 20 years is superior to the standard 30-year 
mean. 

In a case dealing specifically with Illinois, Lamb 
and Changnon (1981) studied four stations and con­
cluded that a 5-year mean best predicts seasonal 
temperatures for the next year. Building on Lamb 
and Changnon's analysis, Dixon and Shulman (1984) 

examined heating degree days for six stations across 
the United States and found running means from 10 
to 30 years in length to be better for prediction. 

Dixon and Shulman (1984) were critical of the 
method used by Lamb and Changnon (1981) for two 
reasons. First, only selected running means were 
used (5,10,15,20,25 and 30 years). They noted that 
in this approach, the individual best predictors must 
be constrained to those that are among the particu­
lar means tested; and therefore the selection and 
number of means could act as an artifact to influence 
the results. Second, although the 5-year mean most 
frequently is the best predictor of the next year's cli­
mate, it also produces the largest prediction errors 
when it fails. Regardless of these criticisms, Lamb 
and Changnon clearly brought into question the use 
of traditional 30-year averaging periods for portray­
ing normal weather. 

In seeking the optimal averaging period for use in 
weather normalization, we examined all possible in-
terannually aggregated averaging periods (from 1 to 
30 years) by using a variety of evaluation techniques 
that are sensitive to different aspects of prediction 
error. These techniques were used to evaluate the 
various averaging periods in terms of their predic­
tive ability for the whole year, for winter (defined as 
December-February), for extended winter (defined 
as October-April), and for each month, averaged for 
the entire state. The spatial distribution over the 
state for the whole year was also examined. 

Daily temperature data from 41 stations in Illi­
nois (for the period 1901-1984) were used to calcu­
late HDD amounts. These amounts were then 
summed into monthly, seasonal, and annual totals. 
Four methods were used to determine the best base 
period for constructing a climatic normal. The base 
periods examined ranged from 1 to 30 years in length 
and were calculated as running means (discussed 
below). The 30-year period was chosen as the maxi­
mum because earlier research (for example, Lamb 
and Changnon, 1981; Dixon and Shulman, 1984) 
suggests that the optimum is less than 30 years. 

The results for each method were ranked accord­
ing to the predictive accuracy of the averaging period 
(best to worst), and an assessment was made of the 
differences in the results. An examination of the top-
ranked means across Illinois for each method and for 
each prediction period (1 to 5 years) provides a basis 
for choosing the best overall running mean. 

Running means, also known as moving averages, 
are first calculated for a given base period (for ex-
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ample, 18 years). Then the base period is shifted 
forward one time unit (in this case, 1 year), and a 
new mean is calculated. For example, an 18-year 
running mean would use 1967-1984 data to predict a 
1985 value. In the next step, the mean would use 
1968-1985 data to predict a 1986 value. 

Although running means are normally used to 
smooth a time series, the primary advantage of us­
ing them in this study to predict a year's HDD value 
is that they make it possible to use the most recent 
time period to calculate the averaging period. For 
this study, running means were calculated for the 
period 1901-1984. 

Data and Methodology 
The temperature data (converted to HDDs) used 

in this study were obtained from the National Cli­
matic Data Center (NCDC). Forty-one stations across 
Illinois were chosen to provide representative spa­
tial coverage (figure 1). Data were obtained for the 
period 1901-1984 (with the exception of Kankakee, 
where recording began in 1917). These 41 stations 
are a subset of a network of 61 high-quality data 
stations in Illinois (Changnon, 1979). 

On average, 2 percent of the data, or roughly 
seven days of data per year, were missing for each 
station. Missing temperature data were filled in from 
nearby stations with similar topographies and ob­
servation times (when known). This addition is con­
sidered appropriate because, on average, tempera­
tures do not vary much between stations on the 
order of 50 to 100 kilometers (31 to 62 miles) apart. 

The HDD year begins on July 1 and ends on June 
30 of the following year. The traditional winter 
(December-February) makes the largest contribu­
tion to the yearly total. An examination of the daily 
distribution of heating degree days for all 41 sites 
shows that 90 percent of the HDDs fall between the 
third week of October and the second week of April 
(figure 2). This period increases from the southern 
sites to the northern sites and is about two weeks 
longer in the north than in the south. 

HDD totals for both the traditional and extended 
winter (October-April) seasons were examined. The 
definition of extended winter used here agrees well 
with winter as defined by Dixon and Shulman (1984). 
Some discussion has occurred (for example, Gillan, 
1984) about whether annual, seasonal, or monthly 
HDD totals should be used in normalization. Be­
cause we feel that this matter is unresolved in both 
theory and practice, we performed an interannual 
analysis of HDD averaging periods aggregated all 
three ways (by month, season, and year). 
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Figure 1. Climate stations in Illinois used in this study 
(Stations denoted by a star were also used 

in the weather-normalization model analysis) 

Four statistical methods were used to evaluate 
the predictive ability of the running means: root 
mean square error (RMSE), mean square error (MSE), 
mean absolute error (MAE), and the "WINS" method. 
Basically, in each method, an HDD running mean is 
calculated and subtracted from the HDD value of the 
year for which a prediction is being made. This dif­
ference is called the predictive error (AX). 

For example, a 10-year extended-winter HDD 
running mean covering 1961-1970 would be sub­
tracted from the extended-winter HDD total for 1971. 
Relatively large values of AX indicate poor predicta-



Figure 2. Annual distribution of mean HDDs (1901-1984) for Urbana 

bility by the moving mean, and low values indicate 
good predictability. 

The first and most commonly used evaluation 
method in previous studies is the root mean square 
error (RMSE). As the running mean moves through 
the time series, the predictive errors, , are squared 
to remove the sign and accumulated. This accumula­
tion is then divided through by the number (n) of 
predictive errors accumulated, and the square root is 
taken of this quotient (equation 1): 

The second method used in this study is the mean 
square error (MSE). It is the same as the RMSE 
except that the final square root is not taken (i.e., 
MSE = RMSE2). The primary difference between the 
MSE and the RMSE is that the MSE magnifies the 
differences between the selected movingmeans. While 
this has no effect on the rankings for individual 
sites, it can lead to differences when a summation is 
made across the state. That is, the sum of a set of 
numbers and the sum of the squares of a set of 
numbers can lead to changes in the relative rank­
ings. 

The third method is the mean absolute error 
(MAE). In this method, the absolute values of the 
predictive errors are accumulated and divided by n 
(equation 2): 

(2) 

As Dixon and Shulman (1984) point out, it is 
desirable to choose a predictor that gives a low mean 
error and minimizes the large errors. RMSE and 
MSE are functions of the square of the errors, whereas 
MAE is a mean of their magnitude. Therefore the 
RMSE and MSE methods have the attractive prop­
erty of magnifying the importance of large prediction 
errors. 

The final method — the WINS method — is de­
rived from Lamb and Changnon (1981). It involves 
tabulating the number of times a particular mean 
has the lowest prediction error for a given year com­
pared to all other means. This method is referred to 
as WINS because it is based on summing the wins 
over time for a particular mean. 

The results for these four methods were ranked 
according to the scores accumulated over the time 
series, allowing a comparative assessment of all 
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means in a given instance. The selected means were 
used to see how well each could predict individual 
years from 1 through 5 years in advance. The predic­
tion errors were also summed over the entire 5-year 
period. 

Running means of 1 through 30 years in length 
were examined, as well as the 30-year NWS means 
for each site (calculated only once per decade). Al­
though the NWS did not use 30-year means before 
the 1960s, in this study the NWS 30-year means 
were calculated retroactively back to 1930. Table 1 
shows the calculated NWS 30-year means and the 
corresponding series of years that the NWS means 
were used to predict. 

The analysis included 1- to 30-year averaging 
periods; and because 1931 was the first year pre­
ceded by 30 years for which data were available, it 
was the first year used in the analysis. The last year 
used in the analysis was 1979, because predictions 
were made for up to 5 years in advance and our data 
collection for most sites ended in 1984. 

