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ABSTRACT 

Cloud Condensation Nuclei (CCN) are microscopic particles in the atmosphere 

which develop into water droplets when exposed to supersaturated conditions. The clouds 

formed by these droplets have a significant effect on the global climate. The purpose of 

this research was to experimentally determine the behavior and chemical composition of 

actual CCN particles. This was achieved by using captured CCN from a system including 

a cloud chamber and several virtual impactors. The captured CCN material was then 

resuspended as dry particles. This aerosol was then passed through a classifier and a cloud 

chamber in order to determine the critical radius and corresponding critical supersaturations 

of the CCN material. These data were then compared to similar data taken for suspected 

CCN materials. This comparison indicated that the activation characteristics of total CCN 

and large CCN (0.1 < dp < 0.5 µm) are controlled by the ammonium sulfate present in the 

particles. This was verified both graphically and numerically. The numerical method 

involved developing Ω, the number of ions per unit volume formed by dissolution of the 

CCN material. Ω was also calculated for organic compounds of unknown composition 

which were discovered in the actual CCN samples by chemical analysis. This value was 

Ωorgan ics = 26,425.3. This is smaller than the Ω. for ammonium sulfate (40,095.5), 

indicating that the organic material is less active than ammonium sulfate. Thus, the 

presence of the organics acts to slightly retard droplet formation on large CCN. The 

organic compounds are not, however, so inactive that they could not nucleate under 

naturally occurring supersaturated conditions. Using Ωorganics , it was calculated that 

particles as small as 0.03 (µm in diameter which consisted entirely of the organic 

compounds could activate under natural conditions. This size is well within the observed 

size range for actual CCN. 
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Chapter 1 

Introduction 

1.1 Cloud Condensation Nuclei 

Cloud Condensation Nuclei (CCN) are microscopic particles in the atmosphere 

which develop into water droplets when exposed to the supersaturated conditions present in 

clouds. Supersaturation is the measure of the excess of water vapor above 100% relative 

humidity (RH) (Twomey, 1977a). For example, 101% RH is equal to 1% supersaturation. 

The supersaturations which naturally occur in clouds are usually of the order of a few 

tenths of a percent, but can reach as high as 1% (Twomey, 1977a). Measurements have 

shown that most CCN range from 0.02 to 0.04 µm in diameter (Twomey and Severynse, 

1964; Twomey, 1972; Twomey, 1977b; Fitzgerald et al., 1982). This small size puts 

CCN on the upper end of the nucleation mode. Their size also makes direct measurement 

of the chemical composition of CCN nearly impossible. The purpose of this research is to 

determine the activation (droplet formation) characteristics of CCN in known 

supersaturated conditions by comparing the behavior of the soluble portion of actual CCN 

to the behavior of compounds which are suspected to be major components of CCN. 

1.2 The Importance of CCN 

The CCN in the atmosphere produce the water droplets which make up clouds. 

These clouds can either absorb or reflect sunlight, thus altering the radiative balance of the 

earth. The absorption of sunlight by cirrus clouds warms the atmosphere while reflection 

by stratocumulus clouds cools it (Monastersky, 1989). On average, stratocumulus clouds 

cover 34% of the globe while cirrus clouds cover only 16% (Monastersky, 1989). 

Therefore, there is an overall global cooling effect from cloud cover. Global modeling 

performed by Wigley (1989) showed that an increase in CCN, which would result in 

increased cloud albedo, would increase this cooling effect. The recent fears of global 

warming due to increased anthropogenic CO2 emissions brought about a large number of 
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studies on the ability of CCN to cool the planet. Early calculations by Twomey (1977c) 

linked possible global changes in planetary albedo to changes in CCN. Further research 

using numerical models indicated that a doubling of the atmospheric CO2 concentration 

might theoretically be offset by the cooling effect of a doubling of the CCN concentration 

(Wigley, 1989; Twomey et al., 1984; Charlson et al., 1987). Whether or not a CCN 

concentration increase would coincide with an increase in CO2 emissions depends upon the 

major sources of CCN. If the CCN are primarily anthropogenic, an increase concurrent 

with a CO2 increase could be expected. If, however, the CCN come from a natural source, 

a simultaneous increase may not occur. Without an understanding of future CCN 

concentrations, it will be impossible to accurately predict the extent to which global 

warming will occur. An accurate understanding of the CCN sources is especially important 

since small aerosols like CCN have an atmospheric lifetime of a few days (Hinds, 1982), 

while CO2 has a lifetime of around 15 years (Seinfeld, 1986). This large difference in 

residence times requires a good understanding of CCN sources and how they will change 

over time in order to project the ability of CCN to continue to offset the ever increasing 

CO2 concentrations. 

1.3 Previous Studies of CCN Chemical Composition 

Previous attempts to determine the chemical composition and sources of CCN have 

had limited success. Problems arise due to the small size of CCN and their low 

concentrations, typically only a few hundred per cubic centimeter, in the atmosphere 

(Twomey, 1977a). Their small size does, however, give some indication of their 

composition. Measurements of actual CCN sizes indicate that the majority are 0.02 to 

0.04 µm in diameter (Twomey and Severynse, 1964; Twomey, 1972; Twomey 1977b; 

Fitzgerald et al., 1982). Twomey (1977a) used nucleopore filters as a diffusion battery to 

remove selected sizes of atmospheric CCN before passing the remaining CCN particles 

through a cloud chamber. The air flowrate through the filter was reduced to increase the 
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removal (by diffusion to the filter pore walls) until droplets were no longer seen in the 

cloud chamber. Using the diffusion equation, Twomey (1977a) calculated that the mean 

radii of the CCN must be smaller than 0.03 µm (dp < 0.06 µm). CCN activation at 

supersaturations less than 1% is also well documented (Twomey, 1977a). At these low 

supersaturations, nucleation theory for insoluble materials requires a dry particle radius of 

at least a few tenths of a micrometer (Twomey, 1977a). For example, at a supersaturation 

of 1%, the critical (minimum) dry particle radius for a droplet to form on a wettable 

insoluble particle is 0.12 µm (Twomey, 1977a). This is much larger than the observed 

sizes of the majority of CCN particles. Smaller particles consisting of soluble materials, 

however, can activate to form droplets at these supersaturations (Twomey, 1977a). This is 

due to the lowering of the equilibrium vapor pressure above the droplet surface which is 

brought about by the presence of a dissolved material such as a salt (Hinds, 1982). 

Therefore, it is evident that a majority of CCN must be composed at least partially of 

soluble rather than insoluble materials. This is not to say that wettable insoluble particles 

greater than a diameter of 0.12 µm do not exist, for they most likely do. These particles 

will activate to form droplets and thus affect the overall chemistry of CCN particles, 

especially the large CCN. The small CCN, however, will be dominated by particles which 

are at least partially soluble. Several theoretical studies have determined that atmospheric 

aerosols could consist of mixtures of soluble and insoluble substances (Junge and 

McLaren, 1971; Winkler, 1973; Hanel, 1976). These internally mixed particles could 

theoretically act like soluble particles if the soluble material was at the surface of the 

particle. 

Another problem with attempting to directly measure the chemical composition of 

CCN is that they must first be separated from all non-CCN particles in the atmosphere. 

One way to do this is to activate the CCN using some type of cloud chamber. Once 

activated, however, the original CCN materials become greatly diluted. Some 

measurements have been made despite this problem. A large amount of indirect evidence 
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"points to sulfates as the main constituent of CCN" (Meszaros, 1968; Twomey, 1971; 

Junge, 1972; Charlson et al., 1974; Whitby, 1978; Georgi, 1978; Ono and Ohtani, 

1980; Cobourn and Husar, 1982; quote from Williams et al., 1992). Preliminary studies 

of bulk aerosol (all atmospheric particles) found ammonium sulfate and sodium chloride to 

be the two major soluble inorganic salts in the atmosphere (Twomey, 1977a). A later study 

of marine aerosols by Bigg (1990) found that 80 to 90% of particles less than 0.2 µm in 

diameter consisted of ammonium sulfate while the rest were either sodium chloride or an 

unknown, insoluble liquid. Twomey (1977a) used the greater volatility of ammonium 

sulfate compared to sodium chloride in an attempt to determine which of the two 

(ammonium sulfate or sodium chloride) was the main constituent in CCN. He did so by 

first passing an aerosol composed of natural atmospheric CCN particles through a heated 

tube. The number of particles present downstream of the heater was counted at increasing 

temperatures until eventually all of the particles were volatilized. This same procedure was 

then repeated for laboratory aerosols of sodium chloride, ammonium sulfate, and several 

other ammonium salts. The results of this experiment showed the responses of the natural 

CCN particles and the ammonium sulfate to be almost identical, while the sodium chloride 

volatilized at a much higher temperature. Therefore, it appears that most of the 

atmospheric CCN particles are either "ammonium sulfate or some other substance with 

similar volatility" (Twomey, 1977a). Recent direct measurements of CCN chemistry have 

indicated sulfate as the main negative ion, and NH4
+, Na+, K+ and H+ as the positive ions 

(Harrison, 1985; Rosinski et al., 1984). 

1.4 Sulfates and CCN 

The large amount of preliminary evidence which points to sulfates as a major, if not 

the dominant, constituent in CCN calls for an examination of possible sulfate sources. 

Williams et al. (1992) suggested that perhaps abundant sulfur is always present in the 

atmosphere, and that the positive ions are the "rate-limiting constituents." This abundance 
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of sulfur in the atmosphere suggests a possible link between CCN concentrations and SO2 

emissions. These emissions could either be from anthropogenic sources or natural 

sources. The main anthropogenic source would most likely be the combustion of fossil 

fuels, especially coal. If this is true, then increasing SO2 emissions could coincide with 

increasing CO2 emissions and the global warming effects could be offset by the greater 

number of CCN present in the atmosphere (Wigley, 1989). The SO2 emissions might be 

coming from a natural source such as phytoplankton in the oceans which release 

dimethylsulfide into the atmosphere (Charlson et al., 1987). If this case is true, then the 

number of CCN in the atmosphere would most likely not increase with increasing 

anthropogenic CO2 emissions (Charlson et al., 1987). Therefore, it is important that the 

sources of CCN be determined as well as the chemical composition. This paper, however, 

shall only deal with the question of chemical composition. 

1.5 Organics and CCN 

To date, little work has been done to study the possibility of organics in CCN. 

Recent studies, however, seem to indicate that organics are indeed present in varying 

quantities in CCN. In order to study this possibility, Bigg (1986) used a diffusion cloud 

chamber with water to collect CCN. The collected CCN were then dried and reactivated in 

a chamber with first ethanol and then cyclohexane as the condensing vapors (instead of 

water). By using cyclohexane instead of water, it was possible to nucleate atmospheric 

CCN particles excluding those consisting solely of ammonium sulfate since ammonium 

sulfate particles do not appreciably activate in cyclohexane (Bigg, 1986). Bigg's study 

found that the majority of the CCN particles in the samples he collected contained an 

appreciable amount of a material (most likely hydrocarbons) which caused them to activate 

in cyclohexane vapors (Williams et al., 1992; Bigg, 1986). A comparison of 

measurements on land and at sea indicates that marine air contains much greater numbers of 

cyclohexane-CCN (Bigg, 1986). The larger amount of organics in marine air could be due 
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to organic films on the ocean surface which are broken by wave action, as postulated by 

Blanchard (1964). Preliminary examinations of CCN captured for this research also 

showed that a significant portion of the material is organic (Williams et al., 1992). 

Attempts to determine whether the organics are sampling artifacts due to the apparatus or 

actually part of the CCN indicate that the organics are indeed present in the atmospheric 

CCN particles. 

There are several possible ways for organics to be present in atmospheric aerosols. 

One way is for the dry particle to consist either partially or entirely of organic materials. 

Such particles are called particulate organic matter (POM) (Williams et al., 1992). 

Ketseridis and Eichman (1978) found total POM concentrations of almost 10 µg/ m3 in 

samples taken off of the coast of Ireland. These samples contained nearly 500 organic 

compounds. This mass concentration is several orders of magnitude greater than the 

estimated CCN mass concentration in the atmosphere of 10-100 ng/m3 (Williams et al., 

1992). Another form in which organics can be part of atmospheric particles is as surface 

active films or surfactants (Rood et al., 1991; Williams et al., 1992). A considerable 

amount of research has been performed in an attempt to determine the effects of surfactants 

on droplet growth. Aerosol samples taken in California by Husar and Shu (1975) showed 

evidence of the presence of surfactant films. Later research by Gill and Graedel (1983) 

identified more than 80 organic surfactants which commonly occur in the atmosphere. It 

should be noted, though, that surfactants are usually thought to be agents which retard the 

growth of droplets (Rood et al., 1991). But with such a large number of organic 

surfactants present in the atmosphere, it would not be unrealistic for one or more to play an 

active role in CCN. Work by Andrews and Larson (1993) found that certain organic 

surfactants can enable normally hydrophobic particles, such as carbon black particles, to 

"sorb significant amounts of water." Thus, the presence of such surfactants could act to 

increase the number of potential CCN particles in the atmosphere. 
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1.6 Theory: Supersaturation vs. Dry Particle Radius 

Several paths exist for the formation of water droplets in the atmosphere. These 

include homogeneous nucleation, heterogeneous nucleation on an insoluble particle, and 

heterogeneous activation of a soluble particle (Hinds, 1982). Homogeneous nucleation is 

the formation of water droplets from a supersaturated vapor without condensation nuclei 

(Hinds, 1982). This process rarely occurs in the atmosphere, so it will not be discussed in 

relation to this research. Heterogeneous nucleation on an insoluble particle does occur 

naturally in the atmosphere. However, since CCN are believed to mainly consist of soluble 

materials, this process will not be discussed in detail. Heterogeneous activation of soluble 

particles will be examined in detail, however. For detailed explanations of all of the 

methods of droplet formation, refer to either Hinds (1982) or Twomey (1977a). 

