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EXECUTIVE SUMMARY 

This report documents and critically assesses the evolution and status of the 
scientific understanding of the effects of acidic deposition on surface 
waters. The main conclusion is that the dominant theory of surface-water 
acidification fails to adequately incorporate many important factors and 
processes that influence surface water acidity. Some of these factors and 
processes are not well researched or recognized as being important by most 
scientists in the aquatic effects research area. 

An assessment of the effects of acidic deposition on surface waters based on 
the dominant theory of surface-water acidification will overestimate 
significantly the effects of acidic deposition. This theory states that, in 
the absence of acidic deposition, water chemistry of sensitive watersheds is 
essentially geologically controlled and is the product of carbonic acid 
weathering of mineral bases which produces alkalinity. By theory, acidic 
deposition consumes this watershed-produced alkalinity thereby increasing 
water acidity and releasing toxic aluminum from watersheds into water. 

However, the principal influence of acidic deposition on currently acidic 
(pH<5.5) Norwegian and northeastern U.S.A. lakes appears not to be a marked 
acidification, but a qualitative shift in the nature of acidity from organic 
acid water to sulfuric acid water and a concomitant increase in the 
proportion of ionic aluminum. Acidification of surface waters by acidic 
deposition is superimposed on natural processes of acidification. 

Acidic surface waters respond as predicted by the alternative hypothesis of 
surface-water acidification. It states that the water chemistry of most 
currently acidic lakes and streams is not geologically controlled, nor was it 
geologically controlled by weathering of mineral bases prior to acidic 
deposition. Currently acidic surface waters receive large amounts of near-
surface runoff from highly acidic, organic-rich soils and peats and/or 
acidophilic ecosystems. 

It is recommended that the identified factors and processes be incorporated 
into a revised, more comprehensive theory of surface-water acidification and 
into mathematical models used to predict changes in surface water chemistry. 

Full and careful consideration of these additional factors and processes, and 
more comprehensive and critical evaluation of scientific information will 
lead to a more credible assessment of the role of acidic deposition in 
surface-water acidification. 

Same important facts that are widely or prominently reported include the 
following: 

o Paleolimnological studies indicate that approximately 90 percent of 
currently acidic (pH<5.5) surface waters examined in the northeastern U.S.A. 
and southern Norway were naturally acidic (pH<5.5) in pre-industrial times. 

o Many surface waters of "sensitive" watersheds in areas of the world not 
receiving acidic deposition are naturally acidic: for example, 37 percent of 
sampled surface waters in recently glaciated southwestern Tasmania have 
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pH<5.5 (28% pH≤5.0); 84 percent of the main lakes on non-glaciated Frazier 
Island, Queensland are pH<5.5 (79% pH≤5.0), and; numerous highly acidic 
waters with pH as low as 3.3 occur in recently glaciated Westland, New 
Zealand, where precipitation pH is 5.6 - 5.7. 

o Naturally acidic surface waters have acid-stressed aquatic ecosystems and 
chemical analysis has shown that they can have natural forms of toxic 
aluminum. 

o In "sensitive" watersheds, natural soil formation that occurs after land-
use changes has enormous acidification potential. For example, in just 90 
years, reforestation of an abandoned farm field resulted in highly acidic 
surface soil horizons whose acid content is equivalent to about 1,000 years 
of pH 4.3 acid rain. Such land-use changes have occurred over nearly all of 
the eastern U.S.A.; for example, 99.5 percent of New York's forests were cut 
and/or burned by the 1920's. 

o Laboratory and field experiments show that snowmelt pH consistently 
resembles soil pH and is but little influenced by snowpack acidity. 

o It is possible that current concentrations of dissolved humic acids alone 
could result in pH values less than 5.0 for over 50 percent of the highly 
acidic (pH<5.0) lakes found in the eastern U.S.A. by the National Surface 
Water Survey. 

These facts contract the dominant theory of surface-water acidification which 
states that most currently acidic surface waters are acidic because of acidic 
deposition. 

Some of the factors and processes that need to be considered more 
comprehensively and critically in order to establish a sound scientific basis 
for conducting an assessment include the following: 

o The H+ content of the watersheds themselves, as well as H+ from acidic 
deposition; 

o The importance of abundant elements, such as hydrogen, in naturally-
occurring, non-ionic compounds that can be converted to acids; 

o The acidification of surface waters by strong mineral acids produced by 
soil and plant ion exchange; 

o The inclusion of erosional and depositional watershed processes in 
watershed input/output budgets; 

o The climatically-driven gradients in natural soil acidity; 

o The comprehensive consideration of the acidification/buffering nature of 
organic acids; 

o The production of strong mineral acids from flocculated weak organic acids 
in soils and surface waters; 

o The interactions of acid-with-acid, as well as acid-with-base; 
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o The production of strong acids from neutral salts; 

o The enormous acid neutralizing capacity of even granitic watersheds, and; 

o The creation of regional acidic deposition and regional changes in land 
use are fundamentally linked by a common causal agency - technological and 
societal change. 

The alternative hypothesis of surface-water acidification has been developed 
from the following nine categories of observations: 

1. Recorded changes in surface-water chemistry over time; 

2. Documented declines in fisheries over time; 

3. The distribution of acid-stressed and absent fish populations; 

4. The correlation of soil acidity with climate and acidic deposition; 

5. Current surface-water chemistry; 

6. Non-steady state watersheds - land-use changes and natural processes; 

7. Field and laboratory experiments; 

8. Paleoliranological investigations, and; 

9. Observations of naturally acidic surface waters associated with acidic 
soils of "sensitive" watersheds not exposed to man-made acidic deposition. 

More research is needed to quantify the role of these additional factors and 
processes versus the role of acidic deposition in surface-water acidification 
in eastern North America. 

Chapter 1 introduces the report by describing the assessment in the context 
of the National Acid Precipitation Assessment Program (NAPAP). Chapter 2 
provides background on the evolution of scientific thought that led to the 
establishment and much of the character of NAPAP, especially its program on 
aquatic effects. Chapter 3 examines critically the supporting evidence for 
accepted theory and alternative hypotheses of surface-water acidification. 
Conclusions are presented in Chapter 4. 
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GLOSSARY 

Acid - a substance that can contribute Hydrogen ion (H+) to water or is 
capable of donating H+ to react with a base. 

Acid Lake - a lake more acidic than predicted on the basis of carbonate 
chemistry alone. 

Acid Neutralizing Capacity (ANC) - Ihe measure of the quantity of all base 
substances, including humate (RCCO-) and carbonate species, that participate 
in titration by acid. ANC is an operational definition for the total base 
content of water and soil. 

Acidity - the measure of the quantity of acid in solution or soil. 

Acidification - the process by which soil or water becomes more acidic. 

Acidophilic - acid-loving organisms or ecosystems. Acidophilic ecosystems 
helped to create their acidic environment. They work to maintain the acidic 
environment that they prefer or require to exist in. 

Alkalinity - the quantity of HCO3
-, CO3

2-, and OH- in water. Alkalinity, 
while rigorously defined as being the measure of all base substances in 
solution that participate in titration by acid, is commonly considered to be 
the measure of a water's ability to neutralize inputs of acid (titration 
either in the laboratory or in surface water) based on H2CO3 weathering of 
mineral bases. 

Base Neutralizing Capacity (BNC) - the measure of the quantity of all acidic 
substances that participate in titration by base. BNC is an operational 
definition of the total acid content of water and soil. 

Conjugate Base - The anion of an acid is the conjugate base of that acid. 
For example, HCO3

- (bicarbonate) is the conjugate base of H2CO3 (carbonic 
acid): H2CO3 = H+ + HCO3

-. In the aquatic effects literature, the term, 
"strong acid anion" is often used in place of conjugate base. For example, 
S O 2 - is said to be the "strong acid anion" of H2SO4 (sulfuric acid). 

Dissolved Organic Carbon (DOC) - organic carbon that is in solution. DOC is 
commonly used as a surrogate measure of humic acid. 

Electrolyte - an ionic substance. Ionic substances can be neutral salts such 
as common table salt NaCl, acid such as sulfuric acid (H2SO4), or base such 
as lye (NaOH). 

Electroneutrality - the condition where the concentration of negatively-
charged ions (anions) equal the concentration of positively-charged ions 
(cations). 

Flocculation - the process by which substances aggregate into particles 
large enough to settle out of solution. 

Organic Acid - an acid that is organic. Organic acids in surface waters are 
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commonly believed to be humic acids. 

pH - the negative logarithm of the charge equivalent concentration 
of H+. For example 10-7 equivalents of H+ per liter is pH = 7.0. 

Quartzose - mineral soils or rocks that are made up of mostly quartz (SiO2). 
An example of quartzose material is common, non-carbonate beach sand. 

Siliceous - silica-bearing mineral material. Siliceous includes all minerals 
that contain silicon (Si). Most siliceous minerals contain Al, and some base 
cations such as Ca2+, Mg2+, Na+, K+ as well as Si. 

Strong Acid - used here to mean an acid that is completely dissociated at the 
range of pH values observed for surface waters. 

Strong Acid Anion - ia a term often used in the aquatic effects literature in 
place of conjugate base. For example, SO4

2- is said to be the "strong acid 
anion" of H2SO4 (sulfuric acid): H2SO4 = 2H+ + SO4

2-. 

Titration - The process by which one chemical component is consumed by the 
addition of another chemical component. Acid/base titration is the key 
concept used by aquatic scientists to model acidification of surface waters. 

Weak Acid - an acid that is not necessarily completely dissociated at the 
range of pH values observed for surface waters. A common example of a weak 
acid is humic acid. 
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CHAPTER 1 

INTRODUCTION 

There is widespread belief that acidic deposition has caused lakes and 

streams in eastern North America to became acidic and lose their fish 

populations (Galloway et al., 1978). The perceived aquatic effects of "acid 

rain" have been the prime motivation for public and political calls to 

further reduce the emissions of the pollutants, especially sulfur dioxide 

(SO2) from utilities and other heavy industrial sources. 

In response to public and political concern, research on aquatic effects 

is currently supported by a number of public and private sponsors in the 

United States and abroad. In the United States, the National Acid 

Precipitation Assessment Program (NAPAP) coordinates the Federal Government's 

efforts to improve the understanding of the causes and effects of acidic 

deposition, including an assessment of the role of acidic deposition in 

surface-water acidification. 

NAPAP is a 10-year program organized along the lines originally 

recommended by Galloway et al. (1978). NAPAP's funding level may reflect 

the intense public and political interest in "acid rain". Funding for NAPAP 

has been much greater than the average of $10 million per year ($100 million 

for the entire 10 years) originally recommended (Galloway et al., 1978). For 

example, NAPAP's annual budget in 1988 alone is about $85 million, of which 

around $25 million, or 30 percent, is allocated for research on aquatic 

effects. 

To fulfill its mandate of providing scientifically-sound information 
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needed by Congress and others, NAPAP produces reports documenting research 

progress and scientific assessments of acidic deposition issues. In 

September 1987, NAPAP released its Interim Assessment of the causes and 

consequences of acidic deposition (NAPAP, 1987a). NAPAP's accompanying press 

release (NAPAP, 1987b) focused on aquatic effects. It was reported in the 

press release that there is no significant direct effect of acidic deposition 

on trees or crops, but that acidic deposition does contribute significantly 

to the acidification of some lakes in the upper Midwest and the northeastern 

United States. In Canada and Scandinavia, it is also widely believed that 

acidic deposition is the main cause of acidic surface waters, and that 

further reductions in emissions of sulfur will reduce the acidity of surface 

waters (NAPAP, 1987b). 

NAPAP's Interim Assessment (NAPAP, 1987a) was highly criticized by some 

scientists. SCIENCE magazine reported that: 

"Most of the criticisms center on the report's depiction of aquatic 
effects to date, the best understood effect, and the one that 
galvanized the scientific community and captured public attention in 
the 1970's" (Roberts, 1987). 

Thus, despite the belief that the aquatic effects of acidic deposition is 

the best understood effects area, this area remains very controversial. 

Questions arise about the belief that we are dealing with a well-known effect 

and about the reported scientific consensus that the processes of surface-

water acidification are well understood and well reported. 

As Congress continues to deliberate on the issues of acidic deposition, 

and as NAPAP moves towards the delivery of its Final Assessment in 1990, it 

is critical to insure that scientists and decision makers do not overlook 

important views. All major effects and processes of surface-water 

acidification must be adequately considered in order to accurately assess any 
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damage and the benefits of further emissions controls and mitigation efforts. 

To fulfill its mandate of providing scientifically-sound information 

needed by Congress and others, NAPAP's assessment of aquatic effects of 

acidic deposition has established the following guidelines: 

"o To provide useful information for policy development ...:" 

"o It must be credible, both to scientific reviewers and the 
users of the assessment information." 

"o The assessment must be comprehensive, by examining the entire 
range of plausible causes, effects and control approaches." 

"o It must be critical, endorsing hypotheses that are supported 
by scientific research and rejecting unsubstantiated 
hypotheses." (NAPAP, 1988, p.vii). 

In order to factually assess the role of acidic deposition in surface-

water acidification many factors must be considered. These factors include 

many complex processes by which deposited acids interact with soils, 

vegetation, geology, surface waters and their sediments in the context of 

spatial and temporal variation of hydrologic flowpaths. Due consideration 

must also be given to the many complex processes that cause soils and surface 

waters to be naturally acidic, to other causes of acidification (such as 

acid-mine drainage), and to non-steady-state processes that may result in re-

acidification of watersheds (e.g., recovery from land-use change and natural 

disturbances). 

This report will critically examine data and theories said to prove 

widespread and profound chronic degradation of aquatic resources by acidic 

deposition. It will examine the reported scientific consensus that the 

processes governing surface-water acidification are reasonably well 

understood and well reported. The report will also examine some alternative 

hypotheses of surface-water acidification. 
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Such critical examination, by definition, is not a synopsis or systematic 

review of the past and current generally-accepted themes found in the acid 

rain literature. The method of critical examination is one by which 

consistency, both internal consistency and consistency with the external 

biological, chemical, and geological literatures, are examined. Such an 

examination of consistency, as performed in this report, necessarily 

determines if the reported understanding is comprehensive (i.e., if all 

important views, effects and processes of aquatic acidification are 

objectively and seriously considered in the reported consensus) and is, 

therefore, credible. 

Critical examination is the strength of the modern scientific method. 

The extent to which data and theory withstand critical examination is an 

indication of their scientific credibility and acceptability. 
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CHAPTER 2 

BACKGROUND 

This chapter presents the evolution of scientific thought as a foundation 

for understanding today's scientific theory and current understanding of 

surface-water acidification. 

The monitoring and research results from Scandinavia in the 1940's through 

the 1970's have had a major influence on current understanding of the aquatic 

effects of acidic deposition. These results are important because they have 

been seminal in the development of surface-water acidification theory. 

Furthermore, the watersheds of highly acidic surface waters in Scandinavia 

and recently-glaciated regions of eastern North America are similar and, 

therefore, are expected to react similarly to acidic deposition. Thus, the 

reported findings of these Scandanavia studies are perceived as being highly 

relevant to understanding aquatic effects in much of eastern North America. 

Acidification of surface waters was believed to be in response to the 

expansion of acidic deposition out of industrial and urban centers since the 

mid-1950's to cover a large areas of eastern North America and northern 

Europe. 

Significant study of acidic deposition in Scandanavia began shortly after 

the Second World War. Due to oil shortages during the War, there was intense 

operation of an oil shale extraction plant in southernmost Sweden. 

Apparently, high levels of emissions from this plant resulted in serious 

foliar damage around the facility. After the War, Swedish scientists set up 

a major experiment to study the effects of these emissions on forests and 
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crops. As part of this study, an atmospheric-monitoring network was 

established (Johansson, 1959). 