Results and Discussion 

Background Climatology 
To provide a background climatology of HDDs, 

time-series plots were made for all 41 sites. The 
time-series plot of all the sites averaged together 
reveals a downward trend in annual HDDs from 
1901 to the mid-1930s (figure 3). From the mid-
19303 to the mid-1950s, HDDs leveled out before 
beginning an upward trend to 1980. The last few 
winters have been relatively warm, contributing to a 
downward trend approaching levels of roughly the 

Table 1. Calculated NWS 30-Year Means 
and the Corresponding Series of Years 

That the NWS Means Were Used to Predict 

30-year mean 
Corresponding 
years predicted 

1901-1930 1931, 32, 3 3 , . . . , 40 

1911-1940 1941, 42, 43, . . . . 50 

1921-1950 1951, 52, 5 3 , . . . , 60 

1931-1960 1961, 62, 6 3 , . . . , 70 

1941-1970 1971, 72, 7 3 , . . . , 80 

1951-1980 1981, 82, 83, 84 
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same magnitude as at the beginning of the time 
series. 

Thus there are three distinct periods (or epochs) 
that span, in order, 35, 20, and 25 years. These 
epochs alone suggest that shorter means (that is, 
shorter than the epochs themselves) will make bet­
ter predictors for the next year. One hypothesis that 
follows from these time series is that means shorter 
than 30 years could outperform the National Weather 
Service 30-year means (which are updated every 10 
years) in describing temporally homogeneous climate 
patterns. 

Mapped 1901-1986 mean annual HDD totals show 
a consistent pattern of increasing values from south­
ern to northern Illinois (figure 4). The spatial differ­
ence in HDD totals is about 2,500 more HDDs in far 
northern Illinois than in the southern tip (a 50 to 60 
percent difference, depending on the sites). Not un­
expectedly, this increase is directly related to lati­
tude. 

Evaluation Method Results 
In tables 2 through 5, the 1- to 30-year running 

means and the NWS 30-year means are ranked from 
1 to 31 in predicting annual HDDs, according to the 
four evaluation methods. These tables reflect predic­
tions of annual HDD totals for individual years 1 
through 5 years in advance, as well as predictions of 
the 5-year average. It is important to note that al­
though the results in these tables are based on HDD 
totals, they are a derivative of temperature. The 
results for temperature means would be similar. 

Spearman's rank-order correlation analysis was 
used to measure how well the rankings of each method 
matched the rankings of the other three. The rank-
order correlation is a nonparametric test obviating 
the need for assumptions about normality. With 31 
observations, the correlation matrix contains simple 
r values, all equal to or greater than 0.90 and signifi­
cant at a = 0.05. This suggests that the four different 
methods produce essentially the same ranks. 

Therefore the results of this study can be attrib­
uted to the data and not to artifacts of the methods 
used in measuring the prediction error. Moreover, 
this ability to reproduce the results with different 
methods increases the confidence in those results. 

The study generated values for four methods, 41 
sites, and 12 months plus two different winter sea­
sons and annual HDD totals for each of 31 means (4 
x 41 x 15 x 31). Because this represents a large data 
matrix, only summary results are presented here. 
The entire data set will be made available on re­
quest. 



Figure 3. Smoothed, spatially averaged annual HDD totals over time for the 41 stations in Illinois 

Figure 4. Mean annual HDDs, 1901-1986 (the stations used are indicated) 
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Table 2. Best-to-Worst Rankings 
of 1- to 30-Year Running Means and NWS 30-Year Means 
for Predicting Annual HDDs (RMSE Evaluation Method) 

Rank 
1st year 
ahead 

2nd year 
ahead 

3rd year 
ahead 

4th year 
ahead 

5th year 
ahead 

5-year 
average 

1 (Best) 11 19 18 17 16 18 

2 12 18 17 19 18 19 

3 10 21 20 16 15 17 

4 20 20 19 18 17 20 

5 13 11 10 20 19 16 

6 19 10 16 15 14 21 

7 18 17 9 9 8 10 

8 9 22 21 8 20 15 

9 22 9 8 21 13 11 

10 21 16 15 14 21 9 

11 14 23 22 23 22 22 

12 17 12 24 22 7 14 

13 23 15 23 24 23 12 

14 16 25 14 13 12 13 

15 15 24 25 11 10 23 

16 24 26 11 10 11 8 

17 8 13 12 7 9 24 

18 25 14 13 12 24 25 

19 26 27 26 25 25 26 

20 27 8 7 26 30 7 

21 7 28 27 30 29 27 

22 28 29 28 27 26 28 

23 29 30 30 29 28 29 

24 30 7 29 28 27 30 

25 5 6 6 6 6 6 

26 4 4 5 5 5 5 

27 6 5 NWS 4 4 4 

28 3 3 4 NWS NWS 3 

29 2 2 3 3 3 NWS 

30 1 NWS 2 2 2 2 

31 (Worst) NWS 1 1 1 1 1 
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Table 3. Best-to-Worst Rankings 
of 1- to 30-Year Running Means and NWS 30-Year Means 
for Predicting Annual HDDs (MSE Evaluation Method) 

Rank 
1st year 
ahead 

2nd year 
ahead 

3rd year 
ahead 

4th year 
ahead 

5th year 
ahead 

5-year 
average 

1 (Best) 11 19 18 17 16 18 

2 12 18 17 19 18 19 

3 10 21 20 16 15 17 

4 13 20 19 18 17 20 

5 19 11 10 20 19 16 

6 20 17 16 15 14 21 

7 18 10 9 9 20 10 

8 9 22 21 21 8 15 

9 21 9 8 8 13 11 

10 22 16 15 14 21 9 

11 14 23 22 23 22 22 

12 17 12 24 22 23 14 

13 23 15 23 24 7 13 

14 16 24 14 13 12 12 

15 15 25 25 11 10 23 

16 8 13 11 10 11 8 

17 24 26 12 12 9 24 

18 25 14 13 7 24 25 

19 26 27 26 25 25 26 

20 27 8 7 26 30 7 

21 7 28 27 30 29 27 

22 28 29 28 27 26 28 

23 29 30 30 29 28 29 

24 30 7 29 28 27 30 

25 5 6 6 6 6 6 

26 4 4 5 5 5 5 

27 6 5 4 4 4 4 

28 3 3 3 NWS 3 3 

29 2 2 NWS 3 NWS 2 

30 1 NWS 2 2 2 NWS 

31 (Worst) NWS 1 1 1 1 1 
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Table 4. Best-to-Worst Rankings 
of 1- to 30-Year Running Means and NWS 30-Year Means 
for Predicting Annual HDDs (MAE Evaluation Method) 

Rank 
1st year 
ahead 

2nd year 
ahead 

3rd year 
ahead 

4th year 
ahead 

5th year 
ahead 

5-year 
average 

1 (Best) 11 11 9 17 16 19 

2 12 10 10 19 18 18 

3 10 19 18 8 15 10 

4 9 18 8 16 19 8 

5 8 9 17 9 17 9 

6 13 21 20 18 8 17 

7 20 20 19 20 21 20 

8 14 17 16 15 7 11 

9 19 13 21 22 20 16 

10 15 22 7 23 22 21 

11 18 12 23 21 14 15 

12 22 14 12 24 23 22 

13 17 16 11 14 24 12 

14 21 24 13 11 13 14 

15 7 25 15 7 10 13 

16 16 8 24 25 11 23 

17 23 23 22 10 9 7 

18 25 26 25 12 30 24 

19 25 15 14 13 29 25 

20 26 27 26 26 25 26 

21 27 7 27 30 12 27 

22 28 28 6 29 28 28 

23 4 29 30 27 26 29 

24 29 30 28 28 6 30 

25 5 6 29 6 27 6 

26 30 4 5 5 5 5 

27 6 3 3 4 4 4 

28 3 5 4 NWS 3 3 

29 2 2 NWS 2 NWS NWS 

30 1 NWS 2 3 2 2 

31 (Worst) NWS 1 1 1 1 1 
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Table 5. Best-to-Worst Rankings 
of 1- to 30-Year Running Means and NWS 30-Year Means 
for Predicting Annual HDDs (WINS Evaluation Method) 

Rank 
1st year 
ahead 

2nd year 
ahead 

3rd year 
ahead 

4th year 
ahead 

5th year 
ahead 

5-year 
average 

1 (Best) 11 11 18 19 18 19 

2 12 19 17 17 16 18 

3 10 18 20 16 15 17 

4 9 10 10 20 19 20 

5 8 21 9 18 21 16 

6 20 17 16 22 20 21 

7 19 20 19 23 17 15 

8 13 16 23 15 22 22 

9 14 22 15 21 14 8 

10 15 9 21 9 23 9 

11 18 24 24 8 8 11 

12 22 15 14 14 7 10 

13 17 25 13 24 13 14 

14 16 14 8 13 NWS 23 

15 21 8 7 25 24 12 

16 23 13 22 12 11 13 

17 25 12 25 NWS 12 24 

18 4 26 12 11 30 25 

19 26 23 6 7 10 7 

20 24 7 11 10 6 26 

21 7 27 26 26 25 NWS 

22 27 NWS NWS 5 29 27 

23 5 28 27 6 9 6 

24 28 29 30 30 28 28 

25 3 30 28 29 26 30 

26 NWS 6 29 27 5 29 

27 29 3 5 28 4 5 

28 30 4 2 4 27 4 

29 2 5 3 2 3 3 

30 6 2 4 1 1 2 

31 (Worst) 1 1 1 3 2 1 
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Predicting Annual Heating Degree Day 
Totals 1 to 5 Years Ahead 

Table 6 is a summary of the ranks (from best to 
worst) of 1-year predictions of annual HDDs aver­
aged over all 41 sites, according to the four methods. 
For all four methods, the three top-ranked predic­
tion-averaging periods are the 11-, 12-, and 10-year 
means, respectively. The next 10 prediction means 
in rank generally center around the 20-year mean. 
Note that the NWS prediction mean is ranked lowest 
according to three of the four methods. 