Heterogeneous activation is the formation of water droplets by the condensation of 

water vapor onto a dry nucleus (particle) (Hinds, 1982). Since the particles which serve as 

nuclei have sharply curved surfaces, a greater partial pressure is required to prevent 

evaporation from the particle surface than for a flat surface (Hind, 1982). This is called the 

Kelvin Effect. It is possible to relate the saturation ratio (p/ps) required for equilibrium 

above a droplet and the droplet size for a pure liquid (usually water) using the Kelvin or 

Thomson-Gibbs equation (Hinds, 1982), 

where, 
Sr = saturation ratio 
ps = saturation vapor pressure for a flat liquid surface 
p = the actual partial pressure of vapor 
σ = surface tension of the liquid 
M = molecular weight of the liquid 
ρ = density of the liquid 
d* = the Kelvin (equilibrium) diameter for the droplet 
R = ideal gas constant 
T = absolute temperature 
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This equation is for insoluble particles, but is also important in developing a relation for 

soluble nuclei since soluble particles also experience the Kelvin effect. When dealing with 

soluble nuclei, a new term must be added to the equation. According to Raoult's Law, the 

presence of a dissolved salt in water lowers the equilibrium vapor pressure above the water 

surface (Hinds, 1982). This is often referred to as the Solute Effect. The Solute Effect 

allows for activation to occur at a lower supersaturation with a soluble nuclei than with an 

insoluble one (Hinds, 1982). Thus, for soluble particles, there are two competing effects 

which control the relationship between the saturation ratio and the particle size required for 

growth (Hinds, 1982). As a droplet evaporates, the Kelvin Effect increases the vapor 

pressure due to the increase in the surface curvature of the droplet. At the same time, 

however, the concentration of salt in the droplet is increasing since only the water is 

evaporates, leaving a constant amount of salt (Hinds, 1982). This decreases the vapor 

pressure above the droplet by the Solute Effect. These two effects are combined in the 

following equation for soluble nuclei which was developed by combining Equation (1.1) 

and Raoult's Law (Hinds, 1982): 

where, 
m = mass of the dissolved salt 
Ms = molecular weight of the dissolved salt 
Mw = molecular weight of the solvent (water) 
i = van't Hoff factor = # of ions each molecule of salt forms 
dp = diameter of the particle 
p = density of the solvent (water) 

Equation (1.2) was expanded and the leading terms yielded Equation (1.3) (Twomey, 

1977a). 

where, 
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and, 
S = the supersaturation = Sr - 1 
r = droplet radius 
Mw = molecular weight of water 
MN = molecular weight of the nucleus material 
i = van't Hoff factor 
R = ideal gas constant 
T = absolute temperature 
σ = surface tension of the solution ≈ surface tension of water 
ps = density of solution ≈ density of water 

A plot of either of these two relations (Equation (1.2) or (1.3)) for a given particle provides 

what is called a Kohler curve. A Kohler curve is a plot of droplet diameter versus the 

supersaturation and is specific for a certain solution composition (Hinds, 1982). More 

detail on the development of Equations (1.2) and (1.3) as well as on Kohler curves is 

available in both Hinds (1982) and Twomey (1977a). 

The maximum or "critical" supersaturation, Sc, attained by a given particle before 

activation can be found using a slightly different relation which is derived in Twomey 

(1977a) from Equation (1.3) by equating its slope to zero, giving: 

where rc is the "critical radius" of the particle and a and bN are the same as shown in 

equations (1.4) and (1.5), respectively. Equation (1.6) is the one that will be used 

frequently in this research since the critical supersaturation (Sc) and the critical radius (rc) of 

the CCN are of greatest interest. 
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The droplet growth theory has been expanded upon since its original development 

to allow for the examination of particles which are a combination of soluble and insoluble 

materials. Junge and McLaren (1971) were the first to consider the possibility of 

calculating cloud nuclei spectra for varying soluble material content. An important 

parameter in this consideration is e, which is the fraction of soluble matter as given by 

where e can vary from 0 to 1 (e = 0 for completely insoluble). The preliminary results 

from that research indicate that a combined soluble/insoluble particle will activate as a 100% 

soluble particle as long as the soluble content of the particle was above 10% (Junge and 

McLaren, 1971). Hanel (1976) also developed an equation which was then rearranged by 

Fitzgerald et al. (1982) to obtain a relation between the equilibrium diameter of a 

hygroscopic particle and the saturation ratio of the air surrounding it. This equation was 

once again rearranged by Alofs et al. (1989). This final form is the one which shall be 

used for this research when considering mixed composition particles. The Alofs et al. 

(1989) equation is as follows: 
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For these equations, the variables stand for the following (Alofs et al., 1989): 

Sr = the saturation ratio = 1 + Sc 
Xe = the equilibrium diameter of a hygroscopic particle 
X0 = the dry diameter of the particle 
T = the absolute temperature 
R = the specific gas constant of water vapor 
Mw = the molecular weight of water 
Ms = the mean molecular weight of the soluble material 
a = the surface tension of the droplet 
ρw = the density of water 
ρ0 = the density of the particle in its dry state 
ρs = the density of the soluble material 
i = van't Hoff factor = # ions formed/ molecule of solute 

 = osmotic coefficient of the solution (<|) = 1 for dilute solutions) 
εm = the mass fraction of soluble material in the particle 
εv = the volume fraction of soluble material in the particle 

The term B is the "particle composition parameter" for dry nuclei which relates the behavior 

of particles in humid or supersaturated conditions to the composition of the particle 

(Fitzgerald et al., 1982). Note that B corresponds to bN of the Kohler Theory. Its value 

varies with Xe, mainly because of the osmotic coefficient. The values of the osmotic 

coefficient and of B as functions of Sr and Xe are discussed in Alofs et al. (1989). In 

summary: the osmotic coefficient is a function of the molality of the solution droplet. The 

value of B at the maximum Sr is called Bc. At very large values for Xe, B is called B0. 

The corresponding values of the osmotic coefficient are c and 0. Since the osmotic 

coefficient for very dilute solutions is unity, 0 = 1. Fitzgerald et al. (1982) performed 

several experiments in an attempt to determine the value of Bc. Measurements for particles 

ranging from 0.03 to 0.08 µm in radius gave a range of Bc values from 0.10 to 0.40, with 

an average value of 0.23 (Fitzgerald et al., 1982). These values can be converted to εv 

values for easier comparison using the following relation from Alofs et al. (1989) 

εv=1.587Bc (1.12) 

Note that Equation (1.12) is only true for particles whose soluble fraction consist entirely 

of ammonium sulfate (Alofs et al., 1989). Using this relation gives values for εv ranging 

from 0.1587 to 0.6348 with an average value of 0.37 for the Fitzgerald et al. (1982) data. 



12 

It also appears from these data that Bc, and therefore εv, decrease with increasing particle 

size. Alofs et al. (1989) performed a slightly different experiment in an attempt to 

determine the εv (the volume fraction of soluble material) of actual atmospheric particles 

(using the assumption that the only soluble material present is ammonium sulfate). For 

particle sizes ranging from 0.2 to 0.4 (xm in diameter, they found a mean εv value of 0.5. 

Other measurements made by Fitzgerald and Hoppel (1984) gave a mean εv of 0.46. 

Sekigawa (1983) also reported a mean value for εv of 0.5 for a particle size range of 0.05 

to 0.2 µm in diameter. Thus, it appears that most atmospheric particles consist of no more 

than 50% soluble materials. The apparent decrease in the soluble portion with increasing 

particle size which was found by Fitzgerald et al. (1982) should not greatly decrease the 

ability of the particles to form droplets since the curvature effect decreases with increasing 

particle size. This makes droplet formation easier. As long as the soluble portion remains 

above 10%, activation should still occur. Also, an average soluble fraction of 50% is 

obviously sufficient to bring about the solute effect that overcomes the Kelvin effect for 

droplet formation. 

1.7 Theory: Experimental Verification 

Assuming that an atmospheric particle is composed entirely of soluble material 

allows the use of equation (1.6). For this relation, the critical supersaturation required by a 

particle for activation is dependent upon the size and chemical composition of the particle. 

If the particle size and the supersaturation are controlled, the chemical composition of the 

particle is the only remaining variable. It is a simple matter to control the particle size using 

a differential mobility analyzer. A known, stable supersaturation can also be provided by 

the use of a continuous flow diffusion cloud chamber. In such a chamber, the small, dry 

particles activate to form much larger droplets. With the proper experimental setup, it 

should be possible to determine the critical radius (rc) and critical supersaturations (Sc) for 

actual CCN by introducing CCN into the system. The same can be done for known 



13 

materials which are suspected CCN components, such as ammonium sulfate and sodium 

chloride. By plotting rc versus Sc measured for the actual CCN particles and the known 

materials, a direct comparison of the CCN behavior can be made. Similarities and 

differences between the plots could help to determine the behavior and composition of the 

CCN. 

Perhaps the most difficult part of performing up this experiment was getting a 

source of actual atmospheric CCN particles. In this research, actual CCN were collected 

using cloud chamber apparatus which was recently built at the University of Missouri, 

Rolla (UMR) for a cooperative research project between the UMR and the Illinois State 

Water Survey. The large cloud chamber system was designed to separate out and capture 

actual CCN without any contamination from non-CCN particles. This was accomplished 

using a haze chamber, a cloud chamber, and several virtual impactors. With this 

apparatus, it was possible to capture the CCN particles on a filter. The water soluble 

portions of these particles were then extracted from the filter and injected into the air stream 

of the apparatus for this experiment. A brief description of the UMR apparatus and the 

experimental methods used will be given in the next chapter. 

1.8 Summary of Thesis Research 

The purpose of this research is to determine the chemical composition and behavior 

of cloud condensation nuclei. Chapter 2 describes the experimental setup and the methods 

used. Descriptions of cloud chamber theory and operation as well as of the UMR 

experimental apparatus are also included. Chapter 3 presents the results of the experiment. 

Chapter 4 summarizes the main points while drawing conclusions and offering 

recommendations for future work. Finally, a printout of the computer program that was 

written to control the cloud chamber as well as to collect the data from the optical particle 

counter is included in the Appendix. 
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Chapter 2 

Experimental Setup and Methods 

2.1 Introduction and Chapter Summary 

Several types of continuous flow diffusion cloud chambers have been designed 

over the years. This chapter presents the theory behind cloud chambers as well as a 

detailed description of the design chosen for this research. Also presented is a brief 

description of the experimental system at the University of Missouri, Rolla, which was 

used to capture the CCN tested in this research. Finally, the components of the system 

used for this research are discussed along with the experimental method. 

2.2 Cloud Chamber Theory and Operation 

Cloud chambers rely on diffusion to produce a continuous supersaturation 

(Twomey, 1977a). Both static and continuous flow diffusion chambers exist. Continuous 

flow diffusion (CFD) chambers expose a continuous stream (pulled through) of an aerosol 

to supersaturated conditions while allowing ample time droplet growth. On the other hand, 

static chambers only expose aerosol which naturally passes between their plates to 

supersaturated conditions. Since the CFD chamber design was chosen for this experiment, 

the static design will not be discussed. The basic apparatus for a CFD chamber is fairly 

simple. The detailed description of a typical chamber which is given in Twomey (1977a) is 

summarized here. The equations which are provided were originally developed for static 

diffusion chambers. Later work by Mahata et al. (1973) showed that the supersaturation in 

a CFD chamber will behave as in a static chamber as long as the actual centerline chamber 

air velocity is greater than a minimum value, Vc. The Mahata et al. (1973) research 

determined that this minimum velocity was necessary to prevent buoyancy-induced 

backflows near the hot plate of the chamber. These backflows would result in a thermal 

cell forming inside the cloud chamber. Vc can be calculated for a CFD using 

Vc = 0.43(Th-T c)d2 (2.1) 
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where, 
Vc = minimum centerline velocity in the chamber [cm/s] 
Th = hot plate temperature [°C] 
Tc = cold plate temperature [°C] 
d = plate spacing [cm] 

Using this equation, the Vc for the chamber used for this experiment was found to be 

1.72 cm/s. The actual center line velocity was set at 6.4 cm/s. Thus, this condition is 

satisfied and the supersaturation equations from Twomey (1977a) can be used. 

A thermal diffusion chamber achieves supersaturation by providing two wet, 

parallel plates which are held at different temperatures. These temperatures can be 

represented by Tc for the cold plate and Th for the hot plate. Air which passes through the 

chamber is continuously saturated by diffusion of water vapor from the wet surfaces. As 

the air sample flows between the plates, the local temperature, T, and the water vapor 

density become linearly proportional to the distance from the cold plate. Vapor density, pv, 

is related to the saturation vapor pressure, ps, by the ideal gas law. The relation is 

where, 
M = molecular weight of the liquid 
R = ideal gas constant 

0 = absolute temperature 

The local vapor density is therefore also linearly proportional to local temperature. This is 

represented by line ADB in Figure 2.1. The equilibrium vapor density is represented by 

the curved line ACB. The equilibrium vapor density, p s , of water at temperature 0 

follows the theoretical Clausius-Clapeyron relationship: 

where, 
Mw = molecular weight of water 
L = latent heat of condensation of water 
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Points A and B in Figure 2.1 represent the cold plate and the hot plate respectively. At the 

plate surfaces, the local and equilibrium vapor densities are equal and the relative humidity 

is 100%. Since the equilibrium vapor pressure response is parabolic instead of linear, the 

actual vapor density between the two surfaces exceeds the equilibrium value for the 

prevailing temperature. The supersaturation which is achieved is defined as the difference 

between the local and saturation vapor densities divided by the saturation vapor density. 

The supersaturation for Figure 2.1 is therefore represented by the line segment ratio 

CD/CE. Varying supersaturations are achieved by varying the temperatures of the wet 

surfaces. 

Figure 2.1: Vapor Pressure in a Thermal Diffusion Chamber 

For most cloud chamber designs, the two plates are spaced 1 cm apart and are kept 

at a temperature difference in the range of 2° to 8° C (Twomey, 1977a). An equation 

relating the supersaturation achieved to the temperature difference of the plates was derived 
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for a horizontal plate setup by Twomey (1977a) considering the steady-state diffusion of 

water vapor. The final equation is as follows: 

where, 
z = height from bottom (cold) plate in chamber 
h = height of top (hot) plate from bottom plate 
Mw = molecular weight of water 
L = latent heat of condensation 
R = ideal gas constant 
Θ1 = temperature of bottom (cold) plate (z = 0) in K 
Θ2 = temperature of the top (hot) plate (z = h) in K 

0 = mean absolute temperature of the two plates 

This equation gives the maximum supersaturation attained in the chamber. A more detailed 

discussion of the derivation of this formula is presented in the work by Twomey (1977a). 

Figure 2.2 shows a plot of the theoretical maximum supersaturation attained within a given 

CFD chamber as a function of the temperature difference as calculated by Equation (2.4). 

The maximum supersaturation occurs midway (h/2) between the two plates, with the 

supersaturation dropping off parabolically towards the plate surfaces (Twomey, 1977a). 