As the study progressed, scientists observed that precipitation at the 

upwind (southern) sampling sites was progressively becoming more acidic and 

that sulfuric acid (H2SO4) in precipitation was expanding northward across 

their monitoring network in southern Sweden. This expansion of H2SO4 

deposition was apparently the result of increasing industrial activity in 

mainland Europe. Having become aware of the potential effects of acidic 

deposition, Sweden established in the late 1940's the first national acidic 

deposition effects project and the first large-scale precipitation chemistry 

network in Europe. Agricultural colleges, experiment stations, and 

agricultural high schools were employed to study this potentially serious 

environmental problem (Johansson, 1959). Later, one of the program's 

scientists (Eriksson) would become the "father" of the European Air Chemistry 

Network which predate the National Atmospheric Deposition Program (NADP) of 

the United States by about 25 years (Cowling, 1980; 1982). 

This Swedish project is acknowledged as being historically important 

because it was the first national acidic deposition effort as well as the 

prototype national acidic deposition monitoring network (Cowling, 1980; 

1982). This Swedish program was unable to identify any effects of either 

ambient or simulated environmental levels of wet deposition and SO2 on crops 

or forests, which is not well reported in the effects literature. 

Furthermore, the results of the program indicated that Swedish agriculture 

suffered almost universally from sulfur deficiency. Acidic deposition was 

credited with improving both crop yield and its protein content in southern 

Sweden. The final report of the project was appropriately titled, "On Sulfur 
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Problems in Swedish Agriculture" (Johansson, 1959). Correspondingly, 

agricultural application of sulfur in fertilizer increased from about 7 kg 

S/ha-yr (21 kg SO4/ha-yr) to greater than 20 kg S/ha-yr (60 kg SO4/ha-yr) 

(Oden, 1979) as a result of the project (Johansson, 1959). 

Norway closely followed Sweden in establishing a precipitation-chemistry 

network. Paralleling the Swedish observation, acidic deposition was seen by 

the Norwegians to be expanding northward out from the heart of industrial 

Europe. The time trends for annual mean pH of precipitation at three 

locations in southernmost Norway show a marked increase in acidity of 

precipitation in the 1960's (Figure 1), as did similar data for Scandinavia 

reported by the U.S. National Research Council (1981; Figure 2). Lista, a 

sampling location on the coast at the southernmost tip of Norway (location 

shown in Figure 3), recorded in 1955-1962 a mean precipitation pH of 4.9 

(Lag, 1968) and a mean pH of 4.3 in 1974-1975, a four-fold increase in the pH 

measure of acidity (Wright and Henriksen, 1978). Mean regional concentration 

of non-marine SO4
2- in precipitation of southern Norway doubled in the 1960's 

accompanied by a marked increase in acidity of precipitation (Braekke, 1976). 

The increase in acidity and the increase in areal extent of acidic 

deposition in Europe was thought to be correlated with: (i) a doubling of 

European SO2 emissions between 1950 and 1970; (ii) the use of tall 

smokestacks to disperse emissions over a wider area, and; (iii) the use of 

scrubbers and cleaner-burning fuels to reduce emissions of particulates 

(which contained bases that act to neutralize emitted acid-forming 

substances) to alleviate local air pollution problems. These factors are 

believed to have transformed local air pollution and soot problems into 

regional acidic deposition (Likens and Bormann, 1974; Braekke, 1976; 
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Figure 1. Annual mean pH of precipitation at three Norwegian stations over 
time. Modified from Seip and Tollan (1978). 
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Figure 2. The pH of precipitation over time in Scandinavia according to 
the U.S. National Research Council (1981, p. 135). 
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Overrein et al., 1980). 

Through the 1970's, there was no significant trend reported for 

concentration of SO4
2- or emission of SO2 (Overrein et al., 1980). The 

spatial distribution of acid precipitation over southern and central 

Norway in 1972-1975 (Braekke, 1976; Wright, 1977) apparently closely 

resembles that of today (Reuss et al.,1987). 

In 1972, Norway established an 8-year national research project named, 

"Acid Precipitation-Effects on Forests and Fish Project" (SNSF-Project). The 

SNSF-Project published an "interim assessment" (Braekke, 1976) and a Final 

Report (Overrein et al., 1980). No direct measurable significant effect of 

acidic deposition on forests was reported (Braekke, 1976; Overrein et al., 

1980). 

The SNSF-Project conducted the most intensive and extensive study of its 

time on the aquatic effects of acid rain and was to have a profound influence 

on NAPAP's assessment of the aquatic effects of acid rain. The SNSF-Project 

concluded that there had been widespread and profound chronic degradation of 

aquatic resources by acidic deposition in southern Norway (Braekke, 1976; 

Overrein et al., 1980). 

In Sweden, data from a national hydrological monitoring program 

established in 1965 was reported as showing a marked trend of decreasing pH 

and alkalinity (HCO3-) accompanied by increasing SO 4
2 - in rivers. Water 

chemistry was also reported as corresponding to a north-south H2SO4 
deposition gradient across Sweden (Oden, 1976; 1979). The reported spatial 

and temporal coincidence of acidification of surface water and precipitation 

chemistry by ongoing national deposition monitoring and surface water 

monitoring networks (Oden, 1976; 1979) presented a very powerful argument 
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for acidification of water by acidic deposition (i.e., titration and loss of 

alkalinity by sulfuric acid). These Swedish results were reported as having 

significantly influenced scientific thought concerning the aquatic effects of 

acidic deposition (Cowling, 1980; 1982). 

Canadian studies on the aquatic effects of regional acidic deposition 

started somewhat later than those of Norway and Sweden. As late as 1976 it 

was reported that: 

"There is no published study at present that identifies long-range 
transport of acid (from many point sources) as affecting Canadian 
lakes" (Beamish, 1976). 

However, studies were underway. Like Sweden, the damage created at a "hot 

spot" stimulated Canadian interest in acid rain. The Canadian hot spot was 

the world's largest SO2 emitter - the Sudbury nickel and copper smelter 

complex in Ontario. And less than 100 miles to the north of Sudbury was yet 

another smelter complex that was the world's second largest point source of 

SO2 (Beamish, 1976). 

As of 1976 information existed reporting Canadian lakes as having been 

acidified by the massive point source emissions from Sudbury smelter complex 

(Beamish, 1976). Reports of aquatic acidification by regional acidic 

deposition soon followed, however, particularly for Nova Scotia. 

Like Scandanavia, Nova Scotia was reported to be an area whose 

precipitation became unnaturally acidified after the mid-1950's (Likens et  

al., 1979; Watt et al., 1979; Thompson et al., 1980; National Research 

Council; 1981). However, unlike Scandinavian data, prior to the 1970's, 

precipitation chemistry data exists for only one location and only for the 

mid-1950's. There is question as to whether the earlier 1950's precipitation 

chemistry data for Nova Scotia is accurate or not (Kramer and Tessier, 
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1982) . 

Returning to acidification of surface waters, increased deposition of 

H2SO4 was reported to be reflected in increased acidity and concentration of 

SO4
2- in both Nova Scotian lakes (Watt et al., 1979) and rivers (Thompson et  

al., 1980). Unlike other historical surface water chemistry data, the 

historical Nova Scotian lake data were considered to be of high quality and 

directly comparable to modern water chemistry data for most chemical 

parameters (Watt et al., 1979). 

A recorded decline in alkalinity of Clear Lake in Ontario between 1967 and 

1977 was reported to be, presumably, the result of regional acidic deposition 

(Dillon et al., 1978; National Research Council, 1981). 

In conclusion, the accumulation of studies reporting detrimental effects 

of acidic deposition resulted in increasing concern for protection of the 

environment, particularly the aquatic environment. A mood was established 

that resulted in pressure for the United States to initiate a national acidic 

deposition research program. In Congressional testimony, Dr. Ellis Cowling 

discussed the creation of the National Acid Precipitation Assessment Program 

(NAPAP). 

"In the fall of 1977, I joined with three other scientists from the 
NADP, in drafting a report to the President's Council on Environmental 
Quality entitled A National Program for Assessing the Problem of 
Atmospheric Deposition (Acid Rain). This publication (Galloway et al., 
1978) provided the basis for the Presidential initiative on Acid Rain 
which was announced in August 1979, (Carter, 1979). During the summer 
of 1980, I also worked together with scientists in various federal 
agencies in developing the 'National Acid Precipitation Assessment 
Plan'..." (Congressional Committee on Energy and Commerce, 1982, p. 
330). 

In their executive summary, Galloway et al. (1978) state: 

"Acid precipitation is a major environmental problem on both sides of 
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the Atlantic Ocean." 

"In the United States, acid precipitation is one of the two major 
environmental problems recognized by the President's Council on 
Environmental Quality." 

"The continuing, unchecked environmental degradation caused by acid 
precipitation could reach a stage where the damage to natural 
ecosystems would be irreversible." 

"The time has come to stop talking and to implement a comprehensive and 
well-coordinated program of research and monitoring. The United States 
already lags well behind other nations (including Canada, Norway, and 
Sweden) despite the severe threat posed by acid precipitation to large 
areas of this country." 

"Thanks largely to research efforts in northern Europe and Canada, the 
effects of strong acids and many other substances on fish and other 
aquatic organisms are becoming much better understood. The effects are 
generally catastrophic for fish—particularly in southern Sweden and 
Norway, eastern Canada, and in the northeastern United States. By 
contrast, effects on commercial and urban forests, agricultural crops, 
wetlands, and our system of National Parks are largely unknown." 

Reports of pervasive and severe acidification of surface waters in the 

Northeast and Appalachians were numerous just prior to and during the early 

years of NAPAP. Acidification of surface waters was believed to be in 

response to the expansion of acidic deposition out of industrial and urban 

centers since the mid-1950's to cover a large area of eastern North America 

(Likens et al., 1979; National Research Council, 1981). 

Schofield (1976) reported that surveys of high altitude lakes and ponds in 

the Adirondacks showed that the percentage of pH less than 5.0 waters 

increased from 4% in the 1930's to over 50% in the mid-1970's. About 90% of 

these pH less than 5.0 waters in the mid-1970's were said to be fishless 

(Schofield, 1976). 

Hendrey et al. (1980) and Burns et al. (1981) claimed that the pH of 79% 

of mountain streams in North Carolina decreased between the early 1960's and 

1979. Mean hydrogen ion (H+) concentration of these streams was reported to 
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have increased by 82% during this time period (Hendrey et al., 1980; Burns et 

al., 1981). The pH values of 90% of White Mountain streams in New Hampshire 

were said to have decreased between the late 1930's and 1979 with mean H+ 

concentration reported to have increased by 247% (Hendrey et al., 1980; 

Burns et al., 1981). 

Lakes and streams in the mountains were thought to be the "canaries in the 

coal mine" that herald the impending doom of more lowland terrain composed 

of highly siliceous, granitic-type bedrock. Acidic deposition was believed 

to capable of eventually wearing down the greater acid neutralizing capacity 

of the thicker lowland soils and regolith. Such geologic materials were 

stated to have "relatively" few bases with which to neutralize deposition of 

acid (Braekke, 1976; Oden, 1976; Likens et al., 1979; Overrein et al., 1980; 

U.S.EPA, 1980a, b; 1984; Bridge and Fairchild, 1981; Loucks et al., 1982; 

NAPAP, 1984). For example, 

"Declines in pH and alkalinity (a measure of acid-neutralizing 
capacity) were first described in Scandinavian lakes characterized as 
nutrient poor, surrounded by thin (or no) soils underlain by granite, 
with steep slopes. From the chemical changes observed, it appeared 
that in such lakes acid deposition consumed the acid-neutralizing 
capacity of the watershed and the associated water bodies to a point at 
which acidification could occur. In systems with such limited acid 
neutralization capacity (or sufficiently acid soils) it is believed 
that once the neutralization capacity is reduced, surface water quality 
will resemble precipitation chemistry within years to decades" (NAPAP, 
1984, p.15). 

As NAPAP began its research efforts, reports of widespread and profound 

damage to aquatic resources continued to emerge. The Northeast Acid Rain 

Task Force predicted that 44% of Connecticut's lakes and about 60% of 

Massachusetts' reservoirs would be acidified if acidic deposition was not 

stopped (Bridge and Fairchild, 1981). The Institute of Ecology in Indiana 

placed these figures at essentially 100% (Loucks et al., 1982). The U.S. 

2-10 



Fish and Wildlife Service Survey of six New England states claimed that 64% 

of waters surveyed having historical pH data and 70% having historical 

alkalinity data had recently become more acidic, presumably due to acidic 

deposition (Haines and Akielaszak, 1983). These figures were said to agree 

well with the prediction of 70% acidification based on sulfuric acid 

titration of alkalinity using contemporary water chemistry data (Henriksen, 

1980) gathered in this survey (Haines and Akielaszak, 1983). 

Because of such studies and statements, there was an incontrovertible 

belief in the 1970's and early 1980's that acidic deposition was rapidly 

creating an aquatic "silent spring". To quote Terry Haines (U.S. Fish and 

Wildlife Service) discussion of New England waters: 

"In these acid (pH<5) lakes, fish populations are either absent or are 
maintained by stocking... . In the other lakes, the pH is not yet 
critically low, but the lakes are very low in alkalinity or buffering 
capacity and will not be able to resist acid precipitation for very 
long." (Congressional Committee on Energy and Commerce, 1982, p. 121). 

Another example are the words of Frederick Johnson of the Pennsylvanian 

Fish Commission: 

"Fisheries people have been justifiably accused of bemoaning the 
increased losses to their resource without suggesting acceptable 
solutions. I wish that it were possible for me to counter this 
tendency, but doubt that the tools are available to do so. But I do 
know that the industry stance to continue to research for another ten 
years, and do nothing else, is a formula to insure increasing 
degradation for the next 10-20 years. The clock is ticking out on 
trout, salmon, and many bass lakes and streams in our Northeast, parts 
of Canada and much of Northern Europe and Scandinavia. MOST OF THE 
PROPOSED RESEARCH WOULD ONLY FURTHER PROVE WHAT IS ALREADY KNOWN. 
(Emphasis added). The National Academy of Science reported in 
September 1981 that the evidence linking acid rain to atmosphere 
emission of fossil fuels and metal smelters in 'overwhelming'. Must we 
have a smoking gun and a warm corpse before we take action to 
discourage murder?" (Congressional Committee on Energy and Commerce, 
1982, p. 93). 
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The widespread acidification of surface waters was reported by 

scientists to coincide spatially and temporally with the reported spreading 

of acidic deposition: 

"Scandinavian and North American studies appear to agree on one point: 
acidification of sensitive waters is detectable within one to two 
decades where pH values of precipitation are less than 4.6 — a 10-fold 
increase in acidity over the theoretically 'pure' rain pH value of 5.6 
(Henriksen 1979, 1980; Watt et al., 1979; Thompson et al., 1980)" 
(National Research Council, 1981, p. 153). 

The U.S. EPA, the lead federal agency responsible for the aquatic effects 

part of NAPAP, published the bulletin, "Acid Rain" (U.S.EPA, 1980a) which 

stated, "It is in lakes and streams where the most dramatic effects of acid 

rain have been clearly observed" (U.S. EPA, 1980a, p.14). The Bulletin then 

went on to quote statistics on how large numbers of Scandinavian lakes had pH 

decrease by almost 2 pH units since the 1930's and how the percentage of pH 

less than 5 lakes and ponds at high altitudes greatly increased since the 

1930's. "The acid rain condition in the 'forever wild' Adirondacks 

underlines the problem posed by the transport of pollutants from the point of 

their creation to the point of their effect" (U.S. EPA, 1980a, p.7). 