Table 7 is a similar summary of means for all of 
Illinois, ranked by accuracy in predicting the 5-year 
mean annual total HDDs. In this case, the means 
ranging between 15 and 20 years in length are the 
best predictors of HDDs averaged over the subse­
quent 5 years. The next-best set of prediction means 
are those around 10 years in length. Extreme long-
and short-length prediction means do relatively 
poorly. 

As shown in tables 8 through 11, there is a ten­
dency for 20-year means to be best for predicting the 
second, third, fourth, and fifth individual years in 
advance. Again, the means with extremely long and 
short lengths consistently predict poorly. 

Table 12 is a summary of the prediction means 
that were ranked first for each prediction period 
according to each of the four evaluation methods. It 
proves difficult to distinguish the best prediction 
mean or means objectively, so the top-ranked predic­
tion mean for each period is chosen as best. The 11-
year prediction mean is best for one year in advance, 
but it gradually gives way to the longer means as the 
predictions extend further into the future. 

It can be concluded from these tables that a mean 
of 11 years is best for predicting the annual HDD 
totals for the next year over all of Illinois. For 2,3,4, 
and 5 years in advance, a prediction mean of be­
tween 17 and 19 years is most appropriate. For pre­
dicting mean annual HDD totals for the next 5-year 
period, a mean of 18 or 19 years is best. 

Predicting Winter, Extended Winter, 
and Monthly Heating Degree Day Totals 
1 to 5 Years Ahead 

We now focus on specific portions of the year, 
including the winter season (defined two ways) and 
each individual month of the year. The best predic­
tor of winter HDD totals (December-February) one 
year in advance centers around 21 years (table 13). 
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This is true for the 2- through 5-year predictions and 
the total 5-year period as well. 

Aside from these shifts away from the 11-year 
mean, the winter season results are in general agree­
ment with the results for the annual total HDDs 
discussed previously. The results for the extended 
winter season (October-April) (table 14) are also very 
similar to the annual results. The 11-year running 
mean is best for the 1-year predictions, while the 18-
to 20-year means are best for predictions made 2, 3, 
4, and 5 years in advance. The 19-year running 
mean is best for the entire 5-year period. 

For individual months, the means that are best 
for predicting one year ahead are longest for March 
and shortest for July (table 15). It must be kept in 
mind that the HDD numbers for June, July, and 
August are normally quite small, and virtually no 
heating is needed in Illinois during this time of the 
year. The lengths of monthly means that are best for 
predicting the entire 5-year monthly average period, 
divided by month, do not exhibit a clear pattern 
(table 16). 

The best prediction means for any given month 
are more likely to approach 30 years for predicting 
the subsequent 5-year averages than for predicting 1 
year in advance. The longer prediction means for 
March HDD totals imply that they are persistent 
interannually. The shorter means for October indi­
cate less persistence. 

Features of the NWS 30-Year Means 
A feature that clearly emerges from these analy­

ses is the consistently poor predictive performance of 
the NWS 30-year mean, regardless of season, month, 
or year(s) for which predictions are made. Given the 
prominent use of the NWS mean in previous weather 
normalizations (see Gillan, 1984), as well as its use 
as a reference for evaluating recent weather, it is 
important to examine more closely how well the 
NWS mean has related to interannual HDD vari­
ations in Illinois. 

Some of the most compelling evidence in support 
of using shorter means than the NWS 30-year base 
is shown by superimposing the 30-year means onto 
various long-term trends (figure 5). Included in this 
figure are the smoothed, annual HDD totals aver­
aged over the entire state for each year from 1901 to 
1984 (solid line); the 19-year running mean (which 
performed best overall) for the original, unsmoothed 
data (dashed line); and 30-year means as calculated 
by the NWS method (line segments). 



Table 6. Best-to-Worst Rankings 
of 1- to 30-Year Running Means 

and NWS 30-Year Means in Predicting 
an Individual Year 1 Year Ahead, 

According to the Four Evaluation Methods 

Rank RMSE MSE MAE WINS 

1 (Best) 11 11 11 11 
2 12 12 12 12 
3 10 10 10 10 
4 20 13 9 9 
5 13 19 8 8 
6 19 20 13 20 
7 18 18 20 19 
8 9 9 14 13 
9 22 21 19 14 
10 21 22 15 15 
11 14 14 18 18 
12 17 17 22 22 
13 23 23 17 17 
14 16 16 21 16 
15 15 15 7 21 
16 24 8 16 23 
17 8 24 23 25 
18 25 25 25 4 
19 26 26 24 26 
20 27 27 26 24 
21 7 7 27 7 
22 28 28 28 27 
23 29 29 4 5 
24 30 30 29 28 
25 5 5 5 3 
26 4 4 30 NWS 
27 6 6 6 29 
28 3 3 3 30 
29 2 2 2 2 
30 1 1 1 6 
31 (Worst) NWS NWS NWS 1 

Table 7. Best-to-Worst Rankings 
of 1- to 30-Year Running Means 

and NWS 30-Year Means in Predicting 
an Individual Year 5 Years Ahead, 

According to the Four Evaluation Methods 

Rank RMSE MSE MAE WINS 

1 (Best) 18 18 19 19 
2 19 19 18 18 
3 17 17 10 17 
4 20 20 8 20 
5 16 16 9 16 
6 21 21 17 21 
7 10 10 20 15 
8 15 15 11 22 
9 11 11 16 8 
10 9 9 21 9 
11 22 22 15 11 
12 14 14 22 10 
13 12 13 12 14 
14 13 12 14 23 
15 23 23 13 12 
16 8 8 23 13 
17 24 24 7 24 
18 25 25 24 25 
19 26 26 25 7 
20 7 7 26 26 
21 27 27 27 NWS 
22 28 28 . 28 27 
23 29 29 29 6 
24 30 30 30 28 
25 6 6 6 30 
26 5 5 5 29 
27 4 4 4 5 
28 3 3 3 4 
29 NWS 2 NWS 3 
30 2 NWS 2 2 
31 (Worst) 1 1 1 1 
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Table 8. Best-to-Worst Rankings 
of 1- to 30-Year Running Means 

and NWS 30-Year Means in Predicting 
an Individual Year 2 Years Ahead, 

According to the Four Evaluation Methods 

Rank RMSE MSE MAE WINS 

1 (Best) 19 19 11 11 
2 18 18 10 19 
3 21 21 19 18 
4 20 20 18 10 
5 11 11 9 21 
6 10 17 21 17 
7 17 10 20 20 
8 22 22 17 16 
9 9 9 13 22 
10 16 16 22 9 
11 23 23 12 24 
12 12 12 14 15 
13 15 15 16 , 25 
14 25 24 24 14 
15 24 25 25 8 
16 26 13 8 13 
17 13 26 23 12 
18 14 14 26 26 
19 27 27 15 23 
20 8 8 27 7 
21 28 28 7 27 
22 29 29 28 NWS 
23 30 30 29 28 
24 7 7 30 29 
25 6 6 6 30 
26 4 4 4 6 
27 5 5 3 3 
28 3 3 5 4 
29 2 2 2 5 
30 NWS NWS NWS 2 
31 (Worst) 1 1 1 1 
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Table 9. Best-to-Worst Rankings 
of 1- to 30-Year Running Means 

and NWS 30-Year Means in Predicting 
an Individual Year 3 Years Ahead, 

According to the Four Evaluation Methods 

Rank RMSE MSE MAE WINS 

1 (Best) 18 18 9 18 
2 17 17 10 17 
3 20 20 18 20 
4 19 19 8 10 
5 10 10 17 9 
6 16 16 20 16 
7 9 9 19 19 
8 21 21 16 23 
9 8 8 21 15 
10 15 15 7 21 
11 22 22 23 24 
12 24 24 12 14 
13 23 23 11 13 
14 14 14 13 8 
15 25 25 15 7 
16 11 11 24 22 
17 12 12 22 25 
18 13 13 25 12 
19 26 26 14 6 
20 7 7 26 11 
21 27 27 27 26 
22 28 28 6 NWS 
23 30 30 30 27 
24 29 29 28 30 
25 6 6 29 28 
26 5 5 5 29 
27 NWS 4 3 5 
28 4 3 4 2 
29 3 NWS NWS 3 
30 2 2 2 4 
31 (Worst) 1 1 1 1 