This difference in supersaturations across the chamber is usually ignored since the velocity 

profile between the plates is also parabolic, thus allowing more time for droplet growth in 

the regions of lesser supersaturations (Williams et al., 1992). For this experiment, the 

particles were collected midway between the plates in an attempt to sample only those 

particles which have been exposed to the maximum supersaturation, thereby reducing any 

errors. Equation (2.4) is used for this experiment to calculate the maximum 

supersaturations based on the temperature difference but for a vertical plate alignment. 

Since a small, visually aligned sampling tube inserted between the cloud chamber plates 

must be used to obtain data with this experiment, the parabolic drop in supersaturation 

across the diameter of the sampling tube could cause a small error. In order to reduce error 
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an average supersaturation over the tube will be used instead of the maximum value. The 

chamber used has a spacing of h = 1 cm, so Smax occurs at z = 0.5 cm. The sampling 

tube inner diameter is 0.25 cm. The inner edge of the aluminum sampling tube is located at 

z = 0.5 - (0.25/2) = 0.375 cm. An average value for the supersaturation across the area of 

the tube can be calculated to be 97% of Smax. The conversion is therefore 

SaVg = 0.97Smax. 

Figure 2.2: Supersaturation In a Thermal Diffusion Chamber as a Function of 
Temperature Difference (as calculated by Equation (2.2)) 

2.2.1 Selected Cloud Chamber Design 

The design which was chosen for this experiment is a continuous flow diffusion 

(CFD) chamber with vertical plate orientation (Figure 2.3). The two vertical surfaces are 

provided by two aluminum boxes. These boxes are set parallel to one another 1 cm apart. 

Each box is 1.22 meters long, 15 cm wide, and 5 cm deep. They both provide a wetting 



Figure 2.3: Water Flow Diagram for Temperature Control of the Cold Plate of the CFD Chamber. 
(A separate, identical system exists for the temperature control of the hot plate. 
Heavy lines indicate water system tubing, while dashed lines indicate electrical 

connections between instruments.) 



23 

surface which is 1.20 meters long and 13 cm wide. The 1 cm gaps along the sides of the 

chamber are sealed with O-ring tubing to prevent leaks. After construction, the chamber 

was leak tested to ensure that no contamination of the samples or the data would occur. 

The two inner surfaces of the chamber are kept wet by running deionized water down 

wicking paper which is held to the chamber surfaces. This paper is kept wet at all times by 

a gravity feed of deionized water. The excess water is pumped from the bottom of the 

chamber, filtered, and fed back into the wetting system. 

2.2.2 Temperature Control 

The temperatures of the two cloud chamber surfaces are regulated by flowing water 

at individually controlled temperatures through the aluminum boxes. The aluminum 

sheeting that makes up the boxes quickly equilibrates to the temperature of the water. The 

temperature of the water itself is controlled by the computer program which was written to 

control all aspects of the cloud chamber operation and data collection. To set the surface 

temperatures, the operator inputs the desired values into the computer. The computer then 

sends signals to devices which heat and cool the water as necessary to maintain these set 

temperatures. 

Figure 2.3 shows a diagram of the water flow necessary for the temperature control 

of a single chamber surface. The solid bold lines represent the tubing for the water flow. 

The dashed lines indicate connections between electronic components. Two identical 

systems exist for the cloud chamber, one for the hot plate and one for the cold plate. As 

shown in the diagram, a thermistor is located in the reservoir which reads the temperature 

of the water and sends a signal back to the computer via the Keithley Metrabyte EXP-GP 

access board and the Keithley Metrabyte DAS-8PGA analog input board. If this 

temperature is below the set temperature, the computer will send 5 volts to the solid state 

relay which then turns on the electric heating element. This heating element is a standard 

1500W, 120V electric water heater element. The water that is pumped past the heater is 
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continually heated until the temperature in the reservoir is above the set point. Once this 

occurs, the computer stops sending a voltage to the solid state relay which turns off the 

heating element. Not all of the water in the system is pumped past the heating element. 

Only a small portion (about 25%) of the water flow must pass the heater to keep the water 

at the set temperature. The exact amount of water that is directed past the heater is 

controlled by a hand valve. The rest passes through one of the boxes of the cloud 

chamber. The water enters from the bottom of the aluminum box and exits out the top. 

This ensures that the box remains full of water at all times. Once the water has passed 

through the cloud chamber, it is cooled by a water cooler. The cooler is necessary for two 

reasons. First, it compensates for the extra heat which is put into the system by the water 

pump. Second, it dampens the response of the system to the heater input. In other words, 

the temperature slowly rises to the desired level instead of shooting past it. Even with this 

dampening, the temperature difference of the chamber does still fluctuate approximately 

0.1 °C after it has equilibrated. 

2.2.3 Preventing Transient Supersaturations 

The development of Equation (2.4) assumed fairly ideal conditions for the operation 

of a CFD cloud chamber. A theoretical analysis of non-steady state supersaturation 

distributions in a CFD chamber by Fitzgerald (1970) showed that transient supersaturations 

can occur near the inlet of a chamber. These transient supersaturations can occur near the 

hot plate if the incoming sample air is saturated at a temperature lower than the hot plate. 

Fitzgerald's (1970) calculations indicate that short lived supersaturation peaks which are 

several times greater than the maximum steady-state supersaturation are possible. This 

occurs because the diffusivity of water vapor in air is greater than the thermal diffusivity of 

air (Fitzgerald, 1970). As a result, the water vapor density reaches its linear steady-state 

distribution faster than the temperature can. Thus, the temperature is colder than it should 

be at that vapor density. This results in a higher humidity (i.e., a supersaturation). Saxena 
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et al. (1970) confirmed Fitzgerald's findings. This deviation could result in considerable 

error when taking data with a CFD cloud chamber. The transient super-saturations would 

result in the activation of particles at lower than expected supersaturation settings, thus 

biasing the data. 

In order to prevent experimental errors due to transient supersaturations for this 

experiment, the typical cloud chamber design was modified. Since the transient 

supersaturations occur when the air sample enters the chamber at a temperature below the 

hot plate temperature, raising the sample air temperature to the hot plate temperature should 

remove the problem. It is necessary to raise the air temperature before it contacts wet 

surfaces in the cloud chamber. Mahata et al. (1973) determined that this could be 

accomplished by providing an initial length of the hot plate which is dry. This was 

provided by covering a portion of the wicking paper on the hot plate at the entrance of the 

chamber with aluminum foil. The foil traps the moisture from the wicking paper between 

itself and the hot plate while letting heat from the hot plate pass through it into the sample 

air. The necessary length of aluminum foil required was calculated based on the time 

needed for temperature equilibration. The sample air velocity was known, and the air 

temperature and hot plate temperatures were assumed to be 22 °C and 30 °C, respectively 

(worst case conditions). The calculations indicated that the aluminum foil must extend 

15 cm down the length of the chamber from the inlet. This length also satisfied the 

requirement developed by Mahata et al. (1973) of a dry length greater than or equal to 15 

times the plate spacing of the chamber (15 cm for this chamber). The presence of the foil 

somewhat reduces the amount of time droplets have to grow in the chamber but not enough 

to prevent their growth to an optically countable size. 

2.3 CCN Capture at UMR 

Since the research presented here was performed under the direction of Dr. 

Williams, a UMR collaborator, CCN samples collected by the UMR setup were made 
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available for study. The experimental setup at UMR is unique due to its purpose and scale. 

Previous studies of CCN chemical composition considered all CCN simultaneously. The 

system at UMR and its mobile cousin at the Illinois State Water Survey (ISWS) were 

designed to collect large (0.1 < dp < 0.5 urn) and small (dp < 0.1 µm) CCN separately. 

This is necessary to get an accurate determination of CCN chemistry since large CCN are 

far less numerous than the small CCN but make up a majority of the total mass. The 

systems at UMR and the ISWS were also designed to collect much larger sample masses 

than ever before in order to facilitate sample analysis. 

2.3.1 Experimental Setup 

The CCN collection system at UMR consists of three virtual impactors, two CFD 

cloud chambers, and three filters (Williams et al., 1992). The virtual impactors are used to 

separate particles in the air sample according to their size. The particles are separated by 

their inertia, with the smaller particles passing on through the "fine flow" and the larger 

particles being removed in the "coarse flow". For the UMR system, samples of 

atmospheric air are initially passed through an impactor which allows only particles smaller 

than 0.5 µm to pass (Williams et al., 1992). This is done since this experiment is mainly 

interested in CCN smaller than this size. Allowing larger particles to enter the system 

would increase the chances of the small CCN sample being contaminated by the presence 

of the much larger atmospheric particles. The particles smaller than 0.5 µm are then passed 

through a large haze chamber, which is a CFD chamber held at 100% Relative Humidity. 

Inside the haze chamber, hygroscopic particles in the air stream grow to become 

droplets. The equilibrium size (xo) of these droplets at 100 % RH depends only on the Sc 

of the particle (Laktionov, 1972; Williams et al., 1992). The relation developed by 

Laktionov is xo = 0.08/Sc , with xo in µm and Sc in percent. The humidified air is then 

passed through a second virtual impactor which removes the newly formed droplets which 

are larger than 0.5 µm in diameter. By the Laktionov relation, the Sc corresponding to 
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xo = 0.5 µm is 0.16% (Williams et al., 1992). Thus for hygroscopic particles, only 

particles with Sc > 0.16% will pass through the fine flow of the second impactor. The 

droplets which enter the coarse flow are captured on either a quartz or a glass filter. The 

sample on this filter represents the large CCN. 

The droplets which are smaller than 0.5 urn along with the particles which were not 

nucleated are then passed through a large CFD cloud chamber which is kept at a 

supersaturation of 0.95% (Williams et al., 1992). This supersaturation is approximately 

equal to the maximum supersaturation level of 1% found in naturally occurring clouds. 

Inside of the CFD chamber, all of the particles with an Sc < 0.95% will activate to form 

droplets. Particles with Sc > 0.95% will most likely be unable to activate under natural 

conditions and thus can be ignored. The supersaturated air stream is then passed through a 

third impactor with a cut-point of 1.0 urn. This impactor removes the droplets which have 

grown to a size larger than 1.0 µm in diameter. These droplets are collected on a filter and 

represent the small CCN (Williams et al., 1992). The droplets smaller than 1.0 µm and the 

particles which do not activate pass out of the system through the pump. After sampling, 

the water remaining on each filter is allowed to dry, leaving behind the soluble and 

insoluble portions of the CCN. 

2.3.2 CCN Sample Extraction 

Before the CCN from the UMR research could be used for this study, it had to first 

be extracted from the filters. Samples were provided on two types of filters. Early 

samples were collected on 8.5 by 11 inch fiberglass filters, while later samples were 

collected on round quartz filters which were 47 mm in diameter. The reason for the filter 

switch was to allow for a more concentrated sample to be collected. This made extraction 

easier. The two different filter types each required their own method of CCN sample 

extraction. For the glass filters, their large size posed the greatest problem. This was 

overcome by carefully folding the filters and placing them in a small beaker containing 
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150 ml of double-distilled (DD) water. The filters were then agitated, while still in the DD 

water, for 72 hours in order to dissolve as much of the CCN sample as possible. The 

liquid in the beaker was then removed and pulled through a 0.4 µm millipore filter. The 

millipore filter was used to ensure that no contamination occurred from glass fibers that 

might have broken off of the filter. 

The small size of the quartz filters allowed for the use of a different method of 

extraction. First, a clean 47 mm nucleopore filter was placed in a filter holder. The loaded 

quartz filter was then placed on top of this filter with the sample side up. Then another 

clean nucleopore filter was placed on top. The filter holder was then sealed, sandwiching 

the loaded filter between the two nuclepore filters. The purpose of the nucleopore filters is 

to prevent particulate material from entering and contaminating the sample. After the filters 

were positioned, a 20 cc syringe containing 20 ml of deionized (DI) water was attached to 

the inlet of the filter holder. A collection bottle was then attached to the outlet of the filter 

holder. Once the bottle was in place, 10 ml of the DI water was injected through the filter. 

Of this 10 ml, usually only 5 ml passed through the filter. The other 5 ml remained in the 

filter. Then the entire apparatus was placed in an ultrasonicator for 16 minutes (the 

maximum retention time of the device). Half way through the 16 minutes, another 5 ml of 

DI water was injected from the syringe through the filter. At the end of the sonication 

period, the remaining 5 ml were injected. Then, in an attempt to extract as much water as 

possible from the filter, a small amount of air was passed through the filter using the 

syringe. Finally, another 20 ml of DI water was passed through the filter holder in order to 

remove any remaining soluble portions of the CCN sample. Both of these extraction 

methods liberate only the soluble portion of the CCN samples, leaving the insoluble 

portions on the filters. Any attempt, however, to remove the insoluble portion of the CCN 

would have required great effort and may have resulted in contamination of the sample. An 

accurate representation of the soluble portion of the CCN should still have been attained 

with the present methods. Thus, the only direct results of this research are for the soluble 
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portion of the CCN. All of the CCN sample extractions for this experiment were 

performed by Jane Rothert of the ISWS. 

2.4 CCN Particle Generation 

To perform this experiment, it is necessary to provide a continuous stream of dry 

CCN particles. Since the CCN samples are in solution after they are extracted from the 

filters, a device is required which can produce dry particles from a dilute solution. There 

are many such instruments on the market. The one which was chosen for this experiment 

is the TSI Model 3460 Tri-Jet Particle Generator. This device atomizes a stream of any 

solution placed in one of its three atomizer jars using a high-velocity jet. This produces 

small droplets of solution which are drawn out of the atomizer jar by a pump. These 

droplets are then dried with a desiccant tube style diffusion dryer. Removing the water 

from the droplets leaves behind the soluble, nonvolatile materials that were in the solution, 

resulting in the production of a polydispersion of dry particles. This instrument was also 

used to produce particles of known composition, such as ammonium sulfate. This was 

easily accomplished by placing a solution made from deionized water and a small amount 

of the desired salt in one of the generator's solution containers. Figure 2.4 shows a 

diagram of the orientation of this instrument as well as all of the instruments discussed in 

sections 2.5 through 2.7. Refer to this figure for assistance in understanding the 

experimental setup as discussed throughout Chapter 2. 