"The extent of change in acidity of a lake or stream is determined 
mainly by the buffering capacity of the surrounding soil and the 
composition and size of the watershed in which the water resides. If 
the watershed soil is alkaline - containing limestone or bicarbonate to 
neutralize incoming acids - the lakes and streams will be far less 
susceptible to harm" (U.S. EPA, 1980a, p.14). 

In 1980, the U.S. EPA also started to publish a newsletter-type status 

report, "Acid Rain". The newsletter begins, 

"Acid rain is a major environmental problem on both sides of the 
Atlantic Ocean. Originally noticed and studied in the Scandinavian 
countries and Canada, acid rain has been documented in this country, 
first in the Northeast and now throughout much of the United States. 
Increasing levels of acidity have already caused measurable damage to 
the environment. Many lakes are now totally devoid of fish." 

"A growing body of evidence suggests that acid rain may have 
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substantial adverse effects on the environment. Such effects include 
acidification of lakes, rivers, and groundwaters, with resultant damage 
to fish and other components of the aquatic ecosystem." 

"Fresh water bodies in much of eastern North America and northern 
Europe, which today lie within and adjacent to the areas of highest 
acidic rains, are threatened by the continual deposition and further 
expansion of acid rain. Most of these bodies of water are in regions 
underlain by carbonate-poor granitic rock and are poorly buffered and 
vulnerable to acid inputs. The increasing acidity of lakes in North 
America and Europe has been documented, with the most tangible result 
being the decline in fish populations. During the last 40 years, the 
mean pH of lakes in acid rain affected areas has decreased almost two 
units. This has led to a decrease in populations of fish and other 
aquatic organisms" (U.S. EPA, 1980b, p.1). 

In summary, this chapter briefly reviews the background to the evolution 

of scientific thought concerning acid rain and its aquatic effects up through 

the inception of NAPAP. Acidic H2SO4 deposition was seen to expand out of 

the industrial and urban centers of western Europe after the Second World 

War. Regional acidic deposition in western and northern Europe apparently 

achieved its approximate present distribution and intensity in the 1970's. 

The deposition chemistry of eastern North America was thought to have 

undergone a similar evolution. Numerous studies reported that acidification 

of surface waters was occurring in spatial and temporal coincidence with 

acidic H2SO4 deposition. Increasing acidity of surface waters was reported 

to be represented by decreasing concentrations of alkalinity and increasing 

concentrations of sulfate, presumably due to increased deposition of sulfuric 

acid. Thus, during the inception and early formative years of NAPAP, aquatic 

acidification had been reported to be an especially severe consequence of 

"acid rain". 

From its inception, acid rain research has mostly accepted the premise 

that atmospheric deposition of sulfuric acid is responsible for widespread 

and profound chronic acidification of surface waters. 
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The following chapter will examine the scientific credibility of this 

premise through comprehensive and critical examination of processes, causes, 

effects, theory, and hypotheses of surface-water acidification. 
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CHAPTER 3 

ACIDIFICATION OF SURFACE WATERS: DIRECT OBSERVATIONS, THEORY, 
AND HYPOTHESES 

Processes and factors of surface-water acidification that are reported as 

representing the scientific consensus are presented in this report as the 

theory of surface-water acidification, or simply as acidification theory. 

Processes and factors of surface-water acidification that are outside of the 

reported scientific consensus are defined in this report as being 

alternative hypotheses of surface-water acidification, or simply 

acidification hypotheses. These processes and factors, unlike those of 

acidification theory, are not well researched and are not recognized as being 

important by most scientists in the aquatic effects research area. 

Acidification theory assumes that, in the absence of acidic deposition, 

water chemistry of "sensitive" watersheds is geologically controlled. Their 

natural water chemistry is believed to be the product of carbonic acid 

(H2CO3) weathering of mineral bases (e.g., Ca 2 +), which produces alkalinity 

(HCO3-), e.g., Ca2+ + HCO3
-. Thus, the fundamental premise of acidification 

theory is that most waters currently more acidic than predicted on the basis 

of carbonate chemistry have been recently acidified by acidic H2SO4 
deposition. 

The alternative hypotheses of acidification recognize that the water 

chemistry of most currently "acidic" surface waters in "sensitive" watersheds 

is not now geologically controlled, nor, in their undisturbed state, were 

they likely to be geologically controlled in pre-deposition times. Such 

lakes and streams receive disproportionately large amounts of their water 
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from highly acidic, organic-rich soils and peats and/or acidophilic 

ecosystems that mantle "sensitive" watersheds. The alternate hypotheses of 

acidification assume that most currently "acidic" surface waters in 

"sensitive" watersheds have been acidic in pre-deposition times due to weak 

organic acids and/or strong acidity produced by soil and plant processes. 

Thus, the fundamental premise of alternative hypotheses of acidification is 

that acidification by "acid rain" is superimposed upon natural processes of 

acidification. They predict that the principal effect of acidic deposition 

is the qualitative shift in the nature of acidity, rather than the massive 

quantitative increase in acidity predicted by acidification theory. 

This chapter is divided into nine categories of observations from which 

the theory and alternative hypotheses of surface-water acidification have 

been developed: 

3.1 Recorded changes in surface-water chemistry over time; 

3.2 Documented declines in fisheries over time; 

3.3 The distribution of acid-stressed and absent fish populations in 
relation with the distribution of acidic deposition or acidic waters; 

3.4 The correlation of soil acidity with climate and acidic deposition; 

3.5 Current surface-water chemistry; 

3.6 Non-steady state watersheds: Land-use changes and natural processes; 

3.7 Field and laboratory experiments; 

3.8 Paleolimnological investigations, and; 

3.9 Observations of naturally-acidic waters associated with acidic soils 
not exposed to man-made acidic deposition. 

Some of the more salient reported observations and conclusions regarding 

the nature and extent of surface-water acidification will be stated and 

critically examined. 
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3.1 Recorded Changes in Surface-Water Chemistry 

3.1.1 Comparison of Historical and Modern Water Chemistry Data 

Wright (1977) obtained historical pH values for 87 Norwegian lakes for the 

period 1923 - 1949 with which to compare with recent pH measurements 

(Overrein et al., 1980). Overall, Wright (1977) compared modern and 

historical water chemistry data for 258 Norwegian and Swedish lakes. Wright 

(1977) reported that 63% of these lakes had become more acidic (i.e., 

recorded decreases in pH of more than 0.25). Nine lakes have large decreases 

in recorded pH - 1.25 to almost 2 pH units decrease (Wright, 1977; Overrein 

et al., 1980). Wright (1977) claimed that, 

"all the lakes that have become more acidic are located in areas of 
southern Scandinavia that receive acid precipitation today (annual mean 
pH less than 4.6)" 

as shown in Figure 3. He thereby concluded that acidic deposition was 

responsible for the decreases in pH. This is the earliest use of mean 

annual precipitation pH 4.6 to define areas of acidified surface waters 

(Wright, 1977) and, with subsequent reiterations (Wright et al., 1977; 

Wright and Henriksen, 1978), it is the origin of the belief that 

acidification of surface waters has occurred only in the last 40 years and 

only in areas receiving mean pH≤4.6 precipitation (e.g., Galloway et al., 

1978; Overrein et al., 1980; U.S. EPA, 1980a,b; 1984; National Research 

Council, 1981; Johnson et al., 1984; NAPAP, 1984; Reuss et al;. 1987; Reuss, 

1988; Sullivan et_al., 1988). 

Examination of Wright's (1977) original data show that 8 of the 9 lakes 

with large changes in recorded pH (of up to almost 2 pH units) are located in 

Rondane National Park (Figure 3). The large change in pH for the ninth lake 
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Figure 3. Distribution of mean annual precipitation pH for southern Norway 
(1972-1975) in relation to the locations of some lakes recorded 
to have been acidified over a forty year period. Modified from 
Braekke (1976) and Wright (1977). 
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was subsequently discounted as being seasonally influenced by alkaline runoff 

from a glacier (Overrein et al., 1980). Wright's map of the distribution of 

mean precipitation pH for southern Norway (Figure 3) shows that the Park lies 

outside of the pH 4.6 precipitation area, not inside of it. The 5 lakes in 

Wright's data set that lie just north of the highest mean annual 

precipitation pH site in Norway, about pH = 5.0 (Figure 3), underwent a mean 

change in pH of -0.8 units (Wright, 1977). 

Most of the 20 lakes outside of the pH<4.6 region underwent marked 

acidification. The magnitude of recorded pH change was greater for the lakes 

that are located outside of the "acid rain" area relative to those that were 

receiving highly acidic deposition. Also, the percentage of lakes that 

underwent acidification was greater for those lakes outside of the mean 

precipitation pH 4.6 area compared to those receiving highly acidic (pH less 

than 4.6) precipitation. 

In view of this evidence, the widely-accepted conclusion that acidic 

(pH<4.6) precipitation is responsible for the recorded acidification of 

Scandinavian surface waters over the last 40 years (Wright, 1977) does not 

pass critical examination and is not scientifically credible. 

Subsequent to the acidification study of Wright (1977), it became 

questionable to use old, historical water pH and alkalinity data to estimate 

temporal acidification of surface waters. The SNSF-Project concluded that 

trends in acidification reported by comparison of historical versus modern 

water chemistry data are unreliable due to errors inherent to differences in 

methodology and the general unreliability of earlier measurements (Overrein 

et al., 1980). Likewise, the National Research Council (1981) concluded, 

"Routine surveys in the past have used measurement techniques too 
insensitive to detect changes in lakes susceptible to acidification." 
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(National Research Council, 1981, p.152). 

Nevertheless, after discounting the comparison of historical and modern 

water chemistry data in regard to surface-water acidification, on the very 

next page the National Research Council (1981, p. 153) does not discount the 

result of such comparison: 

"Scandinavian and North American studies appear to agree on one point: 
acidification of sensitive waters is detectable within one or two 
decades where pH values of precipitation are less than 4.6... ." 
(National Research Council (1981, p. 153). 

The Final Report of the SNSF-Project makes similarly internally-

inconsistent claims regarding recent recorded changes in acidity of surface 

waters in respect to recent changes in acidity of precipitation (Overrein et  

al., 1980). 

Re-examination of methodologies used to measure pH values of surface 

waters illustrates the problem faced by Norwegian and other scientists in 

comparing historical and modern water pH values. The old methods of pH and 

alkalinity measurement involve addition of chemicals to water samples and 

visual interpretation of color developed by the added chemicals. These 

added chemicals are nearly neutral in pH (Kramer and Tessier, 1982). 

However, "sensitive" waters of interest are exceedingly dilute and, 

therefore, have such low buffering capacity that the measured pH values of 

such waters tend to assume the pH values of the chemicals added (Kramer and 

Tessier, 1982). 

For example, Schofield (1976) reported that survey of high altitude 

Adirondack lakes and ponds underwent widespread acidification: in the 1930's 

4% of these waters had recorded pH values of less than 5 and in the 1970's 

over 50% had recorded pH<5.0. Pfeiffer and Festa (1980) re-analyzed high 

altitude Adirondack lakes and ponds using both the old colorimetric and the 
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modern meter methods of pH measurement. For the same lakes measured, the 

colorimetric method determined that 9% are pH<5.0 and the meter method 

determined that over 50% are pH<5.0. Whether the 9% figure is statistically 

different from the 4% figure for pH<5 lakes found in the 1930's was not 

reported as having been determined (Pfeiffer and Festa, 1980). 

Pfeiffer and Festa (1980) reported that the difference between pH values 

obtained colorimetrically and by pH meter increased with water acidity: being 

1.5 pH units for the most acidic (lowest pH) lakes. That the addition of a 

neutral chemical buffer to dilute water will result in larger upward shifts 

in pH for the more acidic (lower pH) waters is well predicted by chemical 

principles (Kramer and Tessier, 1982). 

Kramer and Tessier (1982) report that old and new analyses, even if 

performed by the same methods, are likely to differ because the materials and 

chemicals of today are different or are of different purity. And this 

difference is likely to be biased to artificially represent recent increases 

in the acidity of water (Kramer and Tessier, 1982). For example, we now use 

unreactive plastic and special glass sampling containers. Up into the 

1960's, glass containers that leached alkalinity into water samples were 

widely used. In the 1960's, Standard Methods of water analyses recognized 

this problem and recommended the use of non-reactive plastic or special 

glass containers to overcame this type of systematic error (Kramer and 

Tessier, 1982). Thus, it is not unreasonable to expect that colorimetric pH 

values determined in 1980 may yield somewhat more acidic pH values than it 

would in the 1930's. 

More recently, Kramer et al. (1986) used critical and rigorous chemical 

analyses and protocols to re-analyze New York and New Hampshire historical 
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water data and compare the corrected data to modern data. Uncorrected data 

indicated marked acidification. However, essentially no acidification trend 

was reported for the corrected data (Kramer et al., 1986). 

Burns et al. (1981) and Haines and Akielaszak (1983) compared incompatible 

historical and contemporary water chemistry data to report observed 

acidification trends. Burns et al. (1981) recognized the incompatibility of 

at least the alkalinity water chemistry data and claimed that the correction 

factor for comparing the methyl-orange and Gran titration alkalinity 

endpoints is 32 ueq/L, "the amount of free H+ in solution at pH 4.5" (Burns 

et al., 1981). 

Burns et al. (1981) underestimated the acidification bias inherent by 

comparison of methyl-orange and Gran titration alkalinity. The actual 

theoretical difference between Gran titration and methyl-orange endpoint 

measurements of alkalinity for true carbonate systems is 82 ueq/L (Kramer and 

Tessier, 1982). 

The publication of Dillon et al. (1978) appears to be the earliest 

scientific claim for acidification of a Canadian surface water (Clear Lake) 

by regional acidic deposition. It has been prominently cited as one of the 

definitive studies to have documented that acidic deposition is solely 

responsible for acidification of surface water (National Research Council, 

1981; Krug and Frink, 1983a; Havas et al., 1984; U.S. EPA, 1984). 

Alkalinity of Clear Lake was measured by titration to pH 4.5 endpoint and 

not by Gran titration (Dillon et al., 1978). By the time of the Dillon et  

al. (1978) study, Standard Methods for the Examination of Water and 

Wastewater (APHA, 1971) - which is the "Bible" for the analysis of water-

reported that the pH 4.5 endpoint method is too insensitive and is 
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inappropriate for measurement of alkalinity of waters as dilute as that of 

Clear Lake. This fact also became recognized in the acid rain literature 

(Overrein et al., 1980; Burns et al., 1981; National Research Council, 1981; 

Kramer and Tessier, 1982). The values for both historical (33 ueq/L) and 

modern (2-15 ueq/L) alkalinities for Clear Lake and their difference (Dillon 

et al., 1978) are about equal to or less than the estimated error of 

measurement (AFHA, 1971; Kramer and Tessier, 1982). Even if the reported 

values of the titration were accurate, these values can not represent 

bicarbonate (HCO3-) alkalinity (AFHA, 1971; Kramer and Tessier, 1982). 

Subsequent Canadian reports have also claimed to have demonstrated 

regional acidification of surface waters by acidic deposition. Thompson et  

al.(1980) reported that measured pH values for 3 Nova Scotian rivers between 

1954-1955 and 1965-1973+ had decreased as the result of increased acidic 

deposition. Also, they reported that the gradient in acidity of river water 

paralleled that of acidic deposition which suggests a spatial as well as 

temporal relationship between acidity of water and precipitation (Thompson et 

al., 1980). While Thompson et al. (1980) did not comment on methods of 

analysis, they did mention that the old water chemistry data were obtained 

from samples stored at room temperature (Thompson et al., 1980) which is a 

practice no-longer considered acceptable by aquatic chemists. Again, the 

issue of quality of old versus modern water chemistry data for measurement of 

acidity makes comparison of such data questionable (Kramer and Tessier, 

1982). 