Table 10. Best-to-Worst Rankings 
of 1- to 30-Year Running Means 

and NWS 30-Year Means in Predicting 
an Individual Year 4 Years Ahead, 

According to the Four Evaluation Methods 

Rank RMSE MSE MAE WINS 

1 (Best) 17 17 17 19 
2 19 19 19 17 
3 16 16 8 16 
4 18 18 16 20 
5 20 20 9 18 
6 15 15 18 22 
7 9 9 20 23 
8 8 21 15 15 
9 21 8 22 21 
10 14 14 23 9 
11 23 23 21 8 
12 22 22 24 14 
13 24 24 14 24 
14 13 13 11 13 
15 11 11 7 25 
16 10 10 25 12 
17 7 12 10 NWS 
18 12 7 12 11 
19 25 25 13 7 
20 26 26 26 10 
21 30 30 30 26 
22 27 27 29 5 
23 29 29 27 6 
24 28 28 28 30 
25 6 6 6 29 
26 5 5 5 27 
27 4 4 4 28 
28 NWS NWS NWS 4 
29 3 3 2 2 
30 2 2 3 1 
31 (Worst) 1 1 1 3 

Table 11. Best-to-Worst Rankings 
of 1- to 30-Year Running Means 

and NWS 30-Year Means in Predicting 
an Individual Year 5 Years Ahead, 

According to the Four Evaluation Methods 

Rank RMSE MSE MAE WINS 

1 (Best) 16 16 16 18 
2 18 18 18 16 
3 15 15 15 15 
4 17 17 19 19 
5 19 19 17 21 
6 14 14 8 20 
7 8 20 21 17 
8 20 8 7 22 
9 13 13 20 14 
10 21 21 22 23 
11 22 22 14 8 
12 7 23 23 7 
13 23 7 24 13 
14 12 12 13 NWS 
15 10 10 10 24 
16 11 11 11 11 
17 9 9 9 12 
18 24 24 30 30 
19 25 25 29 10 
20 30 30 25 6 
21 29 29 12 25 
22 26 26 28 29 
23 28 28 26 9 
24 27 27 6 28 
25 6 6 27 26 
26 5 5 5 5 
27 4 4 4 4 
28 NWS 3 3 27 
29 3 NWS NWS 3 
30 2 2 2 1 
31 (Worst) 1 1 1 2 
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Table 12. Prediction Means 
That Were Ranked First for Predicting 

1 through 5 Years in Advance 
and the Entire 5-Year Period, 

According to the Four Evaluation Methods 

Year RMSE MSE MAE WINS 

1 11 11 11 11 

2 19 19 11 11 

3 18 18 9 18 

4 17 17 17 19 

5 16 16 16 18 

5-year 
period 18 18 19 19 

Table 13. Prediction Means 
That Were Ranked First for Predicting 

1 through 5 Years in Advance 
and the Entire 5-Year Period for the 

Traditional Winter (December-February), 
According to the Four Evaluation Methods 

Year RMSE MSE MAE WINS 

1 20 20 23 23 

2 22 22 22 22 

3 21 21 21 21 

4 20 20 20 20 
5 19 19 19 19 

5-year 
period 19 19 20 19 

Table 14. Prediction Means 
That Were Ranked First for Predicting 

1 through 5 Years in Advance 
and the Entire 5-Year Period for the 

Extended Winter (October-April), 
According to the Four Evaluation Methods 

Year RMSE MSE MAE WINS 

1 11 11 11 11 
2 19 19 19 19 

3 20 20 18 20 

4 19 19 19 19 

5 18 18 18 18 

5-year 
period 19 19 19 19 
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Table 15. Prediction Means 
That Were Ranked First for Predicting 

Individual Months 1 Year Ahead, 
According to the Four Evaluation Methods 

Month RMSE MSE MAE WINS 

January 23 23 21 21 

February 24 24 24 24 

March 28 28 28 NWS 

April 23 23 23 23 

May 23 23 23 23 

June 19 19 19 19 

July 5 5 5 4 

August 23 23 23 2 

September 25 25 25 25 

October 12 12 12 12 

November 22 22 22 22 

December 20 20 18 18 

Mean 20.58 20.58 20.25 18.67 

Table 16. Prediction Means 
That Were Ranked First for Predicting 

Individual Months for the 5-Year Period, 
According to the Four Evaluation Methods 

Month RMSE MSE MAE WINS 

January 18 18 18 19 

February 30 30 28 28 

March 28 28 28 NWS 

April 28 28 22 22 

May 28 28 22 22 

June 19 19 18 18 

July 23 21 21 3 

August 20 21 19 30 

September 25 30 24 24 

October 12 12 12 12 

November 22 22 30 30 

December 18 18 18 18 

Mean 22.58 22.92 21.67 21.42 



Figure 5. Overlay of smoothed, spatially averaged annual HDDs (solid line), 
19-year running mean (dashed line), and NWS 30-year means 

(line segments) for the 41 stations in Illinois 

The data shown by the solid line in figure 5 were 
passed through a 3-point smoother with weights of 
0.25, 0.5, and 0.25 to suppress the high-frequency 
noise while leaving the general trends (Panofsky 
and Brier, 1968). 

Note the high interannual variability of HDDs 
occurring within each of the standard 30-year aver­
aging periods. Moreover, recall that it is standard 
practice when using these means in rate-case deci­
sions to use a given 30-year mean for up to 10 years 
after its calculation. In fact, if one is attempting to 
predict up to five years in advance, it is possible to 
apply NWS means up to 15 or 16 years after they 
have been calculated. 

Note that the NWS means do poorly under fluctu­
ating climate and perform well only at the inflection 
points on the curve or during periods of homogene­
ous climate. For example, the NWS mean for 1941 to 
1970 describes a period of fluctuating climate and 
thus could be expected to be a poor predictor for 
subsequent years in that same period of climate. 

In figures 6 through 9, the NWS means, as de­
fined in table 1, and their standard deviations are 

plotted over time for four sites chosen to form a 
south-to-north transect of Illinois. (The plots for the 
remaining 37 sites are available upon request.) The 
left-hand axis shows the average HDDs for each 30-
year period, while the right-hand axis shows their 
standard deviations. 

Means tend to vary by 250 to 350 HDDs for the six 
overlapping periods. At the same time, the standard 
deviations vary by 150 to 300 HDDs. These plots 
help to demonstrate that the NWS 30-year means 
can change dramatically through time and can rap­
idly lose predictive capability. 

Spatial Variability of 
Predictive Means across Illinois 

With regard to the spatial variability of the best 
predictive means, there is evidence of a recent shift 
southward of the HDD contours. This is supported 
by comparing the 19-year period 1968-1986 with the 
87-year period 1901-1986 for Illinois (figure 10). The 
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Figure 6. Time series of NWS 30-year means and standard deviations 
for Anna, Illinois 

Figure 7. Time series of NWS 30-year means and standard deviations 
for Decatur, Illinois 
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Figure 8. Time series of NWS 30-year means and standard deviations 
for Peoria, Illinois 

Figure 9. Time series of NWS 30-year means and standard deviations 
for Rockford, Illinois 

19 



Figure 10. 1968-1986 19-year average annual HDD pattern 
and 1901-1986 87-year average pattern, showing the shift 

southward over the last two decades 

19-year period is used because it is the averaging 
period of optimal prediction for more than one year 
ahead. This comparison suggests that the optimal 
means may vary spatially somewhat over time. 