2.5 Particle Size Selection 

As stated in section 1.7 , it is necessary to know the size of the dry particles which 

are nucleated at a given supersaturation to be able to examine their behavior. Therefore, a 

method of selecting a monodispersion of a known size from the polydispersion produced 

by the particle generator is required. To do this, the polydispersed air stream is passed 

through a Differential Mobility Analyzer (DMA), also known as a Classifier. This 



Figure 2.4: Airflow Schematic for Experimental Apparatus 
(Arrows indicate direction of flow) 
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instrument separates particles according to their mobility in an electric field. First, the 

particles are passed through a Kr-85 aerosol neutralizer, which establishes a bipolar-

equilibrium charge level on the particles. The particles then enter the sample stream of the 

Classifier. The electric field which is produced by the voltage across the Classifier attracts 

the positively charged particles, causing them to pass through a sheath of filtered air toward 

a collection slit. Only particles of a certain mobility pass through the slit. Particles with too 

large a mobility (smaller size) do not reach the slit as they are impacted on a center 

electrode. Particles with a mobility less than that which is required by the voltage setting 

will not be drawn far enough through the sheath air to be collected. The selected 

monodisperse size is easily changed by changing the voltage across the Classifier. The 

Classifier which was used for this experiment was built by UMR based on the design of 

the TSI Model 3071 Electrostatic Classifier. 

The sizes which were most often selected for the Classifier for this experiment 

ranged from 0.01 (the lower limit of the Classifier) to 0.05 um in diameter. It should be 

noted that the particle diameters selected for the examination of the CCN behavior were not 

necessarily equal to the original CCN dry diameters. This is not a problem, however, since 

this research is concerned with determining the CCN material and its behavior rather than 

actual particle size. 

2.6 CCN Activation in the CFD Cloud Chamber 

After a monodispersion is selected from the CCN particles, the sample air can be 

passed through the cloud chamber. The sample air flow rate of 11pm which is produced 

by the Classifier is combined with 41pm of filtered air just before it enters the top of the 

cloud chamber. This is done so that the cloud chamber flow rate can be set at 5 1pm. The 

flow rate of the system was originally controlled by a Kurz Model 251 Constant Flow Air 

Sampler which was in turn controlled by the computer program. Due to mechanical 

difficulties with this instrument, later samples were collected using a simple manual valve 
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to ensure a flow rate of 5 1pm. This flow rate resulted in a chamber velocity of 6.4 cm/s. 

The total chamber length from the inlet to the inlet of the sampling tube was 110 cm. Thus, 

there was a total residence time for the air in the chamber of 17.2 seconds. The droplets 

were not exposed to supersaturated conditions for the entire time, however. Air entering 

the chamber initially spent 2.3 seconds in the aluminum foil region in order to prevent 

transient supersaturations. Once past this region, a supersaturation could to develop. It did 

not, however, develop instantaneously. The time required was equal to the square of the 

chamber plate spacing (1 cm for this chamber) divided by the diffusion coefficient of water 

vapor at the operating temperature (0.25 cm2/s for this chamber). Thus, for this chamber, 

4 seconds were required for supersaturation development. Therefore, 10.9 seconds 

remained for the droplets to form and grow on the CCN inside the chamber. For this 

study, the supersaturation of the cloud chamber ranged from around 0.35% to 0.55%. 

These settings were more than sufficient to allow for activation of the captured CCN 

particles. 

2.7 Droplet Data Collection 

After the sample air had passed through the cloud chamber, it was necessary to 

determine whether or not droplets formed on the CCN particles. To do this, a device 

which could count and size the droplets was needed. The Particle Measuring Systems 

(PMS) Model ASASP-X optical particle counter (OPC) was selected to perform this task. 

This OPC uses a He-Ne laser to size and count particles based on their light scattering 

properties. This particular model of the PMS OPC has 32 size channels ranging from 

0.09 µm to 3.0 µm in diameter. The minimum size range of the OPC does prevent direct 

counting of the CCN particles in their dry state. Since the main area of concern is the 

critical supersaturation which results in the activation of the CCN particles and not the 

number or size of the dry particles themselves, this restriction presents only a minor 

problem. 
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The OPC was set up so as to collect the sample at a point inside of the cloud 

chamber just above the chamber exit. This was done by inserting a piece of 1/8 inch 

aluminum tubing through a fitting in the bottom of the chamber. The inlet of the OPC was 

attached to the external end of the aluminum tube. The tube extended 10 cm into the 

chamber and was positioned so that its opening was in the center of the gap between the 

two plates. This provided sampling at the point of maximum supersaturation. A "T" fitting 

was also attached to the aluminum tube. This was done so that a tube could be joined to the 

OPC from a point prior to the chamber inlet. This tube, which shall be referred to as the 

"background" tube, allows for data collection of the sample air without activation of the 

particles. The flow of sample air through the background tube is controlled by a solanoid 

valve which is in turn controlled by the computer. The valve is only opened during the 

times that the cloud chamber temperatures are being equilibrated. During droplet sampling 

the valve is closed. This sampling of the background air also has the added benefit of 

keeping the sampling tube dry and clear of obstructions. The operation of the OPC was 

controlled by the computer program which was written for this project. The data collected 

by the OPC were sent directly to the computer for real-time viewing and storage. 

2.7.1 Droplet Identification 

In order to obtain useful data from the OPC, a reliable method was needed to 

determine whether droplets had formed on the CCN particles. The monodisperse sizes 

selected from the polydispersions of CCN particles were all smaller than the lower limit of 

the OPC. This prevented direct measurements of the CCN particles in the background air 

(CCN laden air not passed through the CFD chamber). Since the CCN particles were the 

only ones expected in the background air, zeros in all the channels of the OPC was 

reasoned to be correct. The presence of any particles in the background air which could be 

counted by the OPC would have been an indication of contamination of the sample by a 

leak. Counting the droplets in air from the CFD chamber would indicate the presence of 
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activated CCN. The sample air had a residence time of 10.9 seconds in the supersaturated 

region of the CFD chamber. During this time period, CCN particles grow from a few 

hundredths of a micrometer to several micrometers in diameter. These relatively large 

droplets were easily counted by the OPC and indicated their presence by showing counts in 

the upper eight channels. Counts in these channels, which correspond to a size range of 

1.21 urn to 3.0 µm, could only be produced by the presence of droplets formed on the 

CCN particles. Thus, the identification of droplet formation is a simple matter. In 

summary, first the background particle stream is sampled by the OPC to check for any 

contamination. If none is found, the air from the CFD chamber is sampled, and the 

presence of counts in the upper channels of the OPC for the supersaturated air sample 

indicates activation has occurred. 

2.7.2 Droplet Growth 

In order to obtain accurate data, the droplets exiting the CFD chamber had to be 

large enough for the OPC to differentiate between them and any particles which might not 

have been activated at the supersaturation present in the chamber. To do this, the final sizes 

of the droplets formed for each of the supersaturations studied were calculated using the 

droplet growth equation. Once a particle is activated, droplet growth is driven by the 

difference between the environmental vapor pressure and the equilibrium vapor pressure. 

The equilibrium value tends to decrease with increasing droplet radius, which increases the 

condensation rate. All of these factors are considered in the droplet growth equation 

(Fletcher, 1969), which is 

where, 
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and, 

r = radius of the droplet 
dr/dt = growth rate of the droplet 
S = supersaturation 
a = curvature term (see Equation (1.4)) 
bN = solute term (see Equation (1.5)) 
D = diffusion coefficient of water vapor 
L = latent heat of vaporization of water (per gram) 
Mo = molecular weight of water 
R = ideal gas constant 
T = absolute temperature 
pv = density of water vapor in the environment 
PL = density of liquid water 
K = thermal conductivity of air 

The variables in Equation (2.5) can be separated and integrated analytically. An 

easier way to use this relation is to simplify the equation by dropping the solute term, 

(bN/r3). Since the nucleus of the droplet being considered is activated, the curvature term is 

already dominant over the solute term (Twomey, 1977a). Thus, dropping the solute term 

introduces little error (less than 1%). It is also often possible to drop the curvature term, 

(a/r), without introducing serious error (less than 1 %). This is true as long as | a/r | ≤ 10-3, 

which holds for droplets 1 µm or larger (Twomey, 1977a). With these simplifications, 

Equation (2.5) becomes 

which can be integrated to yield the relation 

Equation (2.8) was used to calculate the size of the droplets formed in the CFD chamber at 

the four supersaturations at which it was operated. The growth time, t, for all of the 

sampling runs was 10.9 seconds. The value of G, calculated for an average temperature of 

27 °C, was 1.372 x 10-6 cm2/s. The droplet diameters which were obtained are provided 

in Table 2.1. 
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Table 2.1: Drop Diameters at the Exit of the CFD Chamber 

∆T [°C] Supersaturation [%] Drop diameter [um] 
3.2 
3.5 
3.75 
4.0 

0.354 
0.423 
0.485 
0.550 

6.51 
7.11 
7.62 
8.11 

These calculations indicate that the droplets will grow to diameters several times 

larger than the OPC upper limit of 3.0 µm. These are the diameters reached prior to the 

droplets entering the sampling tube. The sampling tube, which is 25 cm long (10 cm of 

which is inside the CFD chamber), is not kept at a supersaturation. This results in a 

decrease in supersaturation in the air inside the tube. Once the relative humidity drops 

below 100% (0% supersaturation), the droplets begin to shrink due to evaporation. The 

flow rate in the tube was 1.5 cm3/s. This resulted in a residence time of 0.85 seconds for 

the sample tube. During this time, the evaporation brought the droplets within the upper 

end of the OPC range for all of the samples tested. The reduction in size was not, 

however, sufficient to cause problems with determining which counts were dry particles 

and which were droplets. This shows that particles registered in the upper OPC channels 

are activated droplets and not non-activated particles. Since the supersaturation at which 

droplet formation occurred was the only necessary data, the droplet size fluctuations due to 

partial evaporation in the sampling tube posed no problems. 

2.8 Overall Air Flow Setup 

A schematic of the overall airflow of the system is shown in Figure 2.4. The CCN 

particles were produced by the particle generator. A monodispersion of particles of a 

known diameter were then selected by the Classifier. This sample of particles was then 

either passed through the CFD chamber or bypassed directly to the OPC for background 

data collection. The OPC then sent the data to the computer for viewing and storage. The 
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flow of the air through the system was controlled by two pumps, a solanoid valve, an 

electronic flow controller (later replaced by a manual valve), and the computer program. 

2.9 Critical Supersaturation Determination Method 

As mentioned previously, the critical supersaturation (Sc) of the CCN particles 

corresponding to a given size is the determining characteristic for the comparison of the 

particles' behavior to that of particles of known composition. One possible way to use the 

experimental apparatus to find the Sc for a known rc would have been to hold the particle 

size at a single value while raising the supersaturation in the cloud chamber. This would 

have been repeated until activation occurred and droplets were counted. This, however, is 

not a practical method since the CFD chamber temperatures require approximately 20 

minutes to come to equilibrium after each change in the desired temperature difference. An 

alternative method was to hold the CFD chamber at a constant supersaturation while 

increasing the size of particles passing through the chamber. The response of the Classifier 

to a change in voltage is almost immediate. Thus, it was possible to increase the voltage 

(i.e., increase the particle size) and wait approximately 1 minute to see if counts appeared 

in the upper channel of the OPC data. This process was repeated until droplets appeared. 

The particle radius corresponding to the voltage across the classifier was then recorded as 

the value of rc and the supersaturation in the CFD chamber as its corresponding Sc. This 

process was performed for all of the CCN samples and known material samples at four 

different supersaturations. Results from these experiments are discussed in Chapter 3. 
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Chapter 3 

Results and Discussion 

3.1 Introduction and Chapter Summary 

This section presents measurements of the critical supersaturation versus critical 

radius for three actual CCN samples as well as laboratory-generated aerosols of NaCl and 

(NH4)2SO4 The dry (unactivated) CCN sizes corresponding to the voltage settings of the 

Classifier were determined. The reproducibility of the CCN data was confirmed, and the 

critical supersaturation and radius of the CCN were compared to those of NaCl and 

(NH4)2SO4. These data were then used to calculate Ω, the number of ions per unit volume 

formed by dissolution of the CCN in the activated droplets. The value of Ω depends only 

upon the composition of the dry particle material. The Ω values obtained for the CCN 

samples were compared to the Ω values corresponding to NaCl and (NH4)2SO4. This 

comparison pointed to ammonium sulfate as the component of the large CCN samples 

which controlled the activation characteristics of the particles. The results of preliminary 

chemical analyses of the CCN samples which were tested are also presented. These 

analyses indicated that the large CCN samples contained 63.3 % ammonium sulfate, 

32.2 % organic compounds, and 4 % elemental carbon. These results were used to 

calculate Ω for the soluble organics present in the CCN samples. The value of the Ω term 

for the organics indicated that these compounds are significantly less active than ammonium 

sulfate. 

3.2 Verification of Operation 

In order to ensure correct experimental results, it was first necessary to verify the 

operation of key pieces of equipment in the system. The instruments of greatest concern 

were the Classifier and the CFD chamber. Deviations in the performance of either of these 

pieces of equipment would have resulted in errors in the critical supersaturation versus 

critical radius data sets. Therefore, it was necessary to check their calibration. The 
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computer program which controlled the temperature difference of the CFD chamber was 

written to prevent deviations of more than 0.1 °C from the temperature set for either plate. 

If both plates deviated from their set temperatures by this amount in opposite directions (an 

error of 0.2 °C), the error in the supersaturation obtained in the CFD chamber would be 

approximately 9% (using Equation (2.4)). Observations of the individual plate 

temperatures during the operation of the CFD chamber showed that after equilibration the 

temperature deviation seldom reached 0.1 °C. The sum of the two deviations usually 

remained at or below 0.1 °C. This deviation would result in an error in the supersaturation 

of approximately 4.7% of the total value. Thus, a supersaturation of 0.5 % would have 

had an error of plus or minus 0.0235 %. 

The temperature differences between the plates of the cloud chamber for this 

experiment are presented in Table 3.1 along with their corresponding supersaturations. 

The maximum supersaturations were calculated using Equation (2.4). The "averaged" 

supersaturations, which were used in later calculations, were found using the relation 

Savg = 0.97Smax (as discussed in section 2.2). 

Table 3.1: CFD Chamber Supersaturation Settings 

∆T [ºC] Smax [%] Savg [%] 
3.2 0.365 0.354 
3.5 0.436 0.423 
3.75 0.500 0.485 
4.0 0.567 0.550 

3.2.1 Classifier Calibration 

The Classifier, which was provided by UMR, came with a calibration data set. 