The correlation of northeast/southwest acidity gradients between acidic 

deposition and river water in mainland Nova Scotia does not necessarily 

establish a causal relationship. For mainland Nova Scotia, there is also a 
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interspersed with thin, highly acidic peaty soils overlying granitic rock. 

Going north, the land becomes better drained. There are fewer bogs, the 

landscape is mantled with a higher proportion of deep, well drained mineral 

soil (Fernow, 1912; Goldthwait, 1924). Thus, it is expected that waters of 

the southwest would tend to be naturally more acidic and organic rich because 

more runoff is coming from acidic organic soil materials and peats (Krug and 

Frink, 1983a,b; Gherini et al., 1985). Such waters are expected to contain 

relatively higher concentrations of DOC (dissolved organic carbon), which is 

commonly used as a surrogate for natural organic acids. Waters of the 

northeast are expected to be more geologically controlled (i.e., having 

greater amounts of alkalinity and base mineral cations produced by mineral 

weathering). 

The influence of physiography on Nova Scotian river water chemistry is 

apparent from the more recent and comprehensive data of Thompson (1986) in 

Table 1. The southwest tends to have the acidic (pH<5.5) rivers which are 

relatively higher in DOC and lower in SO4
2- than the pH>5.5 rivers of the 

northeast (Table 1). The northeastern rivers have alkalinity and also tend 

to have somewhat higher concentrations of SO4
2-. 

These Nova Scotian river-water data (Table 1) do not support the belief 

that their acidity and geographic distribution of acidity are principally due 

to acidic H2SO4 deposition. The acidity of Nova Scotian rivers appears to be 

strongly related to natural watershed processes, as predicted by alternative 

hypotheses of acidification. 

Watt et al. (1979) have claimed that acidic H2SO4 deposition is 
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Table 1. Some Water Chemistry Data for Nova Scotian Rivers. 

River n pH DOC 
(mg/L) 

SO42-
(mg/L) 

Roseway 10 4.4 13.4 1.9 

Tusket 10 4.6 11.0 2.7 

Liscomb 11 4.8 9.2 1.7 
Mersey 27 5.0 8.4 1.9 

Medway 12 5.4 6.7 1.7 
Kelley 11 5.6 6.4 2.6 

Meteghan 17 5.7 9.1 2.7 

La Have 11 5.9 6.4 2.8 

St. Marys 10 6.0 4.6 1.7 

Clam H. 9 6.1 6.0 2.2 

Wallace 9 6.5 3.8 2.8 

From Thompson (1986). Data for 1983. 
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responsible for the regional acidification of "undisturbed" Nova Scotian 

lakes. Their study has been prominently cited as proving that acidic H2SO4 

deposition is solely responsible for the acidification of Nova Scotian lakes 

(e.g., National Research Council, 1981; Havas et al., 1984; U.S. EPA, 1984). 

Critical examination of the Watt et al. (1979) reveals internal 

inconsistency. The data do not support the conclusion drawn from them. For 

example, concentration of H+ increased by 21 ueq/L for "undisturbed" lakes on 

granite but concentration of non-marine SO4
2- increased by only 9 ueq/L 

(Gorham, 1957; Watt et al., 1979). It is only possible for 9 ueq/L of H2SO4 
to contribute 9 ueq/L of H+ to water, not 21 ueg/L. Even if all non-marine 

SO4
2- represented addition of pure H2SO4 to lakewater, the maximum increase 

in concentration of H+ that is possible is 9 ueq/L, not 21 ueq/L as reported 

(Watt et al., 1979). Assuming that the data of Watt et al. (1979) is 

accurate, then some factor other than acidic H2SO4 deposition must be the 

principal factor responsible for the reported increase in acidity of Nova 

Scotian lakes. 

In summary, this section has critically examined Scandinavian, Canadian, 

and American studies reporting that recorded historical acidification of 

surface waters is correlated both spatially and temporally to the advent of 

acidic deposition and is, therefore, caused by acidic deposition. These 

reviewed studies have been seminal to the reported scientific consensus 

established during the pre- and early-NAPAP years that acidic deposition is 

mainly, or even solely responsible for the widespread and recent 

acidification of surface waters (e.g., Galloway et_al., 1978; Overrein et  

al., 1980; U.S. EPA, 1980a,b; 1984; National Research Council, 1981). 

Critical examination shows that such a conclusion is not scientifically 
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credible. All of the examined studies suffer from significant 

inconsistencies and do not comprehensively consider relevant factors. These 

errors are not random. They consistently err on the side of overestimating 

surface water acidification by acidic H2SO4 deposition. 
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3.1.2 Recorded Trends in Water Chemistry 

Data from the Swedish atmospheric deposition and hydrochemical monitoring 

networks (the latter started during the International Hydrological Decade, 

1965 - 1975), have been reported to show trends and regional differences in 

river-water chemistry due to acidic deposition. Oden (1976), in a keynote 

paper to the First International Symposium on Acid Precipitation and the 

Forest Ecosystem, reported that Swedish river-water chemistry data show a 

marked decrease in pH from 1965 onward, ranging from 8.5% to 19.3% increase 

in the concentration of H+ per year. 

"If the slopes are extended to pH 5.5, which is supposed to be a 
biologically critical pH value a 'life-time of health' is obtained. On 
the average 60% of the investigated rivers in Sweden will reach this 
critical point in 40 years and as much as 90% in 80 years" (Oden, 
1976). 

Oden also reported that concentrations of HCO3- are decreasing while 

concentrations of SO4
2- are increasing in Swedish rivers (Oden, 1976), with 

river discharge of SO4
2- increasing by 2% to 5% per year from 1965 to 1977 

(Oden, 1979). Oden (1976; 1979) stated that there are corresponding 

north/south gradients in precipitation and river-water chemistry with 

concentrations of SO4
2- being highest in the south. He estimated that acidic 

H2SO4 deposition has increased river-water concentrations of SO4
2- in 

southern Sweden 10-fold over background levels (Oden, 1976; 1979). Oden's 

(1976; 1979) reports are considered to be an influential and historically-

significant contribution to the scientific understanding of the aquatic 

effects of "acid rain" (Cowling, 1980; 1982). 

Data from the Swedish atmospheric deposition and hydrochemical monitoring 

programs do not support Oden's (1976; 1979) claims that trends and regional 
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differences in river-water chemistry are due to acidic deposition. For 

example, Sanden et al. (1987) report that using the data from the same 

hydrochemical network used by Oden (1976; 1979), at the 5% level, 

"For stream water quality, 100 trend tests gave 7 statistically 
significant results, and this barely exceeds the number of significant 
results that could be expected to occur by chance. At the 1% level, no 
water quality trends at all could be verified." 

Data tested for trend analysis were pH, alkalinity, Ca2+, Mg2-, SO4
2-, and 

alkalinity-to-hardness ratio (Sanden et al., 1987). 

Sanden et al. (1987) also reported: 

"The difference between wet deposition of S in southern and northern 
parts of Sweden was found to be smaller than previously reported. In 
the northern catchment areas, the input of S was considerably larger 
than output." 

These data are presented in Table 2. 

Oden's (1979) sulfur budget publication was one of three articles related 

to the sulfur chemistry of Scandinavian surface waters that appeared 

virtually in sequence in the same issue of Nordic Hydrology. One of the 

other two articles (Anderson-Calles and Eriksson, 1979) directly refutes 

Oden's (1979) conclusions for the same reasons cited by Sanden et al. (1987). 

Like Sanden et al. (1987), Anderson-Calles and Eriksson (1979) also use data 

from the same Swedish atmospheric deposition and hydrochemical monitoring 

networks used by both Oden (1976; 1979). 

Anderson-Calles and Eriksson (1979) show that deposition of SO4
2- by 

precipitation in Sweden is not much different from north-to-south (Table 2). 

What is apparently different, on a regional basis, is the geochemistry of 

sulfur in watersheds. Anderson-Calles and Eriksson (1979) note that the more 

northern parts of Sweden's relatively level landscape are fairly waterlogged 

(Anderson-Calles and Eriksson, 1979), which suggests that 
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Table 2. Wet Deposition of SO42- and Discharge of SO42- for Swedish Rivers by 
Region. 

Region Precipitation* Discharge* Precipitation+ Discharge+ 

(kg/ha-yr) (kg/ha-yr) (mg/L) (mg/L) 

North (>65°) 23.52 10.77 3.89 4.55 

Central (60° N-65° N) 27.06 11.10 3.70 5.69 

South (<60° N) 29.97 23.60 4.13 11.82 

*From Anderson-Calles and Eriksson (1979). 
+From Sanden et al. (1987). 
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sulfate-reduction can be a prominent process in these terrains. This is 

further supported by the data in Table 2 showing that discharge of SO4
2- from 

watersheds in central and northern Sweden is about half that of SO4
2-

deposition and is considerably less than discharge of SO4
2- from southern 

Sweden. 

That Anderson-Calles and Eriksson (1979), Oden (1976; 1979) and Sanden et  

al. (1987) all use data from the same monitoring networks and that Anderson-

Calles and Eriksson (1979) and Sanden et al. (1987) were able to factually 

support their conclusions (Table 2) raises questions about Oden's (1976; 

1979) interpretation of these data. 

An article by Salbu et al. (1979), "Elemental Composition of Norwegian 

Rivers." appeared in the same issue of Nordic Hydrology as did the 

publication of Anderson-Calles and Eriksson (1979) and Oden (1979). Unlike 

Sweden (Table 2), there is a tremendous north/south gradient in the 

concentration of SO4
2- in Norwegian precipitation (Figure 4). While southern 

Norway is influenced by polluted airmasses coming up from the south out of 

the heart of industrial Europe, central and northern Norway principally 

receive relatively unpolluted precipitation from the North Atlantic and 

Arctic Oceans (Johannessen, 1970). The mountainous Scandinavian divide that 

separates Norway and Sweden also influence air flow as well (Johannessen, 

1970), apparently keeping much of the acidic deposition that falls throughout 

Sweden from falling on central and northern Norway. 

Thus, while there is a marked difference in the north/south SO4
2-

deposition gradient in Norway (Figure 4), there is little discernable 

north/south difference in the concentration of SO4
2- in rivers, although 

there are marked local differences in concentrations of SO4
2- in river water 
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Figure 4. Mean annual concentrations of SO4
2- in Norwegian precipitation and 

river water. Precipitation data (1972-1975) are from Braekke 
(1976) and river-water chemistry data (1971) are from Salbu et al. 
(1979). 
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(Figure 4). 

In conclusion, reports of massive acidification of Swedish river by acidic 

H2SO4 deposition is not supported by data on either river water or deposition 

chemistry (Anderson-Calles and Eriksson, 1979; Sanden et al., 1987) used to 

generate this conclusion (Oden, 1976; 1979). Furthermore, data presented for 

Swedish and Norwegian precipitation and river-water chemistry suggest that 

atmospheric deposition is not necessarily the dominant factor influencing the 

sulfur chemistry of surface waters in Scandanavia as is widely asserted. 

NAPAP's Interim Assessment (Malanchuk and Turner, 1987) reports that high 

quality data from U.S. Geological Survey benchmark stations on "undisturbed" 

headwater streams in the Northeast show that concentrations of stream SO4
2-

are decreasing and concentrations of alkalinity are increasing. Thus, it is 

concluded that such streams are becoming less acidic in rapid response to 

recent decreases in regional emissions of SO2 and regional deposition of 

H2SO4 (Malanchuk and Turner, 1987). However, examination of the U.S. 

Geological Survey data shows that all four of the "undisturbed" Northeast 

headwater streams examined have pH values that are becoming increasingly more 

acidic (Smith and Alexander, 1983). That stream pH values are becoming more 

acidic in response to decreasing concentrations of SO4
2- (Smith and 

Alexander, 1983) does not support the conclusion that SO4
2- is controlling 

acidity of streamwaters (Smith and Alexander, 1983; Malanchuk and Turner, 

1987). 

McDonalds Branch in the New Jersey Pine Barrens is one of the four U. S. 

Geological Survey Northeast benchmark streams (Smith and Alexander, 1983; 

Campbell and Turk, 1988). McDonalds Branch has also been used to "prove" 

that acid rain is responsible for the increasing acidity of New Jersey Pine 
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Barrens streams (A.H. Johnson, 1979; Campbell and Turk, 1988). Remarkably, 

the trend for decreasing pH at McDonalds Branch is the weakest of all 

Northeast streams (Smith and Alexander, 1983). The trend for decreasing pH 

is even more significant for all of the other streams (Smith and Alexander, 

1983), which, along with McDonalds Branch, are said to be becoming less 

acidic (Smith and Alexander, 1983; Malanchuk and Turner, 1987; Campbell and 

Turk, 1988). Even though this is a terrible inconsistency in the literature, 

both arguements are being used as proof that acid rain is the principal actor 

controlling the acidity of these waters (A.H. Johnson, 1979; Smith and 

Alexander, 1983; Malanchuk and Turner, 1987; Campbell and Turk, 1988). 

However, such statements are logically self-invalidating. 

It is chemically impossible for bicarbonate alkalinity (HCO3-) waters to 

have pH become more acidic while alkalinity is increasing. This is because 

pH and alkalinity are directly related to each other: 

Therefore, [H+][HCO3-] = 10-6.38 X 10 - 4 . 9 7, or 

pH + pHCO3- = 6.38 + 4.97, or 

pH = 11.35 + log[HCO3-]. 

A possible reason why "alkalinity" can be increasing while pH is 

decreasing is that "alkalinity" is not determined by Gran titration but by 

acid consumed to achieve a pH 4.5 endpoint. Because these streams are very 

dilute waters (Smith and Alexander, 1983), HCO3- alkalinity is totally 

consumed by pH 5.0 (APHA, 1971; Tessier and Kramer, 1982). Thus what is 

being measured is not alkalinity, but an arbitrary measure of buffering 

capacity. A stream such as McDonalds Branch, which has a mean pH 

considerably less than 5.0 (A.H. Johnson, 1979; Smith and Alexander, 1983), 
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has no alkalinity at all and yet it is said that its alkalinity is increasing 

(Smith and Alexander, 1983; Malanchuk and Turner, 1987; Campbell and Turk, 

1988). And yet it, and the other streams are becoming more strongly buffered 

at more increasingly acidic pH values with time. A perhaps more correct 

chemical interpretation of these U.S. Geological Survey data (Smith and 

Alexander, 1983) is that total and free acidity are increasing because of 

increasing amounts of weak acid(s) which acts as both acidifier and buffer. 

In this way, streamwaters can be becoming more strongly buffered at more 

acidic pH values while concentrations of SO4
2- are decreasing. Thus some 

agent, such as organic acids, may be more strongly buffering these waters at 

increasingly more acidic pH values with time. 

In conclusion, some other process(es) is overwhelming any possible effect 

that acidic (H2SO4) deposition can be having on acidity of "undisturbed" 

U.S.G.S. Northeast benchmark headwater streams. These streamwater chemistry 

data do not scientifically support the claims being made from them (A.H. 

Johnson, 1979; Smith and Alexander, 1983; Malanchuk and Turner, 1987; 

Campbell and Turk, 1988). 