As figure 11 shows, however, there is minimal 
spatial variability in the best predictive mean across 
Illinois at any given time. These patterns are also 
reflected in the predictions for 1, 2, 3, 4, and 5 years 
ahead. Exceptions occur just north of St. Louis, 
around Moline, and in southwestern Illinois, where 
8- to 10-year averaging periods do well. The NWS 
30-year mean does best only at Kankakee and Har-
risburg. These patterns are somewhat consistent for 
all four methods, but they do change with the length 
of the prediction. 

A map for the extended winter (October-April) 
(figure 12) shows less organization than noted above. 
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Figure 11. Distribution of the first-ranked 
annual HDD averaging periods 
(based on the RMSE method) 

for the 5-year average prediction period 

The cluster of shorter means in the St. Louis area 
disappears, and Chicago and Havana are added to 
the list of sites where the NWS 30-year mean does 
well. However, even with the larger number of sta­
tions used in this study than in previous studies, the 
results show homogeneity over the entire state. This 
implies that irregularities such as in observation 
times and instrument exposures do not play a strong 
role in determining the best averaging period be­
cause such irregularities would affect each station 
differently. 

Because the 19-year mean is the best predictor 
overall for the subsequent five years, a map of mean 
annual HDDs is included for the 19-year period, 
1968-1986 (figure 13). This map represents the opti­
mal projection of annual HDDs for 1987 through 
1991. 



Figure 12. Distribution of the first-ranked averaging periods 
(based on the RMSE method) 

over the extended winter (October-April) 
for the 5-year average prediction period 

Recall that there are small pockets in the state 
(approximately one-third of the state) where the op­
timal mean period is not 19 years, and thus the 
values in figure 13 might not all be optimal. How­
ever, it is possible to obtain the appropriate averag­
ing periods for these few small pockets from informa­
tion in figure 11. 

Summary 
Daily temperature data from 41 long-term sta­

tions in Illinois were used to calculate daily HDD 
amounts. From these data, monthly, seasonal, and 
annual HDD totals were calculated, and an analysis 
was undertaken to seek optimal predictive HDD 
means. Running means from 1 to 30 years in length 

Figure 13. Mean annual HDDs, 1968-1986 

and the NWS 30-year mean were used to predict 
HDDs 1, 2, 3, 4, and 5 years in advance (and for the 
5-year average prediction period). Minimization of 
the difference between the actual and predicted 
amounts (the predictive error) was the basis for de­
termining the best mean. Four methods previously 
used in the literature were applied to analyze these 
predictive errors. 

On the basis of the results obtained from the four 
methods, the means were ranked from best to worst 
in terms of predictive capability. An examination of 
the top-ranked means across Illinois shows that the 
11-year mean performed best for predicting 1 year 
into the future. However, the 19-year mean proved to 
be the best predictor of individual years 2,3, 4, and 5 
years in advance and was also the best overall predic­
tor of the entire 1- through 5-year period. At the same 
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time, the NWS 30-year mean generally did not per­
form as well as the other means. 

We also addressed four specific issues noted from 
earlier studies. First, most publications deal with 1-
year predictions, which may not always be adequate 
for applications such as setting gas rates. In this 
study, predictions were extended from 1 to 5 years in 
advance to accommodate rate-setting procedures. 
Differences were found between the best 1-year pre­
dictor and the best predictors for the other years. 

Second, all four methods (RMSE, MSE, MAE, and 
WINS) produced nearly the same rankings of the 
means. While the MAE, MSE, and RMSE methods 
stressed different aspects of the performance of each 
mean, the final results between methods were statis­
tically the same. This suggests that the findings 
reported here are not artifacts of the technique used. 

Third, all means from 1 to 30 years in length were 
used, as opposed to a select few. Consideration of all 
possible means quite likely explains why our results 

differ from those obtained by Lamb and Changnon 
(1981). Although Lamb and Changnon used four of 
the same stations used here, as well as the same 
testing technique (WINS), they used only the 5-, 10-, 
15-, 20-, 25-, and 30-year means. 

Fourth, this study obtains good spatial coverage 
by including 41 stations across Illinois. This large 
number also diminishes the influence of single sta­
tions for which there may be poor-quality data. The 
homogeneity of the results across Illinois suggests 
that choosing optimal means is more closely related 
to prediction period than to spatial location. There is 
evidence, however, that spatial distributions of opti­
mal means vary over time, thus requiring consistent 
updating. 

The next section discusses a generalized weather-
normalization model that was developed for Illinois. 
Results of the foregoing analysis were entered in this 
model to demonstrate, in economic terms, the conse­
quences of using different HDD means. 
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DEVELOPMENT AND MANIPULATION 
OF A GENERALIZED WEATHER-NORMALIZATION MODEL 

FOR ILLINOIS 

To provide perspective on the magnitude of im­
pacts on revenues resulting from choice of climatic 
data for weather normalization, a generalized 
weather-normalization model was developed. Aver­
aging periods based on analyses from the previous 
section were inserted into this model. The model 
described here is run with historical climate data. 
Its parameters are actual revenue data obtained 
from an Illinois natural gas company. 

Development of the 
Weather-Normalization Model 

Sales of natural gas are related directly and lin­
early to daily weather conditions as expressed in 
HDDs (Herbert, 1986; Peoples Gas, Light and Coke 
Co. [PGL&CC], 1982). Using a linear regression 
model, Herbert showed that 95 percent of the vari­
ability in monthly sales of natural gas to residential 
customers is explained by the variation in monthly 
HDDs. 

In a document prepared for the Illinois Com­
merce Commission, Peoples Gas, Light and Coke 
Company stated that 96 to 97 percent of their daily 
sales of natural gas to residential, commercial, and 
light-industrial customers is explained by daily vari­
ation in HDDs. Figure 14 shows the relationship be­
tween HDDs and volume of gas sold. 

Because the data from PGL&CC are readily avail­
able and a matter of public record, they form the 
heart of the weather-normalization methodology used 
here. Equation 3 is a linear equation derived from 
the line of best fit shown in figure 14. The equation 
can be used to predict the volume of gas sold, on the 
basis of knowledge of daily totals of HDDs. 

Sendout = Baseload + 269,500.0 (HDD) (3) 

In equation 3, sendout is the daily amount of gas 
sold in therms (a therm equals 100,000 BTU, if a 
cubic foot of gas is assumed to contain the equiva­
lent of 1,000 BTU), and HDD represents the daily 
total of HDDs. In this equation, the baseload (the 
volume of gas sold to satisfy non-space-heating re­
quirements) is equal to 2,000,000.0 therms. 

For this study, the actual form of the relation­
ship, that is, its linearity, is more important than 

Figure 14. Relationship between daily HDDs 
and volume of gas sold 

the actual numbers that represent the slope and the 
baseload (i.e., intercept). This linearity, which is ar­
gued to exist for all gas utilities, suggests that a rela­
tionship like the one shown above could be developed 
empirically for every gas service area in the state, as 
well as for different time periods. Equations adapted 
to specific utilities would have different slopes and 
baseloads, but all the equations would be linear. 

Equation 3 is based on data from the Chicago 
metropolitan area. Specifically, this equation is based 
on the volume of gas sold between May 1, 1981, and 
April 30, 1982, and the HDD values are those com­
puted from O'Hare Airport data for the same period. 
Although the actual regression coefficients would vary 
from one region to the next across Illinois or from one 
time period to the next, the functional form of the 
relationship (linearity) would not vary. 
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Therefore, because our objective is to show the 
relative differences associated with choosing differ­
ent averaging periods, it is acceptable to use the 
relationship derived above as a typical expression of 
the form of the relationship between HDDs and gas 
volume sold statewide over the period of the study 
(obviously, actual values in this relationship will 
vary from location to location or period to period). In 
reality, a company would use the latest data to rees-
timate a model such as this each time there is cause 
to normalize sales (such as for a rate change request 
or simply for routine annual reporting to the ICC). 

The next step in the process was to attach dollar 
figures to the predicted volumes of gas sales. For 
this, 1986 gas prices were obtained from an actual 
mid-state utility as illustrative for the state. The 
monthly charges that customers are assessed (in 
this case, customers in the residential rate class) 
include a monthly facilities charge, a charge related 
to customers' actual gas consumption, and an adjust­
ment reflecting the current market price of gas. 