Initially, this calibration was assumed to be correct. However, preliminary runs of the 

apparatus showed a slight deviation from expected particle sizes. Therefore, it was 

necessary to perform a second calibration linking Classifier voltage to particle size. This 

was done using the particle generator, the CFD chamber (already calibrated) and the OPC. 
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The particle generator was used to produce dry particles consisting of pure sodium 

chloride. These particles passed through the uncalibrated Classifier (producing a 

monodisperse aerosol of unknown size) before continuing on to the cloud chamber. The 

cloud chamber was set at one of four known supersaturations (Table 3.1). The voltage 

across the Classifier was then increased slowly until droplets were observed by the OPC, 

indicating that the critical radius (corresponding to the critical supersaturation present) had 

been reached. The procedure was repeated at the same four supersaturations (Table 3.1) 

for ammonium sulfate particles as well. The sodium chloride and ammonium sulfate tests 

provided a data set of eight points comparing the Classifier voltage to the critical 

supersaturation. Linking the critical supersaturation to the critical radius allows the 

calibration between the Classifier voltage and particle size to be completed. 

Since the composition of the particles and the supersaturation were known, it was 

possible to use activation theory in reverse to calculate the radius of the dry particle. First, 

Equation (1.6) was rearranged to solve for bN, giving 

where all variables are as given for Equation (1.6). The bN term can also be given by 

Equation (1.5). This allowed the right-hand portions of Equations (3.1) and (1.5) to be set 

equal. 

As before, the term mN is equal to the mass of the nucleus multiplied by the molecular 

weight of water and divided by the molecular weight of the nucleus material. All variables 

are known for Equation (3.2) except for the mass of the nucleus. Therefore, by inserting 

all known variables, the mass of the dry nucleus particles can be found. Based on the 

assumption of spherical particles and the known composition and densities of the particles, 

it is a simple matter to calculate the radii of the particles. 
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Since the activation theory was used in the calibration, agreement between the 

sodium chloride and ammonium sulfate data for this experiment and the data from previous 

observations by Twomey (1977a) is ensured. The radii that were calculated for the sodium 

chloride and ammonium sulfate particles at the four supersaturations are presented in Table 

3.2. The Classifier voltages that correspond to these particle radii are given in Table 3.3. 

A regression was performed on this data set (Table 3.3) using the computer program SPSS 

in order to obtain an equation to convert from the Classifier voltage to the actual dry particle 

diameter for particles of unknown composition (note that the diameter and not the radius is 

desired). The relation that was obtained is 

Dry Diameter = 0.011746*ln(voltage) - 0.008435 (3.3) 

The linear correlation coefficient for this fit is R2 = 0.94429. This indicates a good fit 

between the equation and the data. A plot of Equation (3.3) along with the data from 

Table 3.3 is presented in Figure 3.1. This equation was used throughout the remaining 

experiments to link observed classifier voltage to particle size. 

Table 3.2: Classifier Calibration Particle Radii 

∆T [°C] Savg [%] NaCl rc [um] (NH4)2SO4 rc [µm] 
3.2 0.354 0.0218 0.0267 
3.5 0.423 0.0193 0.0237 
3.75 0.485 0.0176 0.0216 
4.0 0.550 0.0162 0.0199 

Table 3.3: Particle Radius vs. Voltage for Classifier Calibration 

Particle Radius [µm] Voltage Setting 
0.0162 37 
0.0176 45 
0.0193 50 
0.0199 50 
0.0216 82 
0.0218 82 
0.0237 142 
0.0267 170 
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Figure 3.1: Calibration Curve: Particle Diameter vs Classifier Voltage Setting 
(The straight line represents the equation relating the 
voltage and the diameter which was developed from the data.) 

3.3 Establishing Classifier Calibration 

The experimental apparatus for this experiment proved to be very sensitive to any 

changes, whether intentional or accidental, in the air flow rates. This was especially true 

for the Classifier. Even slight changes in either the sheath air or sample air flow rates 

resulted in the Classifier selecting a particle size seemingly inconsistent with the voltage 

setting. Therefore, it was necessary to devise a method to verify the flow rates prior to 

each CCN test. This was done by passing sodium chloride particles through the CFD 

chamber with the plates held at a 4 °C temperature difference. The critical size for sodium 

chloride particles at this supersaturation was known to correspond to a Classifier setting of 

37 volts. Therefore, droplet formation at 37 volts verified proper operation. Once the 
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Classifier calibration was checked, the supersaturation in the CFD chamber could be 

adjusted to the desired value for testing. 

3.4 CCN Experimental Results 

All of the samples provided by UMR were collected in Rolla, Missouri. Thus, the 

samples all represent inland CCN. Three separate CCN samples were collected by UMR 

for this experiment. The first two samples, which shall be referred to as CCN-1 and CCN-

2, were collected on the 8.5 by 11 inch fiberglass filters that were discussed in section 

2.3.2. The third sample, CCN-3, was collected on a 47 mm quartz filter. The reason for 

the two different filter types is that samples CCN-1 and CCN-2 were collected during 

preliminary runs of the CFD chamber system. Sample CCN-3 was collected after the 

system was altered. Another difference between sample CCN-3 and the two earlier 

samples is the CCN cutoff size. The size cutoff for samples CCN-1 and CCN-2 was set to 

allow for the capture of all CCN particles smaller than 0.5 µm in diameter. These samples, 

therefore, represent "total" CCN [both large (0.1 > dp > 0.5 µm) and small (dp < 0.1 µm) 

CCN]. Sample CCN-3, however, was placed so as to collect only the coarse flow from 

the second impactor in the UMR system. This results in a sample of large CCN 

(0.1 < dp < 0.5 µm) only. 

For each of the filters, the sampling time was 24 hours. The total mass loadings for 

samples CCN-1, CCN-2, and CCN-3 were 4.6 mg, 2.7 mg, and 11.12 mg respectively. 

The soluble portion of each sample was extracted by the methods discussed in section 

2.3.2 and then placed in the particle generator. The voltages corresponding to droplet 

formation at each of the four supersaturations listed in Table 3.1 were then determined. In 

order to ensure reproducibility of results, droplet formation for each CCN sample was 

examined at least twice for each supersaturation. Droplet formation was always observed 

at the same voltage for each individual data point, indicating the results were highly 

reproducible. Table 3.4 gives the observed voltages corresponding to the CFD 
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supersaturations settings. The dry particle diameters (critical diameters) which were 

calculated from these voltages using Equation (3.3) are presented in Table 3.5. Note that a 

"critical diameter" is simply twice the value of a "critical radius", rc, as discussed in 

section 1.6. 

Table 3.4: CCN Sample Classifier Voltage Settings 

Classifier Voltage Settings 
Sc [%] CCN-1 CCN-2 CCN-3 
0.354 142 170 180 
0.423 130 120 130 
0.485 90 100 110 
0.550 50 50 60 

Table 3.5: CCN Critical Diameters (Calculated from Table 3.4 values) 

Critical Diameter [µm] * 
Sc [%] CCN-1 CCN-2 CCN-3 
0.354 0.0498 0.0519 0.0527 
0.423 0.0487 0.0478 0.0487 
0.485 0.0444 0.0457 0.0468 
0.550 0.0375 0.0375 0.0397 

* The minimum dry particle size for nucleation at a certain Sc. 

3.5 Comparison With Behavior of Suspected CCN Materials 

As previously discussed, ammonium sulfate and sodium chloride have long been 

suspected of making up the majority of the CCN material. Therefore, these were the 

known materials that were examined with the experimental apparatus. The data collected 

for ammonium sulfate and sodium chloride provided a basis for comparison for the actual 

CCN data which were collected. Two separate methods of comparison were used in an 

attempt to determine which of the two suspected materials was responsible for the 

activation characteristics of the CCN samples. The first method involves a graphical 
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comparison of the data sets. The second method, which will be presented later in this 

chapter, involves a numerical comparison. 

3.5.1 Graphical Comparison 

The data collected in this experiment were plotted in terms of dry particle radius 

versus the critical supersaturation required for droplet growth. A plot of this type allowed 

for easy comparison of the behavior of two or more materials in a supersaturated 

environment. Twomey (1977a) developed such a plot for sodium chloride and ammonium 

sulfate. A similar plot is presented in Figure 3.2. The sodium chloride and ammonium 

sulfate data collected for this experiment were also plotted on this graph in order to 

establish agreement between the two. Since the data did agree, Twomey's curves for 

sodium chloride and ammonium sulfate were used as the basis for the CCN behavioral 

comparison. 

In order for the CCN data to be plotted on the same graph as the Twomey 

ammonium sulfate and sodium chloride curves, the x-axis of the curves had be be changed 

to dry particle diameter. Once this was done, the values from Table 3.5 for each individual 

CCN sample were plotted along with the two Twomey curves. The resulting plots for 

samples CCN-1, CCN-2, and CCN-3 are presented in Figure 3.3, Figure 3.4, and 

Figure 3.5 respectively. Figure 3.6 shows a graph consisting of all three CCN samples 

plotted simultaneously against the ammonium sulfate and sodium chloride curves. Note 

that for all of these plots, the y-axis is a linear scale as opposed to the log scale used for 

Figure 3.2. This was done to make the visual comparison of the data and the curves easier. 

The analysis of Figures 3.3, 3.4, 3.5, and 3.6 proved relatively simple. For all of 

these graphs, the points representing the CCN samples fit almost exactly along the 

ammonium sulfate curve. Only a few of the CCN data points strayed from this curve and 

none coincided with the sodium chloride curve. Thus, the graphical comparison indicated 

that all of the CCN samples behaved as ammonium sulfate particles. This, in turn, pointed 
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Figure 3.2: Critical Supersaturation vs Dry Particle Radius 
for Sodium Chloride and Ammonium Sulfate 
(The curves represent data collected by Twomey [1977a]. 
The points indicate this experiment) 
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Figure 3.3: Critical Supersaturation vs Particle Diameter for CCN-1 
(Comparing CCN-1 to (NH4)2SO4 and NaCl) 
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Figure 3.4: Critical Supersaturation vs Particle Diameter for CCN-2 
(Comparing CCN-2 to (NH4)2SO4 and NaCl) 
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Figure 3.5: Critical Supersaturation vs Particle Diameter for CCN-3 
(Comparing CCN-3 to (NH4)2SO4 and NaCl) 



5 1 

Figure 3.6: Critical Supersaturation vs Particle Diameter for All CCN 
(Comparing all CCN samples to (NH4)2SO4 and NaCl) 
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to ammonium sulfate as the component in the CCN which controls activation. Without 

knowledge of the actual composition of the CCN particles, however, this hypothesis was 

still uncertain. There still might be another substance, such as a soluble organic film, 

which is controlling the activation of the particles. Therefore, it was necessary to perform 

calculations upon which numerical comparisons of the data could be based. 

3.6 Calculation of Composition Factors for CCN and Known Materials 

In order to facilitate a numerical comparison between the actual CCN data sets and 

the known materials, it was necessary to develop a relevant factor which could readily be 

calculated from the available data. This factor should be dependent solely on the chemical 

composition of the particles if possible. This would allow for direct comparison between 

the CCN samples, ammonium sulfate, and sodium chloride independent of particle size. 

Such a term was developed by considering activation theory. First, Equation (1.6), which 

deals with the critical supersaturation, was rearranged to solve for bN. This new relation is 

where all variables are as listed for Equation(1.6). The bN term, by definition, is also equal 

to the relation presented in Equation (1.5). 

The mass of the particle is equal to 

where N is the density of the nucleus material and r is the radius of the nucleus (particle). 

Plugging Equation (3.5) along with the definition of mN given for Equation (1.5) into 

Equation (1.5) yields 

ρ
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where all variables are as listed for Equation (1.5). It was then possible to set the right 

hand portions of Equations (3.4) and (3.6) equal to each other. 

For each CCN sample, the critical supersaturations (Sc) and critical particle radii (r) 

were known from the collected data. The curvature term (a) was already known from 

previous calculations. Since its value varied only slightly with changing supersaturations, 

its value was assumed to be constant for these calculations. The molecular weight of water 

(Mw) as well as its density (ps) were also already known. The values used for the 

curvature term (a), Mw, and ps were 1.05 x 10"9 meters, 18 g/mole, and 1000 kg/m3, 

respectively. This left only the van't Hoff factors (i), particle densities ( N ) , and particle 

molecular weights (MN) as unknowns. Each of these variables depended only upo?n the 

chemical composition of the nucleus particle. Therefore, the relation formed by equating 

Equations (3.4) and (3.6) was rearranged in order to separate the three variables depending 

only on chemical composition. This new relation is given by 

where all variables are as listed for Equations (1.5) and (1.6). The combination of these 

three variables was labelled Ω for easier discussion. The Ω term is equal to the number of 

ions per unit volume formed by a solution of the solid material in water. 

Once Equation (3.7) was developed, calculating the Ω for the CCN samples as well 

as the ammonium sulfate and sodium chloride samples was a simple matter. First, 

however, a check of the accuracy of the relation was performed. The ammonium sulfate 

and sodium chloride samples proved ideal for this purpose since not only were critical 

supersaturation versus critical radius data available, but the exact chemical composition was 

known as well. Thus, P N , M N , and i were already known. These values which were used 

ρ
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for these calculations are presented in Table 3.6. This allowed for the calculation of the 

expected Ω values for the two materials. The Ω values were then also calculated by 

plugging the data for all four supersaturation settings presented in Table 3.2 into Equation 

(3.7). These values, along with the expected values and the deviation from these values, 

are presented in Table 3.7. 

N , M N , and i for Sodium Chloride & Ammonium Sulfate 

Variable Units (NH4)2[SO] NaCl 
PN 
MN 
i 

g/cm3 

g/mole 
1.769 
132 
3 

2.165 
58.4 

2 

Table 3.7: Ω Values Calculated for (NH4)2SO4 and NaCl 

Calculated from the Data 

Sc [%] 

Sodium 
Chloride Ω 

rions/unit voll 

Ammonium 
Sulfate Ω 

rions/unit voll 
0.354 
0.423 
0.485 
0.550 

74,064.5 
74,065.1 
74,062.3 
74.044.8 

40,081.3 
40,097.3 
40,082.2 
40.121.0 

Mean Ω 
std. dev. 

74,059.2 
8.4 

40,095.5 
16.1 

Expected Ω 
% Error 

74,093.1 
0.05 % 

40,204.4 
0.27 % 

A comparison of the experimental and expected values from Table 3.7 showed 

excellent agreement between the two. Therefore, the Ω values for the three CCN samples 

were also calculated at each supersaturation. These values are presented in Table 3.8 along 

with their mean values. The standard deviations for the calculated means of each of the 

CCN samples were around 10 %. A statistical analysis was performed on the Ω values of 

the CCN samples using the Student-T test for comparing two mean values. This test 

Table 3.6: Values of ρ
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indicated that the Ω values for all three CCN samples are statistically equal at a confidence 

level of 95%. 