In summary, this section has critically examined some important 

Scandinavian and American trend studies instrumental in establishing and 

promulgating the reported scientific consensus that acidification of waters 

by acidic deposition is an especially severe problem on both sides of the 

Atlantic. Nevertheless, these studies do not pass critical examination and 

do not convincingly show that the claimed trends exist at all or that 

existing trends are related to acidic deposition. 
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3.2 Documented Declines in Fisheries over Time 

Declines in the salmon fisheries of rivers in southern Norway (Braekke, 

1976) and Nova Scotia (Watt et al., 1983) have been documented and attributed 

solely to the recent onset of acidic deposition (Braekke, 1976; Watt et al., 

1983). There has also been documented declines of fisheries in the 

Adirondacks (Pfeiffer and Festa, 1980; Retzsch et al., 1982; Baker and 

Harvey, 1984; Malanchuk and Turner, 1987). However, decline in Adirondacks 

fisheries are reported to be related to multiple factors such as increased 

fishing pressure, introduction of competitive fish populations, 

discontinuation of stocking programs of waters that were never able to 

develop self-sustaining fish populations, application of DDT that disrupted 

the food chain, and reported increasing acidity of water, among others 

(Pfeiffer and Festa, 1980; Retzsch et al., 1982; Baker and Harvey, 1984; 

Malanchuk and Turner, 1987). 

Documentation of acidification-related fisheries declines in areas other 

than those mentioned above is reported to be scarce and not particularly 

accurate (Haines and Baker, 1986; Malanchuk and Turner, 1987). 

Declines in salmon catch for seven acidic rivers in southern Norway have 

been reported to be due to the post World War II advent of acidic deposition 

(Braekke, 1976). Data from these seven acidic rivers have been compared to 

those of 68 other Norwegian rivers (Figure 5). Such comparison is said to 

reduce error associated with natural variations in salmon populations and 

human factors (other than acidic deposition) that influence fisheries catch 

(Braekke, 1976). Accordingly, acidic deposition is reported to be 

responsible for the loss of salmon from these acidic rivers (Braekke, 1976). 
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Figure 5. Comparison of historical salmon catch data for 7 Norwegian rivers 
that have lost salmon compared with 68 other Norwegian salmon 
rivers. Modified from Braekke (1976). 
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Nevertheless, the salmon decline reported by the SNSF-Project (Braekke, 

1976; Figure 5) does not agree with the onset of acidic deposition reported 

by the SNSF-Project (Braekke, 1976). The advent of acidic deposition in 

southern Norway is reported to be a 1960's phenomenon for the "affected" 

region (Braekke, 1976; Figure 1; 2). But most of the salmon in "affected" 

rivers were lost between 1910 and 1920 (Figure 5) with massive fishkills 

occurring after heavy rains and snowmelts as early as 1911 with autopsy 

results indicating mortality due to symptoms diagnostic of highly acidic 

waters (Braekke, 1976). Thus, while loss of salmon appear to be related to 

acidity, from the data on hand (Braekke, 1976), it can not be scientifically 

claimed that this problem is solely related to the recent onset of acidic 

deposition, as claimed. 

There are at least two other possibilities to consider in regard to the 

loss of Norwegian salmon. One possibility is that comparably high rates of 

acidic deposition were achieved at least as early as 1900 in southern Norway 

and that acidic deposition is responsible for the very early loss of 

fisheries. This possibility would mean that there is a very large error in 

all of the atmospheric monitoring networks in Scandanavia and Europe that 

recorded the systematic expansion of regional acidic deposition in recent 

decades (Figure 1; 2). It would also mean that our fundamental understanding 

of chemistry and physics is incredibly flawed, as well as accounts of 

European industrial and environmental history (Chapter 2). The industrial 

heartland of Europe emitted considerable amounts of SO2 in the early 

twentieth century, but less than did post World War II Europe. These lesser 

amounts of early SO2 emissions were not emitted from tall smokestacks and 

were emitted along with alkaline particulates. Thus, it appears that these 
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lesser amounts of early SO2 emissions were less subject to long-distance 

transport as H2SO4 than modern SO2 emissions because much of these emissions 

were being deposited locally (relatively poor disperse in the absence of tall 

smokestacks) and a higher proportion of these early SO2 emissions were 

neutralized by emitted particulates. After World War Two, industrial and 

energy demands achieved unprecedented levels necessitating a multi-pronged 

strategy to alleviate local air pollution problems that became so bad that 

they were outright killing people. The solution that was found to reduce 

these local air pollution problems was dilution (to disperse the pollutants 

over a greater airshed through the use of tall smokestacks) and the use of 

cleaner-burning fuels to reduce particulates. Accordingly, considerations of 

atmospheric chemistry, physics, European industrial and environmental history 

all support the recorded observations that current high levels of acidic 

deposition in southern Scandanavia were achieved within the last several 

decades and not nearly a century ago. 

The other possibility regarding acidity-related fisheries problems is that 

acidic deposition is not the only agent capable of strongly acidifying 

surface waters. Rosengyist (1978; 1980) presented an alternative hypothesis 

of acidification, the operative factors of which can predate the recorded 

onset of acidic deposition. Rosengyist's alternative hypothesis of surface-

water acidification resulting from land-use change will be subsequently 

discussed in Chapter 3.6. 

Many scientists consider that regional acidic deposition and acidity-

related fisheries problems in Nova Scotia occurred after 1955 (Likens et al., 

1979; Watt et al., 1979; Thompson et al., 1980; National Research Council, 

1981; Havas et al., 1984). However, like Norway (Braekke, 1976; Rosengyist, 
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1978; 1980), documented acidity-related fisheries problems in Nova Scotia 

also date back to at least the early part of this century. Failures of fish 

populations and stocking efforts in these early years were reported to be 

related to lethally-high levels of acidity in water (Smith, 1938). Lakes 7 

and 9 of Gorham's (1957) data set (on granitic watersheds) were neutralized 

and fertilized in 1947 and 1948 in hopes of developing successful fisheries 

in them. But lakes 7 and 9 quickly re-acidified. By 1955, they gave no 

chemical indications of treatment; the pH values of both lakes were around 

4.5 and concentrations of calcium were down to low levels (Gorham, 1957). 

The Nova Scotian lake data of Gorham (1957) cited as proving that 

acidification of Nova Scotian lakes and acidity-related fisheries problems 

became profound after 1955 (Watt et al., 1979) instead suggest that the 

magnitude of acidification of these Nova Scotian lakes may have been 

considerable and profound well before 1955. Gorham (1957) sampled 23 lakes 

in 1955 and found pH values lower than 5.0 for 10 of these 23 lakes (-43%). 

He found pH values as low as 3.95 (Gorham, 1957). Subsequently, in 1984, the 

U.S. EPA sampled over 1600 lakes in the eastern United States in regions 

considered to be sensitive to acidification by regional acidic deposition 

(Kanciruk et al., 1986). Most of these regions are experiencing high rates 

of acidic deposition (Kanciruk et al., 1986; Reuss et al., 1987). 

Nevertheless, only 75 of over 1600 lakes (4.7%) were found to have pH values 

less than 5.0. Only 3 lakes of the over 1600 sampled had pH values less than 

4.0, all of which are in the Florida sampling region (Kanciruk et al., 1986), 

a region said not to be receiving acidic deposition sufficient for marked 

acidification of surface waters (Likens et al., 1979; Reuss et al., 1987). 

As with Norway, there are alternative possibilities for the early recorded 
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dates of highly acidic, toxic waters in Nova Scotia. There is the question 

of whether damaging acidic deposition came before 1955 or not. Unlike the 

Scandinavian and European situations, where there have been national and 

continent-wide monitoring networks continuously in operation for about 40 

years, there was only one station in operation for a couple of years (1952-

1954) in the 1950's. The quality of the data from this station has come 

under question (Kramer and Tessier, 1982). 

On the other hand, even today, Nova Scotia is just at the edge of 

receiving regional acidic deposition severe enough to be considered a problem 

for chronic surface-water acidification (Reuss et al., 1987; Underwood et 

al., 1987). Mean annual precipitation pH of sites closest to North American 

centers of emissions (the southwest) are about pH 4.6 and at the other end of 

the province, about pH 4.9 (Underwood et al., 1987). Besides being far 

removed from major emission regions such as the Ohio valley (distance between 

Halifax and Cincinnati is alittle over 1,100 miles or 1,800 kilometers) and 

southern Ontario (distance between Halifax and Sudbury is somewhat over 800 

miles or about 1,300 kilometers), Watt et al. (1979) noted that Nova Scotia 

receives significant amounts of but slightly polluted air and precipitation 

off the Atlantic Ocean. Thus, it is possible that regional acidic deposition 

is a relatively new phenomenon for Nova Scotia, as claimed. If so, this 

means that Nova Scotia, to the best of my knowledge, had a much greater 

percentage of pH<5.0 lakes in the absence of acidic deposition, -43% (Gorham, 

1957), than reported for areas of North America currently receiving high 

rates of acidic deposition. Similarly, the Canadian national acid rain lake 

survey reports that 47.3% of surveyed Nova Scotia lakes are pH<4.7 which is 

again, to the best of my knowledge, a percentage of highly acidic lakes 
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greater than any reported for areas of North America receiving high rates of 

acidic deposition (Kanciruk et al., 1986). All of these date suggest that 

natural acidity may be important for Nova Scotian surface waters. 

Kessel-Taylor (1986) hypothesizes that multiple factors are responsible 

for fisheries problems in Nova Scotia, as many are doing for the Adirondacks 

(e.g., Pfeiffer and Festa, 1980; Retzsch et al., 1982; Baker and Harvey, 

1984; Malanchuk and Turner, 1987). In addition to the possible influence of 

acidic deposition on fisheries, Kessel-Taylor (1986) cites other factors such 

as: numerous dams built on rivers, destruction of spawning habitat by severe 

erosion and by floating of logs down rivers, and poor fishing practices-

such as the practice of stretching large nets across the mouths of rivers to 

catch salmon (Kessel-Taylor, 1986). 

Kessel-Taylor (1986) also notes that after 1960 commercial fishermen 

located areas off Newfoundland and Greenland where populations of Atlantic 

salmon would school. Commercial fishing of salmon in the ocean was reported 

to have had a profoundly negative influence on river salmon fishing in the 

Maritime Provinces (Kessel-Taylor, 1986). 

In the late 1960's, my personal experience of the influence of Atlantic 

netting of salmon on salmon catch in Scotland paralleled that reported by 

Kessel-Taylor (1986) for the Atlantic Provinces of Canada. Commercial salmon 

fishing in the Atlantic Ocean was credited with drastic reductions in salmon 

runs in Scotland. Local BBC broadcasts stated that daily counts of salmon 

running up fish ladders were, in some instances, reduced from 8,000 per day 

in 1967 to 8 per day in 1968 because of netting of Scottish salmon 

populations off Greenland (Krug, personal observation). 

Kessel-Taylor (1986) also notes that natural acidity of rivers can also be 

3-28 



a factor influencing salmon populations. Acidic rivers in Nova Scotia have 

extensive areas of peaty wetlands in their watersheds while the watersheds of 

non-acidic rivers had little wetland and much deep, well drained mineral 

soil. She reasoned that waters draining from such wetlands are naturally 

acidic, as is also apparent from the river-water data of Thompson (1986) in 

Table 1. 

Kessel-Taylor (1986) further suggests that human influence on water 

acidity is not just limited to acid rain but also includes watershed 

activities that enhance the transfer of natural acidity into receiving 

waters. For example, the recent practice of draining peatlands to mine peat 

as fuel was hypothesized as enhancing oxidation of reduced sulfur to H2SO4 

and, thereby, increasing acidity of drainage water (Kessel-Taylor, 1986). 

She also claims that Rosengyist's changing land-use hypothesis is very 

relevant for Nova Scotia. Much of Nova Scotia is recovering from widespread 

and highly destructive land-use practices, particularly catastrophic fires 

and cutting. Such practices no longer occur on this large scale. Recovery 

from such abusive land-use practices means that the landscape itself becomes 

more acidic which, in turn, may be reflected in increasing water acidity 

(Kessel-Taylor, 1986). The changing land-use hypothesis for Nova Scotia will 

be examined in Chapter 3.6. 

In summary, studies cited as proving that acidic deposition is solely 

responsible for acidification and loss of fish populations do not pass 

critical examination. Documented declines in freshwater fisheries may be 

related to multiple factors which can include acidic deposition. 
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3.3 The Distribution of Acid-Stressed and Absent Fish Populations in 
Relation to the Distribution of Acidic Deposition 

The distribution of troutless and acid-stressed trout populations for 

2,000 lakes in southern Norway have been mapped (Figure 6). This 

distribution was reported to be "clearly similar to the pattern of present-

day acidity of precipitation" (Wright, 1977) and similar to the present day 

spatial distribution of concentration of SO4
2- in precipitation (Braekke, 

1976; Figure 4). Accordingly, deposition of H2SO4 is considered responsible 

for these fisheries problems (Braekke, 1976; Wright, 1977; Overrein et al., 

1980) or: 

"if not, then whatever environmental change has caused acidification 
of lakes must have a regional pattern of intensity similar to that for 
the pH of precipitation" (Wright, 1977). 

An immediate problem with the above statement is the assertion that 

acidification of these Norwegian lakes has occurred. The acceptance of an 

assumption as fact can not be considered as an alternative to scientific 

proof. We do not know as fact, that acidification has occurred. All we know 

from this study is that there are reported to be acidity-related 

fisheries problems in southern Norway. We do not know that there has been a 

change in the acidity of these lakes. 

A second problem is the use of correlation to establish causality. 

Correlation does not establish cause-and-effect (Simon, 1954). 

A third problem is that the distribution of troutless and acid-stressed 

trout populations in southern Norway is not clearly similar to the present-

day distribution of acidic deposition. Despite assertions to the contrary 

(Braekke, 1976; Wright, 1977; Overrein et al., 1980), the 
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Figure 6. Status of fish populations in lakes of southern Norway in 
relationship to the distribution of mean annual precipitation pH 
and locations of some reportedly acidified lakes. Status of 
fish populations was based on interviews with local fisheries 
boards and landowners (Wright, 1977). Distribution of mean 
annual precipitation pH and locations of some reportedly 
acidified lakes are modified from Braekke (1976) and Wright 
(1977). 
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reportedly-affected areas (Figure 6) appear to be not well correlated 

with precipitation H+ and SO4
2- concentration gradients (Figure 4; 6). The 

reportedly-affected areas also exist outside of the acidic deposition (pH 

less than 4.6) region (Figure 6). 

In conclusion, it has not been shown that there is either a strong 

temporal or spatial correlation of acidic deposition and fisheries problems 

in southern Norwegian lakes. Nevertheless, such a correlation between acidic 

deposition and lake acidification has been reported to exist and to prove 

that acidic deposition is responsible for acidification of Norwegian lakes 

(Braekke, 1976; Wright, 1977; Overrein et al., 1980). 

For some time there has been evidence for an alternative explanation of 

acid-related fisheries problems in southern Norway: 

"For a considerable time trout and salmon hatcheries in southwest 
Norway found themselves confronted with grave difficulties in rearing." 
"Many of these hatcheries have actually had to be given up." 
Furthermore, "It is also well known that a number of apparently fine 
forest brooks in this region . . . are and always have been entirely 
devoid of trout" (Dahl, 1927). 

As seen in Figure 6, the southwest area of Norway described by Dahl (1927) 

(the area with troutless lakes and acid-stressed trout populations) is 

asserted to correspond to the current spatial distribution of acidic 

deposition (Braekke, 1976; Wright, 1977; Overrein et al., 1980). 

Dahl (1927) presented data that unequivocally related the fisheries 

problems of trout and salmon to acidity of water. Moreover, Dahl related 

acid water to acid soils, "We know the soil of this granite district is very 

acid." He recommended studying the relationship of acidic water to acidic 

soil and hydrology (Dahl, 1927). 