These data were combined with the sales volume 
predicted on the basis of daily HDDs, giving sales in 
1986 dollars. Of course, by using the appropriate 
price index, these figures could be adjusted to reflect 
any year. 

The preceding methodology can be used to calcu­
late the relative effects of different averaging peri­
ods on sales. Figure 15 details the procedures em­
bodied in a computer program developed to auto­
mate the above model. 

Input Data Provided to the Model, 
and Functional Model Elements 

Two sets of input data were provided to the model 
for case runs. The first set included predictive HDD 
values averaged over optimal averaging periods as 
discussed previously. These values are assumed to 
predict the HDD values for a hypothetical test-year 
case. 

The second set included actual HDD values from 
the test year being predicted. Thus the procedure 
followed was to compare adjusted revenues produced 
by predictive HDDs with revenues produced by the 
actual HDDs in any illustrative test year. 

This represents a departure from what is consid­
ered an ideal model application. The optimal means 
used here were developed from the analyses pre­
sented previously, which focus on HDD values inte­
grated over months, seasons, and years. The HDD 
values used in the models, however, are daily totals. 
So, in essence, HDD means that are optimized on 
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Figure 15. Flow chart of the weather-normalization model 

one-time integrations (months, seasons, years) are 
applied to HDD values of a different integration 
(daily). 

For example, for the test-year case developed for 
1970, an 11-year (1959-1969) averaging period was 



chosen to predict each HDD daily total for the test 
year. That is, the daily HDD totals were averaged 
over the 1959-1969 period, resulting in 365 average 
daily HDD totals. 

These HDD totals were all entered sequentially 
into the model to perform one run of the test-year 
case revenues adjustment. Then daily HDD totals 
averaged over the NWS 30-year period (1931-1960) 
were likewise entered into the model to derive an­
other set of adjusted revenues. The two adjusted 
revenue sets can then be compared to examine the 
absolute magnitude of the difference produced by 
the two averaging periods. 

The preceding disparity reflects a compromise 
between the commonly accepted practice of normal­
izing with larger time integrations of HDDs (usually 
annual HDD totals) and the theoretically more cor­
rect method of using smaller (daily) HDD time inte­
grations. Smaller time integrations are considered 
better than integrations longer than a month be­
cause of standard billing procedures (discussed be­
low). Wendland (1983) suggests that the use of longer-
than-daily time integrations of HDDs does not result 
in substantive loss of information. 

Natural gas utilities use a "block rate" billing 
structure within a basic billing period (usually a 
month). Rate blocks are simply different prices per 
unit (therm) of gas sold. For example, the first units 
of gas sold to a customer during a month may come 
from an initial block priced at $5 per unit of gas, 
whereas the remaining units of gas may come from 
the next block priced at $3 per unit. 

As Gillan (1984) argues, it may be inappropriate 
to integrate HDDs over time periods longer than a 
month because consumption may span more than 
one rate block, thus forming a discontinuous rela­
tionship between HDDs, gas consumption, and reve­
nues. To further illustrate, a winter with evenly 
distributed monthly totals of HDDs and correspond­
ing consumption levels (say, consumption is never 
high enough to jump to the next block) will reflect 
different revenues from a winter with the same sea­
sonal HDD totals but with much internal variability, 
wherein one or more months of extreme cold or 
warmth will cause consumption to span more than 
one block. 

Although the preceding must be acknowledged, 
we do not feel that use of daily HDDs poses a signifi­
cant problem for this study because 1) as long as the 
integrations are consistent among model runs, com­
parative evaluations can be made of the degree to 
which choice of averaging period is reflected in ad­
justed sales; and 2) to make a comparative evalu­
ation, it is not necessary, nor is it our intention, to 

develop and demonstrate an absolutely optimal nor­
malization routine. 

The primary advantage of setting up the model to 
accommodate daily HDD averaging periods is that it 
permits more precise simulation of company reve­
nues than the use of other time integrations. Fur­
ther research beyond the scope of the present study 
is needed to determine whether or not use of daily 
HDDs in weather normalization will require that 
optimal HDD averaging periods be calculated for 
each day of the year. It is not clear that sufficient 
additional information to justify the added complex­
ity would be gained from use of individual daily 
averaging periods. 

The model has two basic functional elements: the 
price schedule and the relationship between HDDs 
per day and consumption. The facts that the above 
relationship is clearly linear (Herbert, 1986; 
PGL&CC, 1979, 1982), and that this is reflected in 
the PGL&CC relationship, are sufficient justifica­
tion for using equation 3 to form the functional core 
of the model. The choice of the price schedule is 
constrained by what was obtainable in communica­
tions with various companies in Illinois. However, 
reasonably complete price schedules have been ob­
tained from at least one company and are assumed 
to be typical for the state. 

The assumptions inherent in the model are: 1) the 
relationship between consumption and weather is 
linear (justified previously); 2) the hypothetical com­
pany serves 880,000 residential customers; and 3) 
these customers are subject to the price schedule 
noted below: 

Price schedule: 
a) Facilities charge = $8.50 per month 
b) Commodity charge: 

First 90 therms 
per month = 13.87¢ per therm 
Over 90 therms 
per month = 5.180¢ per therm 

above 90 
c) Adjustment 

reflecting current 
market price of gas = 35.00¢ per therm 

This price schedule is an approximation of the 
1986 residential service classification for the com­
pany from which the price schedule was obtained. It 
was assumed that all customers of this hypothetical 
company fall in the residential class. Adding in other 
rate classes would have introduced unneeded com­
plexity, although this could easily be done from a 
modeling standpoint. 
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Model Application 
In applying the model, the fundamental question 

addressed was, How would adjusted revenues (in 
1986 dollars) be affected if climate normals were the 
only factors in the normalization model that were 
allowed to vary? 

To address this question, three years in the his­
toric climate record (1942, 1956, and 1978) were se­
lected to serve as hypothetical test years. These years 
were chosen to represent a period following declines 
in HDDs (1942), a period with stable HDDs (1956), 
and a period of increasing HDDs (1978) (see figure 
3). Eleven climate stations (figure 1) were chosen (as 
a subset of the 41 original stations) to give the state 
balanced spatial representation. 

Independent model runs were made by using four 
categories of HDD values: 

1) Daily HDD values from each of the 11 stations 
for each test year, 1942, 1956, and 1978. (An addi­
tional run was carried out to obtain mean annual 
adjusted revenues for the five-year periods begin­
ning with each of the hypothetical test years.) 

2) 11-year means of each daily HDD value, con­
structed from the 11 years before a test year. 

3) 19-year means of each daily HDD value, con­
structed from the 19 years before a test year. 

4) The most recently constructed NWS 30-year 
daily HDD mean for the test years. 

These inputs were based on work described in the 
first major section of this report. The runs were in­
tended to indicate what hypothetical normalizations 
would have resembled in 1986 dollars if such histori­
cal climatic conditions had been experienced in 1986. 

The model outputs are hypothetical gas sales reve­
nues (in 1986 dollars) that would accrue to a com­
pany under different assumptions of normal climate. 
We make no pretense that these outputs perfectly 
characterize any given company at any given point 
in time. Furthermore, these figures are not adjusted 
to reflect operating costs incurred in providing the 
gas for sales. 

However, the model outputs are useful as a means 
of evaluating, in economic terms, the relative impact 
on weather normalization produced by different cli­
mate means over large gas distribution areas (i.e., 
those that range in size up to that of Illinois). 

Model Results 
The model results were used to address three 

related issues: 1) spatial variation of adjusted reve­
nues in a given hypothetical test year; 2) temporal 
variation of adjusted revenues between the hypo-
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thetical test years; and 3) differences in a given year 
in adjusted revenues produced by different climatic 
means. Accordingly, model outputs are displayed in 
three general forms. 

First, for each of the 11 stations and for each of 
the three hypothetical test years (1942, 1956, and 
1978), weather-adjusted revenues were produced 
based on 1) daily HDD values in a given test year, 
and 2) daily HDD values averaged over the 5-year 
period beginning with the test year. The resulting 
revenues represent the actual weather-adjusted reve­
nues against which to compare predicted adjusted 
revenues obtained with the predictive average HDDs. 
Weather-adjusted revenues were then predicted for 
each test year (and associated 5-year average period) 
by using 1) the 11-year average HDDs, 2) the 19-year 
average HDDs, and 3) the NWS 30-year average 
HDDs (table 17). 