Table 3.8: Ω Values Calculated for CCN Samples 

Sc [%] CCN-1 Ω CCN-2 Ω CCN-3 Ω 
0.354 
0.423 
0.485 
0.550 

49,421.2 
36,903.6 
37,074.7 
47.636.4 

43,634.2 
39,123.8 
34,135.5 
47.636.4 

41,986.7 
36,903.6 
31,741.9 
40.333.8 

MeanQ 
std. dev. 

42,759.0 
5.804.5 

41,132.5 
5.038.7 

37,741.5 
3.919.2 

3.6.1 Comparison of CCN Sample and Known Material Ω Values 

Once the Ω's were calculated for the three CCN samples, it was possible to 

compare their mean values to those of ammonium sulfate and sodium chloride. The percent 

difference between the mean values for the three CCN samples and the expected Ω's for 

the two known materials are presented in Table 3.9. These values show that the Ω's for all 

three CCN samples did not agree with the Ω expected for sodium chloride but did agree 

with the expected Ω for ammonium sulfate. In order to provide statistical proof of this 

observation, another Student-T test was performed on the Ω value data. The test was used 

to compare the Ω values of the CCN samples to the Ω values for ammonium sulfate and 

sodium chloride. This analysis showed that the Ω values for all three CCN samples are 

statistically equal to the Ω value for ammonium sulfate at a confidence level of 95 %. The 

test also found that the Ω values for the CCN samples are statistically different from the Ω 

value for sodium chloride at a confidence level of 95 %. Thus, this method indicated 

ammonium sulfate, not sodium chloride, was controlling the behavior of the CCN 

particles. 

The results of the statistical analysis of the Ω values, along with the graphical 

comparison, clearly pointed to ammonium sulfate as the soluble component of CCN that 
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was controlling the activation characteristics of the CCN particles. The results did not, 

however, prove that ammonium sulfate was the only material present in the CCN particles. 

Still other material, either soluble or insoluble, might have been present in the original CCN 

samples. Without further tests, these components of CCN would have remained 

unidentified by this experiment. This limitation did not occur, however, since several 

chemical analyses were performed at the ISWS on the CCN samples as a part of Dr. 

Williams' research. The results of these tests were made available to enable further 

interpretation of the data collected by this experiment. A brief description of the methods 

used for these analyses is presented in the next section. 

Table 3.9: CCN Sample Ω's Compared to NaCl and (NH4)2SO4 Ω's 

Sample Mean Ω 
NaCl 

% Difference 
(NH4)2SO4 

% Difference 
CCN-1 
CCN-2 
CCN-3 

42,759.0 
41,132.5 
37.741.5 

42.3 
44.5 
49.1 

5.9 
2.6 
5.9 

3.7 Chemical Analyses of CCN Samples 

The chemical composition of the CCN samples for this experiment, as well as of 

many other samples which were collected by UMR, were examined using several different 

methods. The methods used varied slightly for different filter types. Since samples 

CCN-1 and CCN-2 were both collected on the 8.5 by 11 inch fiberglass filters, similar 

methods were used for analysis of CCN-1 and CCN-2. Sample CCN-3 was collected on a 

47 mm quartz filter. This required a slightly different method of analysis which will be 

discussed later. 

For samples CCN-1 and CCN-2, the first step in the analysis was to weigh the 

filters to determine their loading. The soluble fractions of the samples were then extracted 

using the method described in section 2.3.2. The filters were then dried and weighed again 

to determine the amount of sample remaining on the filters. These measurements found 
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that the average percentage of total mass which was water insoluble for these filters was 

24.4 %. After each sample was extracted from its filter, portions of the extracted sample 

solution were examined using various methods. For samples CCN-1 and CCN-2 (total 

CCN samples), the first analysis which was performed was an Inductively Coupled 

Plasma (ICP) analysis. This method detects the presence of 32 different elements (not 

including carbon). Of these 32 elements, only sulfur was detected in significant quantities 

(after correction for readings of blank filters). Both sodium and chlorine were below the 

detection limits of the instrument, indicating that sodium chloride is not present in great 

quantities in the CCN collected by these samples. Portions of the filter samples were then 

analyzed by Ion Chromatography (IC). This method detected only sulfate (SO4
2-) and 

ammonium (NH4
+) ions in significant quantities. The average reading for sulfate was 

37.9 % by mass, assuming the sulfate is present as ammonium sulfate. The average value 

for ammonium was 37% by mass, again assuming it is present as ammonium sulfate. The 

close agreement between the two values and the relative absence of any other non-organic 

ions makes this a valid assumption. Also, the mass of sulfur detected by the ICP analysis, 

when converted to ammonium sulfate mass, differs from the IC value by only 12 %. A 

similar examination was performed on samples collected on 47 mm teflon filters using 

X-Ray flourescence (XRF). This analysis found the sample consisted of 9.1 % sulfur, 

which corresponds to 37.5 % of the total mass if the sulfur is present as ammonium 

sulfate. This also corroborates the amount indicated by the IC analysis. Since these 

measurements indicated that 37.9 % of the mass was ammonium sulfate and only 24.4 % 

of the total mass was insoluble, 37.7 % of the CCN mass was unaccounted for. This 

portion of the CCN material must have been a water soluble substance which was not 

ammonium sulfate. Since the methods used for the analyses of the samples collected on the 

fiberglass filters were unable to identify this unknown material, further tests were required. 

It was postulated that this remaining material might be organic (i.e., containing 

carbon linked with hydrogen and other elements). The large fiberglass filters were not 
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suitable for analysis for carbon content, so new CCN samples were collected on 47 mm 

Whatman quartz fiber filters. The quartz filters were well suited for these tests since quartz 

has a high affinity for organic materials and a low carbon blank. Also, it was possible to 

pre-fire the filters at high temperatures in order to drive off any organics which might have 

been present on the filter prior to CCN sampling. Sample CCN-3 consisted of large CCN 

collected on this type of filter. Nine other CCN samples were also collected in this manner. 

These filters were each divided into three sections. The first section was analyzed by IC in 

order to determine their ammonium sulfate content. The second section of each filter was 

immediately analyzed for total carbon using a thermo-optical system. This method 

involved heating the sample to 850 °C in a high oxygen atmosphere in order to convert the 

carbon to carbon dioxide. The amount of CO2 formed was then analyzed by non-

dispersive infrared detection. Thus, the total amount of carbon present in the sample was 

determined. Finally, the third section of each filter was rinsed with five solvents in series 

in order to remove any soluble organic compounds. These solvents, in order, were water, 

a 50 % hexane/acetone mixture, dichloromethane, ethyl ether, and methanol. After this 

extraction was completed, the filter sections were allowed to dry. These dry sections were 

then analyzed using the thermo-optical system in order to measure the amount of insoluble 

carbon that was present on the filters. This insoluble carbon was interpreted to be 

elemental carbon (i.e., soot). By subtracting the insoluble (elemental) carbon fraction 

from the total (elemental and organic) carbon on the filters, the soluble carbon fraction, 

which corresponded to the organic carbon fraction, was determined for each sample. 

The measured soluble carbon gave the mass of only the carbon that was present in 

the organic compounds in the sample. Obviously, carbon was not the only atom present in 

these molecules. Therefore, it was necessary to somehow relate the organic carbon mass to 

the mass of organic compounds present in the original sample. Jaenicke (1978) calculated 

that the approximate carbon compound mass could be found by multiplying the measured 

carbon mass by 1.41. This use of this multiplier, however, gave total theoretical masses 
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which were 90% of the measured values. Missing such a large amount of material during 

analysis seemed unlikely. By multiplying the carbon mass by a factor of 2, however, gave 

total theoretical masses which were 99.5 % of the measured sample masses. Therefore, to 

uphold conservation of mass, this multiplier was used. 

These above methods resulted in the development of a data set that contained the 

total mass (by weighing the filters before and after sampling), and the masses of 

ammonium sulfate (from IC analysis), organic carbon, and elemental carbon in the CCN 

samples. By performing a multiple linear regression comparing these three masses to the 

total mass, the average percentage of each was calculated. For these regressions, each 

component mass measured for the nine filter samples was individually compared to the total 

mass on the filters for these samples. The correlation coefficients for these three 

regressions were all above 0.90, indicating a good fit. The average organic compound 

mass was then calculated from the average organic carbon mass (16.1 %) using the factor 

of 2 multiplier. Table 3.10 presents the measured percentages of the three components of 

the CCN samples along with their corresponding correlation coefficient, R2. These values 

should also apply to sample CCN-3 since it was collected during the same sampling period 

as the other nine samples. 

Table 3.10: Large CCN Composition 

Material % of Total Mass Correlation 
(NH4)2SO4 

Organic Compound 
Elemental Carbon 

63.3 
32.2 
4.0 

0.996 
0.925 
0.906 

A considerable difference was observed between the percentages found on the 

quartz filters (Table 3.10) and those measured for the samples collected on the 8.5 by 11 

inch fiberglass filters. The average ammonium sulfate amount detected on the fiberglass 

filters was smaller than that for the quartz filters. Conversely, the non-ammonium sulfate 
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soluble material, which could be interpreted as organic material, was present in larger 

amounts on the fiberglass filters than the quartz filters. This difference occurred because 

the samples collected on the fiberglass filters were for total CCN while the samples on the 

quartz filters were for large CCN only. Analyses of small CCN samples collected on 

quartz filters showed that the small CCN contained smaller percentages of ammonium 

sulfate and greater percentages of organics than did the large CCN. Therefore, the 

presence of the small CCN in the total CCN samples brought down the average ammonium 

sulfate percentages while increasing the overall organic compound percentages. The small 

CCN composition values were not included here since critical supersaturation data were 

only collected for large and total CCN samples. 

3.8 Numerical Analysis of Organics Present in CCN 

The chemical analyses performed on the CCN samples showed that organic 

compounds are indeed a major component of CCN. The methods used were unable, 

however, to identify which organic compounds were present in the samples or to determine 

their activation characteristics. Without an understanding of the composition or behavior of 

this component of CCN, it would have been impossible to rule out that the organics were 

actually controlling the activation of the particles used for this experiment. Therefore, 

further analysis of the organic component of the CCN was performed using the data 

presented in Table 3.10 as well as the Ω values which were calculated for ammonium 

sulfate and the CCN. 

3.8.1 Calculation of Ω for the Organic Component of CCN 

The goal of these calculations was to determine the Ω of the organic compounds 

present in the CCN samples. Since Ω depends solely on particle composition, determining 

the Ω for the organic compounds was an ideal way to compare the organics to the CCN 

samples as well as the known materials. For these calculations, only the data set for 



6 1 

sample CCN-3 (a large CCN sample) was used since this was the only sample for which 

the organic fraction of the sample could be estimated. Therefore, all calculations which 

were performed related to large CCN. 

The method which was used to calculate the Ω for the organic compounds was a 

simple mass balance. For this mass balance, it was necessary to determine exactly what 

portion of the CCN was soluble organic compounds. The chemical analyses which were 

performed on the samples found that 40.9 % of the organic carbon compound was water 

soluble. Since only the soluble portion of the CCN was activated, this was the portion of 

the organics which was of interest. The fraction of total CCN mass which was water 

soluble organic compounds was obtained by multiplying the organic fraction of CCN mass 

(32.2 %) by the fraction of organics that were soluble (40.9 %), yielding 

Soluble Organics Fraction = (0.322)(0.409) = 0.1317 = 13.17 %. 

The other soluble portion of the CCN samples was the ammonium sulfate. It was assumed 

that 100 % of the ammonium sulfate was soluble. According to the analysis presented in 

Table 3.10, 63.3 % of the total CCN sample was ammonium sulfate. Since the elemental 

carbon fraction was insoluble it did not enter into this calculation. 

Once the fractions for the total CCN were calculated, it was necessary to calculate 

the fractions of soluble organics and ammonium sulfate present in the soluble CCN sample. 

Since the insoluble elemental carbon fraction was not present in the soluble CCN sample, 

the percentages of ammonium sulfate and the organic compounds as compared to the total 

soluble mass were greater than for the total CCN samples. These values were required 

since only the soluble portion of the CCN was examined by this experiment. The 

ammonium sulfate fraction in the soluble CCN sample was calculated by dividing the 

percentage of ammonium sulfate in the total sample (63.3 %) by the sum of the ammonium 

sulfate (63.3 %) and organic compounds (13.17 %) present in the total CCN sample This 

gave a value of 82.78 % for the ammonium sulfate fraction of the soluble CCN. A similar 
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calculation for the organic compounds gave a value of 17.22 % for the fraction of soluble 

organics present in the soluble CCN sample. Note that these values add up to 100 %. 

Therefore, the mass balance (assuming that only ammonium sulfate and organic 

compounds were present) for the Ω values was 

0.8278 Qamsul + 0.1722 Ω organics = Ω C C N - 3 (3.8) 

where Ωamsu l is for ammonium sulfate. 

Since the Ω's for ammonium sulfate and sample CCN-3 had already been 

calculated, the Ω for the organics was the only remaining variable. The ammonium sulfate 

and sample CCN-3 values were 40,095.5 and 37,741.5 respectively. This resulted in an Ω 

for the organic compounds of 

Ωorganics = 26,425.3 

This number was considerably smaller than the values for sample CCN-3 as well as 

ammonium sulfate. Since the activation of a particle depends heavily upon its Ω value, the 

possibility that the organics were controlling the activation of the large CCN particles was 

ruled out. Therefore, it was determined that ammonium sulfate was indeed the component 

which controlled the activation characteristics of the large CCN. The same could not be 

said with any confidence, however, for small CCN since no critical supersaturation data 

were available for the small size fraction. Despite the fact that the activation of the CCN 

particles was not dependent upon the organic compounds, the behavior of the organics in 

supersaturated conditions was still of interest. Thus, further calculations to determine their 

activation characteristics were performed. 

3.8.2 Calculation of the Sc for the Organic Compounds 

Once the Ω of the soluble portion of the organic compounds in the CCN was 

determined, it was possible to calculate the critical supersaturation of particles consisting 

solely of this material. This was done to determine whether the presence of the organics 
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inhibited, promoted, or had no effect upon the activation characteristics of the CCN 

particles. These calculations were performed by first assuming a dry particle size for a 

particle consisting entirely of the organic compounds. It was then possible to calculate the 

bN corresponding to this size using Ωorganics and Equation (3.6). Once bN was 

determined, it was possible to calculate the critical supersaturation using Equation (1.6). 