Dahl's (1927) paper is cited in the "interim report" of the SNSF-Project 

(Braekke, 1976) but only to the effect that the dilute waters of southwestern 
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Norway are highly susceptible to acidification (Braekke, 1976). There is no 

mention of any possibility of an alternative explanation of acid-related 

fisheries problem (Braekke, 1976). The SNSF-Project at this time (Braekke, 

1976) did not test the alternative hypothesis that runoff from highly acidic 

soil materials in the absence of acidic deposition may result in highly 

acidic runoff (Braekke, 1976). 

It appears that the distribution of acidity-related fisheries problems co-

occurs with the distribution of naturally, highly acidic podzols, peats and 

thin lithic soil associations (Lag, 1979) and acidity-related fisheries 

problems pre-date the reported onset of acidic deposition to the area (Dahl, 

1927; Braekke, 1976; Rosenqvist, 1978; 1980). The soils of the acidic 

surface water areas of southern Norway are among the most acidic in the world 

(Brady, 1974; Oden, 1976; Bergseth, 1977). Because of the predominance of 

these thin, highly acidic soils (Oden, 1976; Bergseth, 1977; Lag, 1979), if 

near-surface runoff from highly acidic soils naturally results in pH less 

than 5.5 runoff, then southwestern Norway is an area that is expected to 

naturally have pH less than 5.5 surface waters. 

In conclusion, acidity-related fisheries problems of southern Norway 

(Braekke, 1976) are not uniquely spatially and temporally related to the 

reported advent of acidic deposition (Braekke, 1976). 
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3.4 The Co-occurrence of Natural Soil Acidity with the Distribution of 
Acidic Deposition 

There is a general north/south soil acidity gradient in Scandinavia. The 

soils of southernmost Scandinavia are exceedingly acidic, with the mean pH of 

surface organic horizons being more acidic than 3.4 in southernmost 

Scandanavia (Oden, 1976). Oden (1976) attributed this north/south soil 

acidity gradient and the great acidity of southern Scandinavian soils to 

acidic deposition. 

However, it is difficult to see how acidic deposition could lower soil pH 

to such an extent. Soil pH is reported to be about 1 pH unit, or 10 times 

more acidic than the pH measure of acidity in precipitation (Oden, 1976). 

This is especially difficult to comprehend given the understanding that Oden 

(1976) and others (Braekke, 1976; Likens et al., 1979; Overrein et al., 1980; 

National Research Council, 1981; Johnson et al., 1984) have that acidic 

deposition is a 1960's phenomenon for southern Scandanavia. Thus, about 10 

years of precipitation is said to have acidified soil pH to about 10 times 

more acidic than the most acidic mean precipitation pH. 

The reason why it is untenable to attribute Norwegian soil acidity to 

acidic deposition is because soils are buffered systems. The acid required 

to lower pH of soil materials, especially soil organic horizons, are 1,000's 

of times its pH measure of acidity (Brady, 1974). The acid content of soils 

typical of southern Scandanavia are well known to be equivalent to 1,000's of 

years of high rates of acidic deposition (Bergseth, 1977; Rosenqvist, 1978; 

1980; Krug and Frink, 1983a,b). 

Thus 1,000's of years of high rates of acidic deposition (pH 4.3 at 1m/yr) 

are required to develop levels of soil acidity that Oden (1976) attributes to 
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acidic deposition. Of course, all of this accumulated acidity would have to 

be perfectly preserved in the soil. There could be no losses of acidity to 

mineral weathering over thousands of years. No acidity could leak out of 

soils to get into surface water. There could be no soil erosion. 

The conditions necessary to attribute the highly acidic soils of southern 

Scandanavia to acidic deposition are extremely unlikely to have occurred. 

The general north/south soil acidity gradient of Scandanavia appears to be 

principally a climatically driven natural gradient typical of humid temperate 

climates grading into polar climates throughout the world (Glinka, 1927; 

Joffe, 1949; Harries, 1965; Bridges, 1970; Moore, 1976). 
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3.5 Current Surface-Water Chemistry 

As discussed in Chapter 3.1, historical water-chemistry data are limited 

both in quantity and quality. Accordingly, most data reported as showing 

acidification of surface waters are not based on direct observation of 

acidification, but are estimates derived from application of chemical 

principles to current water chemistry data. In order to critically assess 

the credibility of this vast majority of reports of surface-water 

acidification, it is important to understand the principles of acidification 

theory and how they have been applied. 

That mineral bases are currently charge balanced to some degree by non-

marine SO4
2- is commonly defined as meaning that HCO3- alkalinity is replaced 

by H2SO4 from atmospheric deposition (Aimer et al., 1974; Braekke, 1976; 

Wright and Gjessing, 1976; Wright et al., 1977; Seip and Tollan, 1978; 

Henriksen 1979; 1980; Overrein et al., 1980; NAPAP, 1984; 1986; 1987a; 1988; 

U.S. EPA, 1984; Sullivan et al., 1988). 

Figure 7 provides an example of the estimation of surface-water 

acidification by acidification theory (loss of HCO3- alkalinity by H2SO4 
titration) using contemporary water chemistry data. It is commonly 

considered that there are three major anions1 in "sensitive" surface waters: 

HCO3
-, SO4

2-, and chloride (C1-) (Figure 7a). All Cl- and the portion of 

SO4
2- that is defined as being marine SO4

2- (on the basis of the Cl/SO4 ratio 

of seawater) are assumed to come from seawater. Similarly, other chemical 

constituents (especially the cations Na+, Mg2+) are usually subtracted out 

1. Concentrations of NO3- have been shown to be negligible for most waters of 
concern, therefore, NO3- is not considered to be a major anion in many 
acidification studies. 
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Figure 7. An example of estimation of surface-water acidification by 
H2SO4 deposition using typical contemporary water-chemistry data 
for "sensitive" coastal freshwaters of Scandinavia and eastern 
North America. Units are ueq/L. 
Assumptions are: 

1. Waters are inorganic solutions where electroneutrality is 
achieved; 

2. Waters were originally bicarbonate (HCO3- solutions of 
mineral base cations (Ca2+, Mg2+, K+, Na+); 

3. Chloride (Cl-) represents marine salt contribution. Inputs 
of neutral salts are considered irrelevant to the issue of 
acidification. Therefore, inorganic constituents are 
subtracted out in their proportion to Cl- in seawater, and; 

4. Sulfuric acid (H2SO4) deposition/watershed interaction is 
limited to loss of alkalinity, e.g., increase in rate of 
mineral weathering and other changes induced by acidic 
deposition are assumed not to happen. 

These limiting assumptions as used in a simple version of the 
Henriksen (1979; 1908) titration model necessitate that non-marine 
SO4

2- equal acidification (loss of alkalinity). 
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from overall water chemical composition in proportion to the composition of 

seawater (Figure 7b) before any further analysis is conducted. 

Seasalt is a neutral salt that is conceptually defined as being incapable 

of acidifying surface waters on a sustained basis and is, therefore, 

considered to be merely a confounding factor that is subtracted out of 

overall water chemical composition (Overrein et al., 1980; Seip, 1980; 

U.S.EPA, 1984; Reuss et al., 1987). 

Subtracting out the chemicals in seasalt leaves behind only HCO3
- and 

nonmarine SO4
2- as major negative ions (anions). The amount that current 

concentration of SO42- is greater than estimated background concentrations 

is, by definition, the estimated loss of alkalinity, or acidification by 

acidic H2SO4 deposition. 

Henriksen (1979) developed a means of estimating background concentrations 

of SO4
2- in surface waters. He estimated that virtually all non-marine SO4

2-

in southern Norwegian lakes is derived from atmospheric deposition. This 

appears to be the foundation of the current belief that nearly all non-marine 

SO4
2- in "sensitive" watersheds is derived from atmospheric deposition. This 

same "proof" of Henriksen's (1979) was also claimed to have proven that 

acidic H2SO4 deposition is responsible for acidification (loss of alkalinity) 

of "sensitive" waters and is the foundation of the theory of surface-water 

acidification (Figure 7b). 

Henriksen's (1979) "proof" that essentially all non-marine SO4
2- is 

derived from atmospheric H2SO4 deposition assumes that estimated loss of 

alkalinity equals non-marine SO42-. Thus, his plot of non-marine SO4
2-

versus estimated loss of alkalinity was actually a plot of non-marine SO4
2-

against itself. It is not too surprising that estimated loss of alkalinity 
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is near zero when non-marine SO4
2- is essentially zero. Henriksen's (1979) 

estimate of background SO4
2- is simply the error term of regressing a 

variable against itself. 

This method of estimating background concentrations of SO4
2- (Henriksen, 

1979) is scientifically meaningless. Nevertheless, in the context of 

acidification theory it is of paramount importance. Since acidification is, 

by definition, directly proportional to the difference between current and 

estimated background concentrations of SO4
2- (NAPAP, 1988), erroneously low 

estimates of background SO4
2- necessarily result in erroneously high 

estimates of acidification by acidic H2SO4 deposition. For this reason 

alone, acidification theory tends to overestimate acidification of surface 

waters by acidic H2SO4 deposition. 

Subsequently, Henriksen (1980) used acidification theory to develop a 

nomograph from Norwegian lake surveys' data to reconstruct past lake 

chemistry and to predict future changes in lake chemistry associated with 

estimated changes in acidic H2SO4 deposition. He developed regression lines 

of base cations (non-marine Ca + Mg which are assumed to be the surrogate for 

original alkalinity) versus non-marine SO4
2- (assumed to be a surrogate for 

atmospheric deposition of H2SO4) for mean pH 5.3 lakes (pH 5.2-5.4) and mean 

pH 4.7 lakes (pH4.6-4.8) in Figure 8. Henriksen (1980) claimed that his 

nomograph prove that acidification of Norwegian surface waters are well 

described by H2SO4 titration of bicarbonate (HCO3-) solutions. Thus, 

Henriksen (1980) claimed to prove that waters more acidic than predicted from 

consideration of carbonate chemistry alone must be due to acid rain. 

However, the predictive nomograph itself (Figure 8) shows that H2SO4 

titration of alkalinity as defined by Henriksen (1980) does not describe the 
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0 50 100 150 200 250 
LAKEWATER SO4* (H2SO4 Deposition, ̂ eq/L) 

Figure 8. Henriksen predictive nomograph shewing pH 5.3-4.7 chemical 
domains for Norwegian lakes. Theoretical lines described by 
H2SO4 titration of HCO3- waters (----) and actual lines 
derived from Norwegian lake survey data ( ). * = non-
marine. pH 5.3 regression: Ca* + Mg* = -5 + 1.13 SO4*; r = 
0.96. pH 4.7 regression: Ca* + Mg* = -11 + 0.75SO4*; r = 0.85. 
Modified from Henriksen (1980). 
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surface-water chemistry of the lakes used to develop the predictive 

nomograph. The solution chemistry of pH 5.3 to 4.7 lakes used to develop the 

nomograph should be described by the narrow chemical domain defined by the 

45° parallelogram shown in Figure 8. 

But lakes with pH 5.3-4.7 lie within the much larger — 4.11 times larger 

— cone shaped chemical domain described by Henriksen (Figure 8). In other 

words, Norwegian lakes with pH 5.3 - 4.7 are 4.1 times more likely to occur 

than predicted by H2SO4 titration of HCO3- solutions. A substantial number 

of lakes predicted to be less acidic than pH 5.3 are actually more acidic 

than pH 5.3. A substantial number of lakes predicted to be more acidic than 

pH 4.7 are actually less acidic than pH 4.7. Henriksen's (1980) predictive 

nomograph (Figure 8) shows that the factors controlling the chemistry of 

Norwegain lakes are more complex than H2SO4 titration of HCO3- alkalinity. 

A simple, straightforward, and unified interpretation of the predictive 

nomograph (Figure 8) is that Norwegian lakes tend to have some agent that can 

acidify waters more strongly than predicted by carbonate chemistry while 

buffering waters against further acidification by acidic H2SO4 deposition. 

Thus, this acidifying/buffering agent is necessarily a weak acid which 

buffers against strong acids in the pH 5.3-4.7 range and can acidify surface 

waters more strongly than carbonic acid (H2CO3). The only possible agency 

that can fit all of these criteria are weak organic (humic) acids. Ionic 

aluminum, another possible candidate, does not significantly buffer surface 

waters above pH-5 (Krug and Frink, 1983a, b). 

Nevertheless, Henriksen (1980) asserted that the nomograph agreed with the 

principles of titration of HCO3- solutions by H2SO4 in acidic deposition. 

Recognizing that the nomograph did not fit the theoretical parallelogram 
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described by H2SO4 titration of HCO3- (Figure 8), Henriksen (1980) still 

claimed that the nomograph did in fact prove acidification by acid rain 

because he could modify (or fit) the nomograph to the theoretical 

parallelogram. Henriksen adjusted the pH 5.3 regression line from a slope of 

1.13 to 1.00 by inserting a "correction11 factor into the regression equation 

to account for base cations such as K+ that were not accounted for in the 

original formulation. 

Henriksen (1980) said that the lake pH 4.7 regression line had a slope of 

0.75 instead of 1.00 because H+ from acid rain was dissolving aluminum (Al) 

from the soils of drainage basins, as well as lowering surface-water pH 

values. Thus Henriksen claimed that H+ as well as ionic Al are the "acid" 

cations that represent the acid deposited as H2SO4. He claimed to prove this 

point by showing that a p(H + Al) regression line has a slope of 1.00. 

Assuming that "acid" is represented by both H+ and ionic aluminum (Al), 

Henriksen (1980) fitted the pH 4.7 regression line to the theoretical pH 4.7 

line of the parallelogram by using both the concentrations of H+ and an 

estimate of ionic Al by setting p(H + Al) to 4.71 (20 ueq/L). 

What Henriksen (1980) actually proved was that Al could not be responsible 

for the lake pH 4.7 regression line having a slope of 0.75. Henriksen stated 

that concentration of Al is a function of pH. Thus, at pH = 4.7, or at any 

pH below 5.0, a constant fixed amount of ionic aluminum must be in solution. 

Thus, the pH 4.7 regression line should be parallel to and below the pH 5.3 

line by the constant amount of H+ and ionic Al that is in solution at pH = 

4.7. That the adjusted pH 4.7 regression line actually had a slope of 1.00 

1. p represents negative logarithm and p of 20 ueq/L (10-6 equivalents per 
liter) is 4.7. 
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and not 1.13 is inconsistent with Henriksen's assumption about constancy of 

water chemistry used to adjust the pH 5.3 regression line to fit the 

parallelogram predicted by acidification theory. Thus, Henriksen (1980) also 

proved that his adjustment of the pH 5.3 regression line to fit the 

theoretical parallelogram is also not scientifically credible. 

Apparently a factor(s) other than the proposed large scale titration by 

acid rain has a significant influence on the acidity of surface waters in 

southern Norway. In order to explain this discrepancy, data from the 

Norwegian lake surveys (Wright et al., 1977; Wright and Snekvik, 1977) used 

to develop Henriksen's (1980) model will be briefly examined and discussed. 

They will also be used to examine an alternative hypothesis that natural 

acidity in the form of humic acids can have an important influence on the 

acidity of Norwegian lakes (Krug et al., 1985). 

Alkalinity was not analyzed as part of the Norwegian lakes surveys (Wright 

et al., 1977; Wright and Snekvik, 1977): 

"because of the insensitivity of the method at the extremely low 
concentrations present in most Norwegian lakes and especially acid 
lakes" (Wright et al., 1977). 