Second, absolute intertemporal differences be­
tween test-year adjusted revenues were obtained for 
the means over all stations for each of the five cate­
gories described in the previous paragraph (table 
18). For example, 11-year adjusted revenues for 1942 
were subtracted from 11-year adjusted revenues for 
1956. Third, for each station and hypothetical test 
year, differences were tabulated between revenues 
adjusted with the NWS 30-year mean and revenues 
adjusted with the 11- and 19-year means (table 19). 

Spatial Variation 
The strong and directly linear relationship be­

tween degree days and revenues in the model as­
sures a spatial distribution of adjusted revenues that 
is similar to the HDD distributions discussed previ­
ously (table 17). To restate, there is a clear and 
consistent HDD gradient from a high in the north to 
a low in the south. Likewise, adjusted revenues show 
a high in northern areas and a low in the south. 

In building a hypothetical test-year case for 1942 
across Illinois by using 11-year HDD averaging peri­
ods (table 17a), adjusted revenues would range from 
$1,164,636,000 in Rockford to $879,920,000 in Cairo, 
a difference of $284,716,000. Moreover, the mean 
adjusted revenue over the 11 sites (taken as the 
statewide mean) is $1,042,447,000. 

Rockford had an absolute difference of 
$122,189,000 from this mean, and Cairo had an ab­
solute difference of $162,527,000 from this mean 
(table 17a). This pattern holds for each of the other 
averaging periods (19-year and NWS 30-year peri­
ods), as well as for the other hypothetical test years 
(1956 and 1978). 



Table 17. Actual and Predicted Adjusted Revenues 
for Three Hypothetical Test Years: 1942, 1956, and 1978 

(In thousands of dollars) 

a) 1942 
5 years 11-year 19-year NWS 
ahead mean mean mean 

Station 1942 (1942-1946) (1931-1941) (1923-1941) (1911-1940) 

Aurora 1,104,375 1,169,262 1,151,739 1,169,207 1,177,530 
Cairo 868,332 871,341 879,920 885,237 890,386 
Charleston 976,658 1,021,353 1,018,245 1,028,295 1,035,416 
LaHarpe 1,030,107 1,078,254 1,080,853 1,092,186 1,098,196 
Morrison 1,085,684 1,137,706 1,133,458 1,145,827 1,157,123 
Mt. Vernon 923,361 950,536 951,715 959,507 970,326 
Peoria 1,043,894 1,110,357 1,088,526 1,102,314 1,111,087 
Rockford 1,099,787 1,163,494 1,164,636 1,177,882 1,190,112 
Sparta 891,803 912,831 924,782 929,457 939,982 
Urbana 1,017,824 1,064,408 1,065,062 1,079,444 1,088,164 
White Hall 972,795 1,002,154 1,007,989 1,022,838 1,029,698 

Mean 1,001,329 1,043,790 

b) 1956 

1,042,447 1,053,835 1,062,547 

5 years 11-year 19-year NWS 
ahead mean mean mean 

Station 1956 (1956-1960) (1945-1955) (1937-1955) (1921-1950) 

Aurora 1,176,326 1,181,717 1,172,093 1,165,770 1,163,560 
Cairo 892,668 895,413 862,923 872,247 877,018 
Charleston 1,088,244 1,074,370 1,021,236 1,023,627 1,020,289 
LaHarpe 1,125,088 1,122,541 1,079,071 1,083,197 1,082,867 
Morrison 1,164,110 1,161,887 1,143,619 1,141,803 1,140,480 
Mt. Vernon 981,332 979,882 956,728 956,078 954,559 
Peoria 1,128,389 1,131,802 1,105,310 1,102,343 1,099,689 
Rockford 1,191,515 1,201,526 1,161,737 1,163,708 1,169,025 
Sparta 944,954 952,702 916,508 921,252 923,440 
Urbana 1,091,733 1,091,522 1,051,916 1,058,854 1,068,597 
White Hall 1,030,271 1,025,197 996,682 1,004,203 1,011,147 

Mean 1,074,057 1,074,414 

c) 1978 

1,042,529 1,044,825 1,046,424 

5 years 11-year 19-year NWS 
ahead mean mean mean 

Station 1978 (1978-1982) (1967-1977) (1959-1977) (1941-1970) 
Aurora 1,263,932 1,221,506 1,177,334 1,184,026 1,178,516 
Cairo 965,097 918,787 887,812 891,434 882,318 
Charleston 1,146,138 1,091,193 1,033,932 1,039,680 1,036,663 
La Harpe 1,225,725 1,148,624 1,114,147 1,113,890 1,097,188 
Morrison 1,313,140 1,249,207 1,162,814 1,166,310 1,153,174 
Mt. Vernon 1,074,173 1,047,900 980,115 978,821 967,234 
Peoria 1,238,854 1,176,916 1,139,696 1,145,960 1,124,897 
Rockford 1,322,321 1,272,914 1,218,046 1,219,526 1,189,035 
Sparta 1,049,229 992,863 953,867 954,834 938,810 
Urbana 1,193,231 1,142,708 1,088,402 1,091,847 1,075,155 
White Hall 1,123,036 1,068,091 1,033,352 1,036,026 1,020,058 

Mean 1,174,052 1,023,971 1,071,774 1,074,759 1,060,277 
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Table 18. Intertemporal Absolute Differences 
between Mean Adjusted Revenues 

for the Eleven Climate Stations 
Used in the Model Analysis 

(In thousands of dollars) 

a) Single test-year actual adjusted revenues 

1942 1956 

1942 0 0 

1956 72,728 0 

1978 172,723 99,995 

b) 5-year mean actual adjusted revenues 

1942-1946 1956-1966 

1942-1946 0 0 

1956-1960 30,624 0 

1978-1982 50,443 19,819 

c) 11-year mean adjusted revenues 

1931-1941 1945-1955 

1931-1941 0 0 

1945-1955 82 0 

1967-1977 29,327 29,245 

d) 19-year mean adjusted revenues 

1923-1941 1937-1955 

1923-1941 0 0 

1937-1955 9,010 0 

1959-1977 20,924 29,934 

e) 30-year NWS mean adjusted revenues 

1911-1940 1921-1950 

1911-1940 0 0 

1921-1950 16,123 0 

1941-1970 2,270 13,853 
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Table 19. Absolute Differences in 
Normalized Revenues for 1942, 1956, and 1978 
Resulting from Use of Different HDD Means 

(In thousands of dollars) 

a) 1942 
NWS mean (1911-1940) NWS mean minus 

Station minus 11-year mean 19-year mean 

Aurora 25,791 8,323 
Cairo 10,466 5,149 
Charleston 17,171 7,121 
La Harpe 17,343 6,010 
Morrison 23,665 11,296 
Mt. Vernon 18,611 10,819 
Peoria 22,561 8,773 
Rockford 25,476 12,230 
Sparta 15,200 10,525 
Urbana 23,102 8,720 
White Hall 21,709 6,860 

Mean 20,099 

b) 1956 

8,711 

NWS mean (1921-1950) NWS mean minus 
Station minus 11-year mean 19-year mean 

Aurora -8,533 -2,21 
Cairo 14,095 4,771 
Charleston -947 -3,338 
La Harpe 3,796 -330 
Morrison -3,139 -1,323 
Mt. Vernon -2,169 -1,519 
Peoria -5,621 -2,654 
Rockford 7,288 5,317 
Sparta 6,932 2,188 
Urbana 16,681 9,743 
White Hall 14,465 6,944 

Mean 7,606 

c) 1978 

3,667 

NWS mean (1941-1970) NWS mean minus 
Station minus : 11-year mean 19-year mean 

Aurora 1,182 -5,510 
Cairo -5,494 -9,116 
Charleston 2,731 -3,017 
LaHarpe -16,959 -16,702 
Morrison -9,640 -13,136 
Mt. Vernon -12,881 -11,587 
Peoria -14,799 -21,063 
Rockford -29,011 -30,491 
Sparta -15,057 -16,024 
Urbana -13,247 -16,692 
White Hall -13,294 -15,968 

Mean 12,208 14,482 

Overall mean 13,304 8,953 

Note: Means were calculated by using absolute values. 