Once again, the value of the curvature term (a) was assumed constant for these calculations. 

This procedure was performed at numerous dry particle diameters. The critical 

supersaturations required by similarly sized particles consisting entirely of ammonium 

sulfate and sodium chloride were also calculated using this method. The results for all 

three materials are presented in Table 3.11. 

Table 3.11: Critical Supersaturations Required for Various Particle Materials 

Dry Dp [µm] NaCl Sc [%] (NH4)2SO4 Sc [%] Organics Sc [%] 
0.(53 0.618 0.838 1.034 
0.04 0.402 0.544 0.671 
0.05 0.287 0.389 0.480 
0.06 0.219 0.296 0.365 
0.07 0.173 0.235 0.290 
0.08 0.142 0.192 0.237 
0.09 0.119 0.161 0.199 
0.10 0.102 0.138 0.170 
0.20 0.036 0.049 0.060 
0.30 0.020 0.027 0.033 

A comparison of these critical supersaturations shows that a particle consisting 

entirely of the organic compounds would require a greater supersaturation for activation 

than both sodium chloride and ammonium sulfate. Therefore, the presence of the organic 

compounds in the large CCN most likely slightly retard the activation of the particles tested. 

The Sc values calculated for the organic compounds were not, however, so great as to 

completely prevent the activation of a particle consisting solely of this material under natural 

conditions. Thus, it would appear that the activation of the CCN particles could have been 
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controlled by the organic compounds if the organics had composed a greater fraction of the 

CCN material. 

3.9 Conclusions 

The data sets which were collected for this experiment were interpreted in several 

different ways. Each method indicated that ammonium sulfate was the component of the 

soluble fraction of the large CCN as well as of the total CCN samples which controlled the 

activation characteristics of the particles. This result agrees well with earlier studies as well 

as the indirect evidence which points to ammonium sulfate active CCN particles. Sodium 

chloride, on the other hand, did not appear to have any significant effect on droplet 

formation for the samples tested. This was not surprising since the chemical analysis of the 

CCN samples indicated that only insignificant amounts of sodium chloride were present. 

The data collected for this experiment were also used to calculate the composition 

factor, Ω, for the organic compound portion of the CCN. This value was determined to be 

26,425.3, which was considerably lower than the ammonium sulfate, sodium chloride, and 

CCN sample values. Thus, it was determined that the organic compounds were not 

controlling the activation characteristics of the CCN. Further calculations, based on the 

value of Ωorganics , determined that the organic materials present in the CCN required 

slightly higher supersaturations than ammonium sulfate particles. Therefore, the presence 

of the organic materials appeared to have a retarding effect on the activation of the large 

CCN particles. It was not possible to say whether the organics were present purely as a 

surfactant or if they were intermixed throughout the particle. It would appear that if the 

organic compounds had entirely coated the particle surfaces, that the CCN particles would 

have required a higher supersaturation for activation to occur. Such a determination could 

not be made since the method of reproducing the CCN particles most likely altered their 

internal arrangement. 
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Although the critical supersaturations required for the activation of particles entirely 

composed of the organic compounds were greater than for corresponding particles of 

ammonium sulfate, they were not so large as to prevent activation under natural conditions. 

Such particles could activate even at sizes as small as 0.03 µm in diameter. Thus, these 

particles would satisfy Twomey's (1977a) calculated mean upper size limit of 0.06 µm in 

diameter for CCN particles. These results indicated that the organic material or materials 

present in the CCN samples have a high activity. This fact, coupled with the greater 

fraction of organic compounds and lesser fraction of ammonium sulfate found in the small 

CCN samples as compared to the large CCN samples, could result in the activation 

characteristics of the small CCN being controlled by the organics. This determination 

could not be made, however, since no data were collected for small CCN. 
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Chapter 4 

Recommendations for Future Work 

4.1 Overview 

Several aspects of the behavior as well as the composition of cloud condensation 

nuclei have been determined by this research. Ammonium sulfate was determined to be the 

dominant component of both large CCN and the overall CCN for the samples studied. 

Also, the composition factor, £2, and critical supersaturation requirements for the organic 

compounds present in the CCN samples were calculated. However, questions were left 

unanswered due to the lack of data. Therefore, further research is required in these areas. 

4.2 Recommendations 

In order to gain a more complete understanding of the behavior and composition of 

CCN, the following work should be performed. First, data should be collected on the 

critical supersaturations for the soluble fraction of small CCN samples using this apparatus 

or one similar to it. Such samples could be used to determine, both graphically and 

numerically, which component of the small CCN is controlling the activation of the 

particles in the atmosphere. If this data should indicate that the organic compounds are 

controlling the activation of the particles, further tests could be performed in an attempt to 

determine which organic compound or compounds are actually present. This could 

possibly be done by activating known organic compounds in a cloud chamber system such 

as the one used for this experiment in order to obtain critical supersaturation data for these 

compounds. This data could then be compared to the data for the small CCN samples. 

Also, additional direct chemical composition tests should be performed on both the small 

and the large CCN. The samples tested should also include ones collected in or near a 

marine environment in order to determine the effects of the presence of sodium chloride in 

the CCN. 
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In addition to performing additional analyses using the present system, attempts 

could be made to improve the methods used to collect the critical supersaturation data. The 

present system requires the capture and resuspension of the CCN particles in order to test 

them. This most likely alters the overall composition and arrangement of the particles 

somewhat. A better way to test these particles would be to pass the droplets formed on the 

CCN in the large cloud chamber system through a dryer and then directly to the smaller 

cloud chamber system. This would allow for the examination of the insoluble fraction of 

the CCN. Also, any errors which might be present in the data collected for the soluble 

fraction of the CCN would be reduced. There would also be less disturbance of the 

arrangement of the components of the CCN particles since far less mixing would occur. 

Thus, data could be collected on the way that actual CCN particles behave in the 

atmosphere. It should be noted that much of this work will be performed in the future as 

part of the research being performed by the ISWS and UMR. 
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Appendix A 

Computer Program for Cloud Chamber and OPC Control 
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Appendix A 

Computer Program for Cloud Chamber and OPC Control 

The following program was written to control of the cloud chamber supersaturation and 

collect the data from the OPC. The system used one external access board (EXP-GP) and 

an additional internal analog input board (DAS-8PGA) to enable the computer to read the 

thermistors and control the heaters. The EXP-GP board output channel should be 

connected to Channel #0 on the DAS-8PGA board for proper operation. The program was 

written in the Quick Basic language on an IBM 386 personal computer. 

The Program: 

' Initialization for the temperature control portion 
10 DIM D%(7), CH%(7), YL%(7) '8 elements, one for each EXP-GP channel 
' Also initialize a corresponding real array to receive temperature data 
DIM T(7) 
DIM LT%(7) 
COMMON SHARED D%(), LT%() 
DECLARE SUB DAS8 (mode%, BYVAL dummy%, FLAG%) 
DIM ATEMP AS STRING * 580 
CLEAR, 49152! 
zx% = 0: zy% = 0: zz% = 0 
' Setup for OPC data taking 
status = 0 '0 = on 
ON COM(l) GOSUB SAMPLE 

OUT &H343, &H80 ' Initialize the DAS8-PGA 
OUT &H341, &H1 ' Open valve to purge pms tube while not sampling 
' This portion of the program interfaces with the PMS OPC 
30 DEFSTR A, X 
40 SCREEN 0,0 ,0 
50 KEY OFF: CLS: CLOSE 
60 DEFINT I-N 
70 FALSE = 0: TRUE = NOT FALSE 
80 ABLANK = STRING$(80, CHR$(32)) 
90 XOFF = CHR$(19): XON = CHR$(17) 
100 aline = CHR$(179) 
110 ATIME = TIMES 
120 ATIME = MID$(ATME, 1, 2) + MID$(ATIME, 4, 2) + MID$(ATIME, 7, 2) 
130 OPEN "COM1: 9600,E,7„CS,DS,CO" FOR RANDOM AS #1 LEN = 1024 
131 REM HIST = FALSE 'Default is no histogram 
133 REM PRINT "Do you want a HISTOGRAM instead of printed data? (Y/N) >"; 
135 REM ANS = INKEY$: IF ANS = "" THEN 135 
137 REM IF ANS = "Y" OR ANS = "y" THEN HIST = TRUE 

'
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140 PRINT #1, XON: PRINT #1, "SB Y": PRINT #1, "ES": PRINT #1, "MN 6": 
PRINT #1, "TD " + ATIME 

150 IF EOF(1) THEN 220 
160 IF LOC(l) > 128 THEN PAUSE = TRUE: PRINT #1, XOFF 
170 ATEMP = INPUT$(LOC(l),#l) 
180 IF LOC(l) > 0 THEN GOTO 170 
190 IF PAUSE THEN PAUSE = FALSE: PRINT #1, XON: GOTO 150 
220 C16 = FALSE; GOTO 250 
240 GOTO 220 
250 IF C16 = TRUE THEN OPEN "defl6.dat" FOR INPUT AS #2 
260 IF C16 = FALSE THEN OPEN "def32.dat" FOR INPUT AS #2 
270 INPUT #2, ACONT 
280 INPUT #2, AINTER 
290 IF C16 = TRUE THEN INPUT #2, ARANGE 
300 CLOSE #2 
310 GOSUB 990 
320 LOCATE 4, 1: PRINT ABLANK 
330 LOCATE 4, 22: PRINT aline + "The Default Values Are ": LOCATE 4,50: 

PRINT aline 
340 LOCATE 11, 20: PRINT "Do you wish to use the Default Values (Y/N)? "; 
350 ANS = INKEY$; IF ANS = "" THEN 350 
360 IF ANS = "Y" OR ANS = "y" THEN 590 
370 LOCATE 11, 1; PRINT ABLANK; 
380 LOCATE 11, 20D; PRINT "Choose continuous (C) or single (S) sampling >"; 
390 ANS = INKEY$: IF ANS = "" THEN 390 
400 IF ANS = "S" OR ANS = "s" THEN ACONT = "SB Y" ELSE IF ANS = "C" OR 

ANS = "c" THEN ACONT = "SB N" ELSE 380 
410 LOCATE 11, 1: PRINT ABLANK 
420 LOCATE 11, 20: INPUT "Enter the sampling interval in seconds >", IINTER 
430 IF IINTER > 6553 OR IINTER < 1 THEN GOTO 420 ELSE AINTER = 

LTRIM$(RTRIM$(STR$(IINTER))) 
440 IF C16 = FALSE THEN 490 
450 LOCATE 11, 1: PRINT ABLANK; 
451 LOCATE 14, 2: PRINT CHR$(218) + STRING$(77, CHR$(196)) + CHR$(191) 
452 LOCATE 15, 2: PRINT aline; "Press 0 for fixed range F0 "; aline; "Press 4 for 

autorange (A2) between F0 and Fl ": LOCATE 15, 80: PRINT aline 
453 LOCATE 16, 2: PRINT aline; "Press 1 for fixed range F l " ; aline; "Press 5 for 

autorange (A4) between F0 and F3": LOCATE 16, 80: PRINT aline 
454 LOCATE 17, 2: PRINT aline; "Press 2 for fixed range F2 "; aline: LOCATE 17, 80: 

PRINT aline 
455 LOCATE 18, 2: PRINT aline; "Press 3 for fixed range F3 "; aline: 

LOCATE 18, 80: PRINT aline 
456 LOCATE 19, 2: PRINT CHR$(192) + STRING$(77, CHR$(196)) + CHR$(217) 
460 LOCATE 11, 20: PRINT "Choose (0-5) >"; 
470 ANS = INKEY$: IF ANS = "" THEN GOTO 470 
480 IF ANS >= "0" AND ANS <= "3" THEN ARANGE = "F" + ANS ELSE IF 

ANS = "4" THEN ARANGE = "A2" ELSE IF ANS = "5" THEN 
ARANGE = "A4" ELSE GOTO 460 

490 GOSUB 990 
500 LOCATE 11,1: PRINT ABLANK 
510 LOCATE 11, 20: PRINT "Save the current setting as the default (Y/N)?"; 
520 ANS = INKEY$; IF ANS = "" THEN 520 
530 IF ANS o "Y" AND ANS <> "y" THEN 590 
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535 IF C16 = TRUE THEN OPEN "defl6.dat" FOR OUTPUT AS #2 
540 IF C16 = FALSE THEN OPEN "def32.dat" FOR OUTPUT AS #2 
550 PRINT #2, ACONT 
560 PRINT #2, AINTER 
570 IF C16 = TURE THEN PRINT #2, ARANGE 
580 CLOSE #2 
590 LOCATE 11,1: PRINT ABLANK 
600 LOCATE 11,20: INPUT "Enter the output filename >", AFNAME 
610 AFNAME = "c:\das8V + AFNAME 
620 OPEN AFNAME FOR OUTPUT AS #2 
630 LOCATE 11, 1: PRINT ABLANK 
640 LOCATE 19,20: INPUT "Enter any comments about this data set >", ACOMMENT 
650 PRINT #2, ACOMMENT: PRINT #2, " " 
660 PRINT #1, ACONT: PRINT #1, "SI" + AINTER: IF C16 = TRUE THEN 

PRINT #1, "RA " + ARANGE 
670 CLS: LOCATE 1, 1; PRINT "Press any key to start sampling >"; 
680 ANS = INKEY$: IF ANS = "" THEN 680 
690 IF ACONT = "SB N" THEN LOCATE 1,1: PRINT ABLANK: LOCATE 1, 1: 

PRINT "Continuous sampling. Press any key to stop sampling." 
700 IF ACONT = "SB Y" THEN LOCATE 1,1: PRINT ABLANK: LOCATE 1,1: 

PRINT "Single sampling. Press any key to continue." 