That alkalinity was never measured is obviously a serious problem when 

modeling loss of alkalinity. Present concentrations of alkalinity (HCO3-) 

were assumed to be represented by anion deficit: the shortfall of negative 

ions (the anions Cl-, SO4
2-, and NO3

-) relative to positive ions (the cations 

H+, Ca2+, Mg2+, K+, and Na+): 

[HCO3-] = [H+ + Ca2+ + Mg2+ + K+ + Na+] - [Cl- + SO4
2- + N O 3

- ] ; [ ] is 
concentration. 

Thus, HCO3- present in Norwegian surface waters was determined by 

difference assuming that surface waters are strictly inorganic solutions 

(i.e., there are no negative organic anions, RCOO-, to account for in the 
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above equation). 

Wright et al. (1977) claimed to have proved that anion deficit is a 

reasonable estimate of HCO3- alkalinity by comparing anion deficit with HCO3-

alkalinity as measured by potentiometric titration to pH 4.5 for some of the 

surveyed lakes. Potentiametric titration is the use of a pH meter to 

determine the quantity of acid titrated into a sample of water to reduce its 

pH to a certain value: in this case to pH 4.5. It is assumed that the amount 

of H+ added to achieve a pH of 4.5 represents titration of HCO3-: 

H+ + HCO3- = H2CO3 = H2O + CO2. 

Thus, addition of H+ converts alkalinity (HCO3-) to H2CO3 which in turn 

decomposes to the gas, CO2, and water, H2O. The correlation between anion 

deficit and potentiametric titration estimates of HCO3- alkalinity was 

reported to be near perfect: having a slope of 1.00; an intercept of 0, and; 

r = 0.96 (Wright et al., 1977). 

However, it is chemically impossible for pH 4.5 potentiametric titration 

to represent HC03- alkalinity for such dilute HCO3- waters. The pH endpoint 

at which alkalinity is zero (H+ = HCO3-) depends upon how much HCO3- was 

present before the titration. For example, exceedingly dilute solutions 

(such as rain water) the pH endpoint where alkalinity = 0 is about pH 5.6. 

This is why many scientists have considered the pH of unpolluted 

precipitation (CO2 + H2O) to be about pH 5.6. The Standard Methods for the 

Examination of Water and Wastewater (APHA, 1971) that was in use at the time 

of these Norwegian lake surveys shows that the pH 4.5 alkalinity endpoint is 

correct for waters with 10,000 ueq/L original alkalinity; pH = 4.8 is correct 

for waters with 3,000 ueq/L original alkalinity, and; pH = 5.1 for waters 

with 600 ueq/L original alkalinity. 
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Table 3 shows that lakes surveyed by Wright et al. (1977) in southern 

Norway tend to have total ionic concentrations (including seasalts) less than 

600 ueq/L. Thus, original (pre-acidification) alkalinity is necessarily less 

than 600 ueq/L. Accordingly, the error between actual alkalinity and pH 4.5 

endpoint titration alkalinity (for HCO3- solutions) approximates the 

difference in H+ concentration between pH 4.5 and the actual pH at which 

alkalinity = 0 (Kramer and Tessier, 1982). In this case, the error is the 

difference in H+ between pH 4.5 and pH -5.1, i.e. error -24 ueq/L. 

Henriksen, a co-author of Wright et al. (1977), later stated that the 

error between actual alkalinity and pH 4.5 titration endpoint measure of 

alkalinity is 32 ueq/L (Henriksen, 1979). A value of 32 ueq/L is the 

difference in concentration of H+ between pH 7.0 and 4.5. Henriksen's 

(1979) alkalinity correction value was not correct. In a subsequent 1980 

publication, Henriksen (1980) stated that the pH 4.5 titration endpoint 

measure of alkalinity is accurate for the surveyed southern Norwegian lakes, 

referencing his 1979 publication (Henriksen, 1979) in support of this 

statement when that publication said that there was an error with the pH 4.5 

endpoint alkalinity method (Henriksen, 1980). 

The error of approximately 24 ueq/L in estimated alkalinity for surveyed 

Norwegian lakes is significant. This error approximates or exceeds the anion 

deficit for 3 of the 4 southern Norwegian lake populations (Table 3). In the 

one lake group with mean pH below 5.0 (mean pH = 4.76; H+ = 17.3 ueq/L), mean 

anion deficit of 15.9 ueq/L (Table 3). As discussed, HCO3- in association 

with the products of mineral weathering (Ca2+, Mg2+, K+, and Na+) does not 

exist for waters of these ionic concentrations at such acidic pH values. 

Assuming that the chemical analyses are correct, this necessarily leaves us 
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Table 3. Mean Chemical Values of Geographic/Chemical Lake Groups 
Obtained by a Cluster Analysis of the 1974 Survey of Small 
Headwater Lakes in Southern Norway by Wright et al. (1977). 

South-Central+ 
Central Group Coastal Group Eastern Group Western Group 

Parameter (52 Lakes) (20 Lakes) (26 Lakes) (23 Lakes) 

PH 6.40 5.40 4.76 5.22 

H ueq/L 0.3 3.9 17.3 6.0 
Na ueq/L 32.2 132.6 67.8 48.3 
K ueq/L 6.1 5.6 5.4 3.3 
Ca ueq/L 138.7 52.9 56.4 18.0 
Mg ueq/L 36.2 41.1 38.7 16.5 

Al uq/L 28 86 208 55 

NO3 ueq/L 2.2 2.8 1.0 1.2 
SO4 ueq/L 65.4 68.8 98.7 33.1 
Cl ueq/L 21.4 129.7 70.0 46.0 

ΣM ueq/L 213.5 236.1 185.6 92.1 
ΣA ueq/L 89.0 201.3 169.7 80.3 
ΣM-ΣA ueq/L 124.5 34.8 15.9 11.8 

Modified from Braekke (1976) . ΣM = Σ (H+ + Ca2 + Mg2+ + K+ + Na+) . 
ΣA = Σ (NO3-+ SO42-+ Cl-). ΣM-ΣA = anion deficit. 
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with humate (RCOO-), the conjugate base of humic acids (RCOOH = H+ + RCOO-), 

which can exist at such acidic pH values, for pH less than 5.1: 

[RCOC-] = [H+ + Ca2+ + Mg2+ + K+ + Na+] - [Cl- + SO4
2- + N O 3

- ] ; [ ] is 
concentration. 

Humic acids (RCOOH) are weak acids that acidify waters to pH values more 

acidic than possible by carbonic acid (H2CO3). But, like all weak acids, 

humic acids buffer against acidification by strong acids, such as H2SO4 and 

HNO3. A brief discussion of acid/base concepts is contained in a footnote1. 

Thus humic acids are a fundamental unifying factor that can explain the non-

ideal behaviors of both the pH 5.3 and 4.7 regression lines in Henriksen's 

nomograph (Figure 8; Henriksen, 1980). For the pH 5.3 line, Norwegian lakes 

are more acidic than predicted for H2SO4 titration of HCO3
-, which indicates 

the presence of yet another acid. For the pH 4.7 line, which should be 

controlled by the strong acid, H2SO4, because there is not any HCO3- with 

which to buffer the acidic pH 4.7 water, we see that there is an agent 

1.) - Strong acids are acids that are 100% dissociated under environmental 
conditions of concern (pH 3 and greater). Such acids are H2SO4 and HNO3. 
Weak acids are those acids that do not fully dissociate under environmental 
conditions of concern. Such acids are RCOOH and H2CO3. Because such 
compounds are not fully dissociated, they can act buffers to resist change in 
pH due to the addition of "acids" or "bases". 

The terms acids and bases are relative terms. Under one set of conditions 
H2CO3 is an acid. Under another set of conditions it is defined as a base. 
Pure water dissociates to give enough [H+] to equal 10-7 moles/L which is pH 
= 7.0. Substances that can make water more acidic than pH 7.0 are defined by 
aqueous chemists as bases, substances that give water pH values higher than 
7.0 are called bases. Relative to pure water, H2CO3 is an acid because at 
atmospheric concentrations of CO2 it imparts a pH of 5.6 to water which is 
more acidic than water itself at pH = 7.0 : H2CO3 = H+ + HC03

-; [H+] = 10 - 5 . 6 

moles/L = pH 5.6. But relative to pH 4.0 acid H2SO4 rain , [H+] = 10 - 4 . 0 

moles/L, carbonic acid is a base that consumes H+ and buffers against 
decrease in pH: H+ + HCO3- = H2CO3 = H2O + CO2. 

Similarly, humic acids (collectively designated as RCOOH) can acidify 
waters to pH values more acidic than even carbonic acid but relative to 
strong acids, such as H2SO4 and HNO3, humic acids act as bases that consume 
H+ and buffer against decrease in pH: H+ + RCOO- = RCOOH. 
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(albeit another acid) that buffers against acidification by strong acid. 

What we see is that the data present a de facto argument for the 

considerable importance of humic acids in the surveyed Norwegian waters. The 

titration of HCO3- alkalinity by H2SO4 only correlates with 24% of the lake 

in Henriksen's predictive nomograph (Henriksen, 1980; Figure 8). Even if 

this correlation was truly causal, acidic deposition/alkalinity interaction 

as stated by Henriksen (1980) is not the sole process of acidification, or 

even the dominant process of acidification of Norwegian lakes. Other 

watershed processes and interactions, while strongly indicated in the data, 

are ignored. The single mindedness of the interpretation of lake data has 

led to the development of an acidification theory that is not even supported 

by the data from which it was developed. 

Returning to the issue of anion deficit for acidic (pH less than 5.0) 

Norwegian waters, two additional points must be made: 

1. Present levels of RCOO- (as indicated by anion deficit) should not be 
considered to represent pre-acid rain levels of humate any more than 
present levels of HCO3

-can be considered to represent pre-acid rain 
levels of HCO3

-. And, as is also the case for HCO3- systems, RCOO-
will buffer water against the addition of strong acids, albeit at pH 
values more acidic than possible by HCO3- in surface waters. 

2. Present concentrations of RCOO- are seriously underestimated by 
conventional estimates of anion deficit. Such estimates using base 
cations and H+ are reasonable for HCO3- systems because of their high 
pH values. However, for pH values more acidic than 5.0 - 5.5, there 
are ionic metals in solution (e.g., Al3+, AL(OH)n

3-n+, Fe3+, 
Fe(OH)n

3-n+, Zn2+, Mh2+, Cu2+, Pb 2 +). 
[RCOO-] - [Al3+ + AL(OH)n

3-n+ + Fe3+ + Fe(OH)n
3-n+ + Zn2+ + Mn2+ + 

Cu2+ + Pb2+] = [H+ + Ca2+ + Mg2+ + K+ Na+] - [Cl- + SO4
2- + NO3

-]. 
The existence of ionic metals is a major concern in regard to the 
potential aquatic effects of acidic deposition. But they do not 
seem to be well considered in regard to their influence on ion 
balance. Individually, most of these metals usually exist in 
minute quantities. But in sum total, their contribution to error 
in estimation of anion deficit can be considerable, especially for 
low concentration waters that are of concern regarding 
acidification. Thus the anion deficit estimate of [RCOO-] 
underestimates [RCOO-] by cations not considered in the anion 
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deficit estimate, e.g., [Al3+ + AL(OH)n
3-n+ + Fe3+ + Fe(OH)n

3-n+ + 
Zn2+ + Mn2+ + Cu2+ + Fb2+]. 

The influence of metals on ion balance for acidic waters is illustrated by 

published National Surface Water Survey (NSWS) sum of cation and anion data 

for lakes surveyed in the eastern U.S. during the fall of 1984 (Table 4). 

Total Al in solution (Altot) is included in Table 4 as a useful surrogate for 

dissolved metals. 

Table 4 shows that for low DOC (less than 2 mg C/L) NSWS lakes with pH 

less than 5.0 lakes there is an anion excess (more negative ions than 

positive ions) of about 26 ueq/L. Unmeasured metal ions must be greater than 

26 ueq/L because organic anions (0.86 mg DOC/L) which contribute to anion 

concentration are also unmeasured. If mean water pH is 3.5 and there are no 

Al-complexing ligands, such as SO4
2- and F- present, then Altot = Al 3 + = 20.3 

ueq/L. In dilute solutions, essentially all dissolved aluminum is Al 3 + at pH 

= 3.5, at mean pH 4.62 (Table 4) the net charge of dissolved aluminum is less 

than 3+. Given the presence of SO4
2- and F- which complex with and further 

reduce the charge per Al ion, ionic Al is considerably less than the value of 

20.3 ueq/L assumed for a charge of 3+ per Al ion for low DOC, pH less than 

5.0 lakes of the NSWS (Table 4). Thus anion deficit inherent to ionic 

aluminum is less than the 20.3 ueq/L as assumed from Altot = Al3+. 

Therefore, metals other than Al are in ionic form and also contribute to the 

significant error in ion balance-based estimates of humate in low DOC, acidic 

waters. 

In summary, for low DOC, pH less than 5.0 NSWS lakes, the presence of 

unaccounted for ionic metals in determining ion balance results in a mean 

error of at least 26 ueq/L (Table 4). In waters with appreciable organic 

acids, this is represented as the error in underestimating the contribution 
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Table 4. Some Mean Chemical Parameters of pH < 5.0 
Southern Norwegian and Eastern United States 
Lakes of the National Surface Water Survey (NSWS). 

GROUP (n) A* 
(ueq/L) 

M** 
(ueq/L) 

(A-M) 
(ueq/L) 

DOC 
(mg/L) 

ANC 
(ueq/L) 

pH/H 
(pH/ueq/L) 

Cl 
(ueq/L) 

SO4 
(ueq/L) 

Al tot 
(ug/L) 

NSWS DOC < 2mg/L (24) 290.5 264.3 +26.2 0.86 -27.0 4.62/24.1 149.8 133.2 182.8 

NSWS DOC 2-6 mg/L (27) 140.3 139.3 + 1.0 4.09 -15.9 4.70/19.8 35.3 99.7 225.9 

NSWS All (75) 192.3 215.8 -23.5 9.52 -36.3 4.49/32.6 97.5 78.3 183.0 

Norwegian South -
Central + Eastern 
Lakes 

(26) 169.7 185.6 -15.9 N.D. N.D. 4.76/17.3 70.0 98.7 208 

NSWS Stump Pond, 
N.H. (NSWS) 

(1) 153.8 177.1 -23.3 9.05 -4.0 4.81/15.4 29.4 96.8 211.4 

N.D. = not determined. 
NSWS data from Kanciruk et al. (1986). 
Norwegian data from Braekke (1976) subsequently published by Wright et al. (1977). 
*A = SO42-+ Cl-+ NO3- for Norwegian data. 
*A = SO42-+ Cl-+ NO3- + F- + HCO3- for NSWS data. F- and HCO3- (for pH<5.0) are relatively insigificant in terms of total 
concentration of anions (A). 
**M = H+ + Ca2+ + Mg2+ + K+ + Na+ for Norwegian data. 
**M = H+ + Ca2+ + Mg2+ + K+ + Na+ + HN4+ for NSWS data. 



of organic acids to acidity of water. That this error approximates the mean 

concentration of H+ in these waters (Table 4) indicates that the error is so 

significant that the source of H+ in pH less than 5.0 NSWS lakes can not be 

accurately estimated on the basis of anion deficit. 

For moderate DOC (2-6 mg/L), pH less than 5.0 NSWS waters, mean 

concentration of Al t o t is 24% greater than for low DOC waters (Table 4). But 

mean anion excess is reduced from about 26 ueq/L to 1 ueq/L by the extra 3 mg 

DOC/L (mean concentration) in the moderate DOC waters (Table 4). But, this 

ion balance indicates the presence of no organic acids while it is estimated 

that at least 26 ueq/L are present. The mean concentration of H+ for these 

moderate DOC waters is 19 ueq/L (Table 4), which is less than the estimated 

concentration (26 ueq/L) of organic acids. Thus, while the conventional 

interpretation of ion balance would be interpreted as showing that organic 

acids were not responsible for H+ in these moderate DOC, pH less than 5.0 

NSWS waters, in fact, organic acids may be responsible for H+ in these 

waters. 