These results support the conclusion that location 
in Illinois influences the magnitude of normalization 
adjustments to revenues. Adjusted revenues based 
on a single climate mean for the entire state can 
differ from adjusted revenues based on climate means 
for specific locations within the state by as much as 
hundreds of millions of dollars. It is instructive to 
view these differences as a form of the costs of using 
location-inappropriate climate means in the normali­
zation of revenues rather than using climate data 
reflective of the distribution areas of gas companies. 

Therefore, it is recommended that climate sta­
tions from which HDD means are drawn for making 
revenue adjustments be reflective of the distribution 
area of a given company. Moreover, in cases where 
distribution areas are large or are split into multiple 
locations, it is desirable to use more than one climate 
station in the normalization. 

Temporal Variation 
Intertemporal differences in adjusted revenues 

are considerable between the hypothetical test years 
(table 18). To continue with the example of revenues 
adjusted by using 11-year climatic means, differ­
ences (areally averaged over the 11 stations) range 
from a low of $82,000 between 1942 and 1956 to a 
high of $29,327,000 between 1942 and 1978 (table 
18c). The mean difference over the three hypotheti­
cal test years is $19,551,000. 

These intertemporal differences were apparent 
for other climate averaging periods as well (tables 
18d and 18e). The average intertemporal differences 
in adjusted revenues using 19-year means (m = 
$19,956,000) are similar to those for the 11-year 
means and are substantially larger than the same 
figure for the NWS 30-year mean (m = $10,748,000). 

These results make two broad generalizations 
possible. First, although intertemporal differences 
in adjusted revenues attributed to climatic means 
are considerable (approximately tens of millions of 
dollars), they tend to be less important than the dif­
ferences in revenue adjustments resulting from spa­
tial variability of climatic means. This difference 
(space versus time) can be as much as one order of 
magnitude in some instances. 

For example, recall that for 1942 the difference in 
adjusted revenues between Rockford and the state­
wide mean, based on an 11-year averaging period, is 
more than $122,000,000. However, statewide mean 
intertemporal differences (between 1942 and 1956) 
in adjusted revenues based on an 11-year averaging 
period are only $82,000. 

Second, the fact that there is substantial variabil­
ity in adjusted revenues when climatic means are 
calculated for different time periods, all things being 
equal, demonstrates the potential economic effect of 
climatic variability on normalizations. Clearly, Illi­
nois experiences persistent periods of climate that 
differ considerably from that of periods immediately 
prior or subsequent. Such periods may span the life­
times of several rate decisions. 

Unfortunately, the variation in mean intertem­
poral differences based on the different averaging 
periods (tables 18c through 18e) raises many ques­
tions. For example, if the goal of weather normaliza­
tion is to adjust revenues by using climate means 
that minimize climatic variability over long periods 
of time — for example, decades or longer — then the 
longer the averaging period of the mean, the better. 
This is supported by the relatively small intertem­
poral differences in adjusted revenues produced by 
the NWS 30-year means. In contrast, the differences 
produced by the 11- and 19-year means seem quite 
large. 

There is an important pitfall to avoid with respect 
to this last point. It may be tempting to assume that 
smaller intertemporal differences in adjusted reve­
nues (obtained with longer averaging periods) are 
more stable, more reliable, or otherwise better than 
larger intertemporal differences. Returning to Court's 
(1968) suggestion that "normal" is what best pre­
dicts the future (the future in this case being a test 
year or test five years), it is not surprising, and 
should be considered a positive attribute, that these 
differences in adjusted revenues between test years 
are relatively large when using shorter averaging 
periods (11- and 19-year means). These differences 
occur because the conditions of normalcy (according 
to Court) are themselves highly changeable. 

Put in terms of relevance to a gas utility, these 
larger intertemporal differences indicate that shorter 
averaging periods more accurately portray what is 
normal within the context of the average lifetime of a 
particular rate decision (five years or less). 

Revenue Variation Resulting 
from Choice of Climate Normal 

We finally turn to the question of the relative 
effect on revenue adjustments, in a year, that is 
produced by different averaging periods (table 19). 
To focus the discussion, we concentrate on the indi­
vidual differences between the 11- and 19-year means 
and the NWS 30-year mean. 
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We chose 11- and 19-year means because our pre­
vious analysis suggests that they are most effective 
in predicting HDDs for 1 and 5 years in advance, 
respectively, and we compared them with the NWS 
30-year mean because of its inferior predictive capa­
bilities and because it remains widely used. 

As with the intertemporal variations in adjusted 
revenues, we propose that differences in adjusted 
revenues between an optimal averaging period and 
any other averaging period for a given hypothetical 
test year can be thought of as the economic costs of 
using inappropriate climatic information. 

Table 19 shows large apparent revenue differ­
ences between the NWS 30-year mean and both the 
11- and 19-year means. For example, in 1942, the 
absolute difference in adjusted revenues between 
use of an 11-year mean and the NWS 30-year mean 
totaled more than $25 million for Rockford. These 
differences remain large for all stations and all years. 
This demonstrates that choice of averaging period 
does make a significant difference in the magnitude 
of a revenue adjustment. 

These results point to a potentially significant 
conclusion. In Illinois, some level of revenue adjust­
ment disparity exists between the commonly accepted 
method of normalization (using NWS 30-year means) 
and a climatically optimal normalization (as defined 
in this study). This is based on Court's (1968) prem­
ise of "normal" climate (discussed previously and 
adhered to in this study), and on acceptance that the 
means found in this study to best capture this defini­
tion of normal are in fact optimal. 

In accordance with these premises, it is also pos­
sible to conclude implicitly that there are costs asso­
ciated with using the less-than-optimal NWS 30-
year means to adjust revenues. These costs are borne 
either by the utility (as when overestimating warm-
weather effects on revenues by using too low an 
HDD normal), or by the utility's customers (as when 
overestimating cold-weather effects on revenues by 
using too high an HDD normal). 

Summary 
This section presented a generalized revenues 

normalization model developed for this study. The 
model is based on a documented linear and direct 
relationship between HDDs and gas sales revenues. 
The model was calibrated with 1986 dollars and 
applied uniformly across Illinois, allowing only cli­
matic inputs to vary in any given application. 

The model was run for three different hypotheti­
cal test years (1942, 1956, and 1978) at 11 sites 
across Illinois. Variable inputs, as mentioned previ-
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ously, were restricted to the differently defined cli­
matic normals (11-year, 19-year, and NWS 30-year 
means) plus HDD values for each test year, and were 
averaged for the five years beginning with each test 
year. 

The findings of this exercise include: 
1) Location within Illinois accounts for large dif­

ferences in revenue normalizations because of nor­
mal spatial variations in HDDs. Revenues adjusted 
by using a single average climate mean for the entire 
state can differ from revenues adjusted by using cli­
matic means from specific locations within Illinois 
by hundreds of millions of dollars. 

This points to the importance of the climate data 
used being reflective of climatic conditions within 
gas distribution areas. For larger gas distribution 
areas, more than one station should be integrated 
into the normalization for the area. 

2) Intertemporal differences in revenue adjust­
ments for any site are considerable (tens of millions 
of dollars) and suggest that natural temporal vari­
ability in climate means (within periods of 30 years 
or less) should be accounted for when establishing 
standards for performing normalizations. Larger tem­
poral variations in revenue adjustments between 
test years are produced by shorter means (11- and 
19-year means) than by the longer NWS 30-year 
mean. This shows that shorter-term means perform 
better and more precisely than the longer means in 
capturing what is normal in a given period — a 
finding supported by the climate analysis of the first 
section of the report. 

3) Choice of climate mean at a given location and 
time can produce differences in revenue adjustments 
that approximate tens of millions of 1986 dollars. 
The average differences over the 11 sites in adjusted 
revenues based on 11-year means and revenues based 
on the NWS 30-year means were $20,099,000 for 
1942, $7,606,000 for 1956, and $12,208,000 for 1978. 

The differences between adjustments using 19-
year means and those using the NWS 30-year means 
were $8,711,000 for 1942, $3,667,000 for 1956, and 
$14,482,000 for 1978. 

The normalization model developed here, and the 
dollar figures produced from it, do not presume to 
capture all of the intricacies of an actual normaliza­
tion precisely. However, this model is instructive in 
illustrating relative impacts on revenue adjustments 
produced by climate data. Moreover, on the basis of 
this model, we conclude that differences in revenue 
adjustments produced by optimal climate means from 
those produced by other climate means represent 
costs (either to a utility or to its customers) of using 
inappropriate climate information. 
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