PRINT #1, "SS" 
701 GOTO TEMPERATURE Temperature control for cloud chamber 

SAMPLE: 
' Subroutine for Sampling 
THav$ = STR$(T(1)): TCav$ = STR$(T(0) 'Calculate average plate temperatures over 

each sampling interval 
PLATES = "HOT = " + THav$ + "COLD = " + TCav$ 
zx% = zy% 'Logic for arranging data from the OPC 
zy% = LOC(l) 
IF zx% = zy% then zz% = zz% + 1 
IF LOC(l) <290 THEN RETURN 
IF zz% < 12 THEN RETURN 
VIEW PRINT 9 TO 25 Location for printing OPC data on screen 
zyy% = zy% 
zx% = 0: zy% = 0: zz% = 0 
CLS 2 
PRINT #1, XOFF 
707 FIRST = TRUE 
710 PAUSE = FALSE 
725 REM IF HIST = TRUE THEN PRINT # 1, "PP" 
ATEMP = INPUT$(LOC(l), #1) 
zy2% = LOC(l) 
770 lfp = 0; ifp = 0 
780 ifp = INSTR(lfp + 1, ATEMP, CHR$(3)) 
790 IF ifp > lfp THEN MID$(ATEMP, ifp, 1) = " ": lfp = ifp: jfp = ifp 
800 lfp = 0; ifp = 0 
810 ifp = INSTR(lfp + 1, ATEMP, CHR$(3)) 
820 IF ifp > lfp THEN MID$(ATEMP, ifp, 1) = " ": lfp = ifp: GOTO 810 
ATEMP1 = MID$(ATEMP, jfp, 289 ) 
ATEMP1 = PLATES + ATEMP1 

'

'

file://c:/das8V
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830 PRINT#2,ATEMP1; 
840 PRINT ATEMP1; 
850 IF PAUSE THEN PAUSE = FALSE: PRINT #1, XON 
860 PRINT #1, XON 
870 RETURN 
t 

875 IF ACONT = "SB Y" AND FIRST = TRUE THEN FIRST = FALSE: GOTO 710 
880 PRINT : PRINT : PRINT : PRINT "Sampling ended, file saved." 
890 PRINT : PRINT : PRINT "Press any key to continue" 
900 CLOSE (2) 
910 ANS = INKEY$: IF ANS = "" THEN 910 
920 GOSUB 990 
930 LOCATE 22, 20; PRINT "Do you wish to continue sampling (C) or exit to 

BASIC (X) >"; 
940 ANS = INKEY$; IF ANS = "" THEN 940 
950 IF ANS = "C OR ANS = "c" THEN 250 
960 IF ANS = "X" OR ANS = "x" THEN 980 
970 GOTO 930 
980 END 
990 CLS 
1000 LOCATE 1, 22: PRINT CHR$(218) + STRING$(27, CHR$(196)) + CHR$(191) 
1010 LOCATE 2, 22: PRIINT aline + " PMS INTERFACE PROGRAM": 

LOCATE 2, 50; PRINT aline 
1020 LOCATE 3, 22: PRINT aline + " ": 

LOCATE 3, 50: PRINT aline 
1030 LOCATE 4, 22; PRINT aline + " The Current Values Are": LOCATE 4, 50: 

PRINT aline 
1040 LOCATE 5, 22: PRINT aline + " " :LOCATE 5, 50: 

PRINT aline 
1050 LOCATE 6, 22 
1060 IF ACONT = "SB N" THEN PRINT aline + "1. Continuous sampling " ELSE 

PRINT aline + " 1. Single sampling" 
1070 LOCATE 6, 50: PRINT aline 
1080 LOCATE 7, 22: PRINT aline + " 2. Sample interval = "; 
1090 PRINT USING "\ \"; AINTER; : LOCATE 7, 50; PRINT aline 
1100 IF C16 = TRUE THEN LOCATE 8, 22: PRINT aline: LOCATE 8, 50: 

PRINT aline 
1120 LOCATE 9, 22; PRINT CHR$(192) + STRING$(27, CHR$(196)) + CHR$ (217) 
1130 RETURN 

TEMPERATURE: 
' Subroutine for input of the cloud chamber plate temperatures 
INPUT ; "Desired cold plate temperature = "; ct 
PRINT " 
INPUT ; "Desired hot plate temperature = "; ht 
PRINT " 
VIEW PRINT 1 TO 9 
ANS = INKEY$ 
PRINT #1, XON 
SCREEN 0,0,0: KEY OFF: CLS: WIDTH 80 
GOSUB 3000: CLS 

PRINT #1, XON 

'

'
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LOCATE 25, 1: COLORO, 7; PRINT "-Please Wait-";: COLOR 7, 0; PRINT 
" Loading DAS8 I/O address.": LOCATE 1, 1 

PRINT #l ,XON 
OPEN "DAS8.ADR" FOR INPUT AS #3 
INPUT #3, BASADR% 'Initialize and declare CALL parameters 
CLOSE #3 
PRINT #l, XON 
FLAG% = 0 
MD% = 0 'Mode 0 = initialization 
CALL DAS8(MD%, VARPTR(BASADR%), FLAG%) 
IF FLAG% o 0 THEN PRINT "Installation Error" 
CLS 

1502 GOSUB TEQUIL Timing subroutines for temperature equilibration 
GOSUB DROPDATA Timing subroutine for allowing for data collection 
OUT &H341,0 "Closes purge valve at end of run 
END 'End of the program once all timing subroutines have been completed 

TOTAL: 
' Subroutine for calculation of temperatures from thermistor voltage returns 
MD% = 1: LT%(0) = 7; LT%(1) = 7 
CALL DAS8(MD%, VARPTR(LT%(0)), FLAG%) 
IF FLAG% <> 0 THEN PRINT "Error In Setting CJC Channel": END 
' CJC stands for Cold Junction Channel which corrects for room temperature 
MD%=4; CJ% = 0 
CALL DAS8(MD%, VARPTR(CJ%), FLAG%) 
CJC = (CJ%)/10 
2000 ' Get thermistor data 
CH% = 0 
COM(l) STOP: status =1 '1 = stopped 

GOSUB 2500 
COM(l)ON: status = 0 
' CH% specifies DAS*-PGA channel that EXP-GP is connected to (0-7). 
' D% (7) is an integer data array to receive data for the thermistors from the channels. 
DIM mvp(8) 
FOR II = 0 TO 1 'Only two plates exist; hot and cold. 
V = (D%(II) * 5!) / (2048!) '! indicate whole numbers 
mv = V * 1000 ' converts to millivolts 

GOSUB 3300 'Perform linearization by piece-wise linear segmentation 
mvp(II) = mv 

NEXT II 
COM(l) STOP: status = 1 
VIEW PRINT 1 TO 8 
LOCATE 1, 1 
FOR II = 0 TO 1 
PRINT USING "Channel ## temperature = #####.# deg. C. "; II; T(II) 
NEXT II 
COM(l) ON: status = 0 

'

'

'

'

'
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'Heater controls for hot and cold plates. 
b = (ct - 0.1): c = (ct + 0.1) 'Cold plate temperature ranges 
D = (ht - 0.1): e = (ht + 0.1) 'Hot plate temperature ranges 
IF c < T(0) AND e < T(l) THEN TR = &H0 'Turns off both heaters 
IF c < T(0) AND T(l) < D THEN TR = &H40 'Turns on only the hot plate heater 
IF T(0) < b AND e < T(l) THEN TR = &H80 'Turns on only the cold plate heater 
IF T(0) <b AND T(l) < D THEN TR = &HC0 Turns on both heaters 

OUT &H340, TR 
RETURN 'Returns to timing control loops in subroutines 

2400 GOTO 2000 'Repeats scan of channels 

2500 'Subroutine to convert EXP-GP channels to number of bits 
LT%(0) = CH%; LT%(1) = CH%: MD% = 1 
CALL DAS8(MD%, VARPTR(LT%(0)), FLAG%) 
IF FLAG% <> 0 THEN PRINT "Error In Setting Channel": END 
' Next select each EXP-GP channel in turn and convert it. 
' Digital outputs OOP1-4 drive the EXP-GP sub-multiplexer address, so use mode 14 to 
' set up the sub-multiplexer channel. 
FOR MUX% = 0TO7 
MD% = 14 
CALL DAS8(MD%, VARPTR(MUX%), FLAG%) 
IF FLAG% <> 0 THEN PRINT "Error in EXP-GP Channel Number": END 
' Perform A/D conversion using mode 4 and transfer data to an array element. 
MD% = 4 
CALL DAS8(MD%, VARPTR(D%(MUX%)), FLAG%) 
IF FLAG% <>0 THEN PRINT "Error in Performing A/D Conversion." 
NEXT MUX% 
RETURN 

3000 VIEW PRINT 1 TO 25 
CLS 
RETURN 

3300 'Interpolation routine to find thermistor temperatures. 
mv = thermistor voltage in millivolts 

IF II = 0 THEN T(II) = 1 / (36.82865 - 8.803335 * LOG(mv) + 0.5265169 * 
(LOG(mv))^2): RETURN: 'Cold plate thermistor calibration curve 

IF II = 1 THEN T(II) = 1 / (31.09914 - 7.435571 * LOG(mv) + 0.4448631 * 
(LOG(mv))^2): RETURN 'Hot plate thermistor calibration curve 

RETURN 
4900 
MD% = 19 'Set DAS8-PGA 
D%(0) = 9 'Range number 0, 8-15 
CALL DAS8(MD%, VARPTR(D%(0)), FLAG%) 
IF FLAG% <> 0 THEN PRINT "Error in Setting PGA": END 
RETURN 

TEQUIL: 
'This subroutine allows the cloud chamber plates time to reach their set temperatures 
OUT &H341, &H1 'Makes sure that the valve is open to purge during this time 

'

'

'

'

'

'

'

'
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LOCATE 2, 45: PRINT "Background Air" 
TSTART = TIMER 
TRUN = TIMER 
WHILE TRUN < TSTART + 900 'Allows 15 minutes for temperature equilibration 
GOSUB TOTAL 
TRUN = TIMER 
WEND 
RETURN 
' 
DROPDATA: 
' This subroutine allows a set amount of time for drop data collection (purge valve is shut) 
LOCATE 2, 45: PRINT" 
LOCATE 2, 45: PRINT "Drop Data" 
OUT&H341, 0 'Closes purge valve 
TSTART = TIMER 
TRUN = TIMER 
WHILE TRUN < TSTART + 1200 'Allows for 20 minutes of drop data collection 
GOSUB TOTAL 
TRUN = TIMER 
WEND 
RETURN 


	TABLE OF CONTENTS
	Chapter 1 Introduction
	1.1 Cloud Condensation Nuclei
	1.2 The Importance of CCN
	1.3 Previous Studies of CCN Chemical Composition
	1.4 Sulfates and CCN
	1.5 Organics and CCN
	1.6 Theory: Supersaturation vs. Dry Particle Radius
	1.7 Theory: Experimental Verification
	1.8 Summary of Thesis Research
	1.9 References

	Chapter 2 Experimental Setup and Methods
	2.1 Introduction and Chapter Summary
	2.2 Cloud Chamber Theory and Operation
	2.2.1 Selected Cloud Chamber Design
	2.2.2 Temperature Control
	2.2.3 Preventing Transient Supersaturations

	2.3 CCN Capture at UMR
	2.3.1 Experimental Setup
	2.3.2 CCN Sample Extraction

	2.4 CCN Particle Generation
	2.5 Particle Size Selection
	2.6 CCN Activation in the CFD Cloud Chamber
	2.7 Droplet Data Collection
	2.7.1 Droplet Identification
	2.7.2 Droplet Growth

	2.8 Overall Air Flow Setup
	2.9 Critical Supersaturation Determination Method
	2.10 References

	Chapter 3 Results and Discussion
	3.1 Introduction and Chapter Summary
	3.2 Verification of Operation
	3.2.1 Classifier Calibration

	3.3 Establishing Classifier Calibration
	3.4 CCN Experimental Results
	3.5 Comparison With Behavior of Suspected CCN Materials
	3.5.1 Graphical Comparison

	3.6 Calculation of Composition Factors for CCN and Known Materials
	3.6.1 Comparison of CCN Sample and Known Material

	3.7 Chemical Analyses of CCN Samples
	3.8 Numerical Analysis of Organics Present in CCN
	3.8.1 Calculation of
	3.8.2 Calculation of the Sc for the Organic Compounds

	3.9 Conclusions
	3.10 References

	Chapter 4 Recommendations for Future Work
	4.1 Overview
	4.2 Recommendations

	Appendix A Computer Program for Cloud Chamber and OPC Control
	LIST OF TABLES
	Table 2.1: Drop Diameters at the Exit of the CFD Chamber
	Table 3.1: CFD Chamber Supersaturation Settings
	Table 3.2: Classifier Calibration Particle Radii
	Table 3.3: Particle Radius vs. Voltage for Classifier Calibration
	Table 3.4: CCN Sample Classifier Voltage Settings
	Table 3.5: CCN Critical Diameters (Calculated from Table 3.4 values)
	Table 3.6: Values of ρN, MN, and i for Sodium Chloride & Ammonium Sulfate
	Table 3.7: Values Calculated for (NH4)2SO4 and NaCl
	Table 3.8: Values Calculated for CCN Samples
	Table 3.9: CCN Sample
	Table 3.10: Large CCN Composition
	Table 3.11: Critical Supersaturations Required for Various Particle Materials

	LIST OF FIGURES
	Figure 2.1: Vapor Pressure in a Thermal Diffusion Chamber
	Figure 2.2: Supersaturation In a Thermal Diffusion Chamber as a Function of Temperature Difference (as calculated by Equation (2.2))
	Figure 2.3: Water Flow Diagram for Temperature Control of the Cold Plate of the CFD Chamber. (A separate, identical system exists for the temperature control of the hot plate. Heavy lines indicate water system tubing, while dashed lines indicate electrical connections between instruments.)
	Figure 2.4: Airflow Schematic for Experimental Apparatus (Arrows indicate direction of flow)
	Figure 3.1: Calibration Curve: Particle Diameter vs Classifier Voltage Setting (The straight line represents the equation relating the voltage and the diameter which was developed from the data.)
	Figure 3.2: Critical Supersaturation vs Dry Particle Radius for Sodium Chloride and Ammonium Sulfate (The curves represent data collected by Twomey [1977a]. The points indicate this experiment)
	Figure 3.3: Critical Supersaturation vs Particle Diameter for CCN-1 (Comparing CCN-1 to (NH4)2SO4 and NaCl)
	Figure 3.4: Critical Supersaturation vs Particle Diameter for CCN-2 (Comparing CCN-2 to (NH4)2SO4 and NaCl)
	Figure 3.5: Critical Supersaturation vs Particle Diameter for CCN-3 (Comparing CCN-3 to (NH4)2SO4 and NaCl)
	Figure 3.6: Critical Supersaturation vs Particle Diameter for All CCN (Comparing all CCN samples to (NH4)2SO4 and NaCl)

	LIST OF SYMBOLS