For all pH less than 5.0 NSWS lakes, mean DOC increases to 9.5 mg/l, or by 

about 5 mg DOC/L. Charge balance changes by 25 ueq/L to about -24 ueq/L for 

all pH less than 5.0 NSWS lakes (Table 4). 

The NSWS, pH less than 5.0 lakes can be used to better understand the 

nature of the acidity in the pH less than 5.0 Norwegian lakes (Table 4), 

which as discussed, had neither their alkalinity or DOC values measured 

(Braekke, 1976; Wright et al., 1977). Of the NSWS lakes, Stump Pond in New 

Hampshire appears to most chemical resemble the "average" NSWS and southern 

Norwegian pH less than 5.0 lake (Table 4). Given the relationships of DOC, 

Al t o t and ion balance, it appears that, on average, in southern Norwegian 
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lakes with pH less than 5.0, humate may account for 55-60 ueq/L, but that 

measured anion deficit is only about 16 ueq/L (Table 3; 4). Whereas Wright 

et al. (1977) considered the pH less than 5.0 lakes in Tables 3 and 4 to have 

about 16 ueq/L HCO3- alkalinity, in fact, they have no alkalinity. Thus, the 

estimated error is equal to estimated alkalinity minus estimated organic 

acidity, or about 70 ueq/L. 

The estimated error may be even greater than 70 ueq/L because the 

titration loss of humate (RCOO-) by H2SO4 (weak acid acting as a base to 

buffer additions of strong acid) has not been added in. Since the 

concentration of non-marine SO4
2- for the mean pH less than 5.0 Norwegian 

lake group in Tables 3 and 4 accounts for approximately 90 ueq/L, we see that 

the error in not considering humic acids is large, even if one assumes that 

all non-marine SO4
2- in southern Norwegian lakes is atmospherically derived. 

The possible influence of organic acids on Norwegian water chemistry was 

ruled out without testing or measuring for their influence. Similarly, the 

stated influence of acidic H2SO4 on loss of alkalinity was made without 

measuring alkalinity. 

Norwegian survey lakes (Wright et al., 1977; Wright and Snekvik, 1977) are 

widely reported as showing widespread acidification of clearwater lakes of 

high transparency (Krug et al., 1985). unfortunately, as discussed, DOC 

(which is an often-used surrogate for organic acids) was never measured 

(Wright et al., 1977; Wright and Snekvik, 1977). However, apparent water 

color of lake water was reported for most headwater lakes surveyed in 1974 by 

Wright et al. (1977). These data show that there are no pH less than 5.0 

clearwaters of high transparency (blue waters in Table 5). Most pH less than 

5.0 waters are humic colored (yellow-green through dark brown, Table 5). 
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Table 5. Numbers of Small, Headwater, Southern Norwegian Lakes 
Surveyed in 1974 by Visual Color and pH. 

Lakes Blue Green Yellow-Green Yellow-Brown Brown Dk. Brown 

Total Number 

Number with pH < 5.0 

10 

0 

34 

8 

14 

10 

32 

15 

17 

14 

7 

3 

Data from Wright et al. (1977). 



Table 5 shows that humic-colored lakes are more likely to be acidic (pH less 

than 5.0) than not. Out of 70 humic-colored lakes, 42 or 60% of the total 

are pH less than 5.0. 

In conclusion, statements that there is widespread acidification of 

clear, high transparency waters in southern Norway are not well supported by 

the data from which these statements were derived. However, these water 

color data, like the Norwegian water chemistry data already discussed (Table 

3; 4), also suggest that natural organic acids may significantly influence 

the chemistry of acidic lakes in Norway. 

Current levels of organic acids may also be important in explaining the 

acidity of pH less than 5.0 American NSWS lakes. Kramer and Davies (1988) 

found that relatively little humic acid, 4 mg/L reported as DOC, is required 

to acidify dilute waters typified by pH less than 5 NSWS lakes. Of the 75 

lakes with closed pH values less than 5.0 in the eastern United States 

reported by the NSWS, 40 have DOC values greater than or equal to 4.0 mg/L 

(Kanciruk et al., 1986). It is possible that current concentrations of 

dissolved humic acids alone would result in pH values less than 5.0 for over 

50% of the acidic lakes found in the East by the NSWS. Claims that NSWS pH 

less than 5.0 lakes are acidified principally by atmospheric deposition and 

that organic acids are unimportant (Linthurst et al., 1986; NAPAP, 1986; 

1987a) appear to require more careful consideration. 

In conclusion, most data reported as showing acidification are estimates 

derived by assuming that before the advent of acid rain, surface waters were 

bicarbonate (HCO3-) solutions of mineral bases produced by carbonic acid 

weathering of mineral bases. To the extent and degree that surface waters 

are different, or more acidic than this hypothetical pristine reference state 
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is said to be the extent and degree of acidification by acid rain. Good 

empirical correlations between water chemical parameters have been reported 

as proving this now dominant theory of acidification. 

Correlative relationships do not establish causal relationships. 

Assumptions about the original state of the system and assumptions about the 

nature and extent of acidic deposition/watershed interaction need to be 

verified. The dominant acidification theory assumes that the only watershed 

changes are those associated with loss of bicarbonate alkalinity induced by 

acidic deposition. However, this logically means that all other watershed 

changes that may have occurred necessarily result in overestimation of 

acidification by acid rain. This is because default reasoning forces all 

change to be explained by the single dominant theory, whether such change is 

real or artificial (the result of incorrect definition of the system). 

While correlations are insufficient in themselves to prove an hypothesis, 

correlations can be sufficient to disprove an hypothesis. Examination of 

contemporary water chemistry said to prove acidification (loss of alkalinity) 

by atmospheric deposition of H2SO4 does not support this now dominant theory 

of acidification. This theory (under the most generous conditions that force 

all acidification to one cause) explains only about 24% of the pH 5.3 - 4.7 

lake water chemistry used to develop this theory. Contrary to the reported 

scientific consensus, such correlation proves that acid rain is not the sole 

factor, and probably is not the dominant factor responsible for the high 

acidity levels of Norwegian lakes. 

The failure to adequately consider organic acids and the existence of 

ionic metals in acidic waters combined with the overestimation of change in 

concentration of SO4
2- (and, thereby, the overestimation of loss of 
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alkalinity) also results in the overestimation of the role of acidic H2SO4 
deposition in the acidification of North American surface waters. 

An alternative hypothesis of acidification is explored in the next 

section. 
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3.6 Non-steady State Watersheds: Land-Use Changes and Natural Processes 

3.6.1 The Changing Land-Use Hypothesis 

Changes other than acidic deposition that increase acidity of water but 

are ignored necessitate overestimation of surface-water acidification by 

acidic deposition. Rosengyist (1978; 1980), and later Krug and Frink (1983a, 

b), hypothesized that processes of watershed acidification other than acidic 

deposition have occurred throughout essentially all of eastern North America 

and northern Europe where acid rain is said to be the sole agent acidifying 

surface waters to levels more acidic than predicted by acidification theory. 

Rosenqvist's (1978; 1980) original changing land-use hypothesis was for 

acidification of surface waters in southern Norway. He claimed that human 

activity has profoundly influenced both the terrestrial landscapes and 

aquatic habitats of southern Norway. He reported that many waters of the 

region were originally fishless and were subsequently stocked. Long-term, 

widespread careless and destructive land-use practices resulted in 

artificially-lowered treelines and, because of erosion, much of the 

originally forested landscape was converted to rockland barrens and heaths. 

In the nineteenth century, a burgeoning population greatly stressed 

Norway's ability to support itself. This resulted in the exodus to the New 

World at the same time that major technological and societal changes were 

occurring in Norway and throughout the western world. As a result, 

silvicultural and agricultural practices in Norway, Europe, and North America 

underwent profound transformation around 1850 and onward (Rosengyist, 1978; 

1980; Overrein et al., 1980; Krug and Frink, 1983a, b). 
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Recovery from abusive land-vise practices in southern Norway started in the 

latter half of the nineteenth century. This recovery continues in this 

century. Rosenqyist (1980) documented forest recovery with statistics 

showing an increase of over 70% in the volume of standing wood in the 

southernmost counties of Norway during the period 1927/28 to 1964/73. 

Changes in land-use practices allowed reversion of previously-used land to 

forest and heath. It is well known that such change naturally results in 

more acidic surficial soil horizons and succession to more acidophilic 

ecosystems, i.e., ecosystems that prefer or require acidic environments. 

Acidophilic ecosystems work to acidify and maintain environmental acidity 

(Wherry, 1928; Griffith et al., 1930; Cain, 1931; Heimburger, 1934; Plice, 

1934; Young, 1934; Donahue, 1940; Joffe, 1949; Lutz and Chandler, 1946; Tamm, 

1950; Clymo, 1963; Viro, 1974; Stone, 1975; Peterson, 1976; Bergseth, 1977; 

Rosenqyist, 1978; 1980; Overrein et al., 1980; Troedsson, 1980; Nilsson et 

al., 1982; Duhaime et al., 1983; Gore, 1983; Krug and Frink, 1983a, b; 

Veneman et al., 1984; Rush et al., 1985; Andrus, 1986; James and Riha, 1986; 

Kessel-Taylor, 1986). 

Rosenqyist (1978; 1980) illustrated the enormous acidification potential 

of natural soil formation. He showed that, in just 90 years, reforestation 

of an abandoned farm field resulted in highly acidic and organic-rich 

surficial soil horizons whose acid content is equivalent to about 1,000 years 

of pH 4.3 acid rain at 1 m/yr. This pH 4.3 rate of acid deposition is 

equivalent to rates of acidic deposition in southernmost Norway (Braekke, 

1976; Figure 3). Krug and Frink (1983a) estimated that inclusion of 

acidification of mineral soil underlying the organic rich surficial soil 

horizons should make soil acidification associated with reforestation of 
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Rosenqvist's abandoned farm field equivalent to 2,000 years of acidic 

deposition in the 90 year period. 

Rosenqvist (1978) hypothesized that naturally, highly acidic soil 

naturally results in highly acidic runoff. Runoff strongly acidified by soil 

is hypothesized to result in strongly acidic surface waters providing, of 

course, that runoff does not become subsequently neutralized by passing 

through underlying mineral soil or geologic materials before entering surface 

waters. Neither acidic deposition or highly acidic surficial soil material 

is hypothesized to result in acidic surface waters if it passes through 

underlying subsoils and permeable bedrock in deep, well drained mineral soil 

landscapes of recently-glaciated terrain. Thus, Rosenqyist hypothesized 

that, for surface waters which receive disproportionate amounts of near-

surface runoff, increasing soil acidity results in increasing acidity of 

surface waters (Rosenqyist, 1978; 1980). 

Rosenqvist (1978) used highly acidic surficial soil (humus from the 

abandoned farm field) in laboratory experiments to demonstrate that the 

natural process of soil acidification results in strongly acidic runoff in 

the absence of acidic deposition. 

Table 6 shows that this newly developed acidic soil acidified to pH<5.0 

the equivalent of 100 years of alkaline (pH = 8.0) simulated rain applied 

over a period of only 3 days. Simulated coastal precipitation with its 

higher neutral seasalt content yielded water more acidic than simulated 

inland precipitation (Table 6) showing the influence of ionic strength of 

precipitation on runoff pH, i.e., the more concentrated the solution, the 

more acidic the runoff from highly acidic soil (Rosenqvist, 1978; 1980). 

Thus, even under highly unfavorable conditions, highly acidic soils will 
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Table 6. Effect of Humus Developed on Abandoned Farmland on pH of leachate from 
Simulated Rain. 

Treatment "Inland Rain" Treatment "Coastal Rain" 
Sum of equivalent 2.1 mg/L NaCl Sum of equivalent 21 mg/L NaCl 

Years of 5.0 mg/L Na2SO4 Years of 5.0 mg/L Na2SO4 
Precipitation pH 8. 0 Precipitation pH 8.0 

5 years pH 4.4 5 years 4.2 
10 years pH 4.6 10 years 4.3 
15 years pH 4.6 15 years 4.35 
20 years PH 4.7 20 years 4.45 
25 years pH 4.7 25 years 4.5 
30 years pH 4.75 30 years 4.5 
Rest Overnight 35 years 4.6 
35 years PH 4.7 40 years 4.6 
40 years pH 4.8 Rest Overnight 
45 years pH 4.8 45 years 4.5 
50 years PH 4.8 50 years 4.6 
55 years pH 4.85 55 years 4.6 
Rest Overnight 60 years 4.65 
60 years pH 4.8 65 years 4.7 
65 years PH 4.8 70 years 4.7 
70 years PH 4.9 Rest Overnight 
75 years pH 4.9 75 years 4.65 
Rest Overnight 80 years 4.7 
80 years pH 4.9 85 years 4.7 
85 years PH 4.95 90 years 4.75 
90 years PH 4.95 95 years 4.8 
95 years pH 5.0 Rest Overnight 
100 years pH 5.0 100 years 4.75 

Modified from Rosenqvist (1978). 

3-60 



strongly acidify water that it contacts. However, under the unusually 

extreme conditions of Rosenqvist's experiment, the soil was increasingly less 

able to acidify water with literally a year of pH 8 simulated precipitation 

being applied in minutes. Such rates of precipitation do not occur in 

nature. 

Rosenqvist (1978; 1980) estimated the relative acidification of runoff by 

acid rain and acid soil. Using very simple assumptions of ion exchange, he 

determined that acidic deposition increased the acidity of near-surface 

runoff from the highly acidic soils characteristic of "sensitive watersheds" 

in direct proportion to its ability to raise total ionic concentration of 

water1. On this basis, he estimated that acidic deposition could acidify 

near surface runoff from highly acidic Norwegian soils by about 0.1 pH unit 

for coastal areas of Norway and about 0.3 pH units for the most inland area 

of Norway with its lower salt content precipitation (Rosenqvist 1978; 1980). 

Presumably, by Rosenqvist's hypothesis, even more inland areas such as the 

Upper Midwest, the Adirondacks, and Ontario could have near-surface runoff 

acidified more than 0.3 pH units by similar levels of acidic deposition. 

But, because land-use changes commonly influence soil pH by 1, 2, or more pH 

units and runoff pH was correlated to soil pH, Rosenqvist (1978; 1980) 

concluded that potential acidification of water by acidic deposition is often 

smaller than what can be induced by land-use change. 

To support his hypothesis that pH of runoff is but poorly controlled by 

precipitation pH, Rosenqvist (1978; 1980) presented SNSF-Project data 

1. This estimate of acidification assumes that there • is no alkalinity to 
buffer against change in pH of runoff from highly acidic soils because the 
runoff is already strongly acidified. 
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showing that storms Which produce similar patterns and rates of runoff result 

in similar pH values of streamwater regardless of precipitation pH. The 

example given was one where a storm with a mean pH of 5.1 resulted in a pH of 

4.4 for a creek during peak flow. Base flow pH was about 5.6. As flow went 

down, pH began to recover toward pH 5.6. But one week later a second storm 

resulted in a very similar flow and, again, a peak flow pH of 4.4. However, 

the second storm had a mean pH value of 4.3. A pH value of 4.3 represents 

634% more free H+ than pH 5.1. Nevertheless, both storms resulted in very 

similar flows and pH of runoff. 

Rosengvist (1978; 1980) hypothesized that increased acidity of near-

surface runoff due to changes in acidic deposition is superimposed upon 

natural processes of soil acidification. He claimed that the effect of land-

use change on runoff pH is often larger than that of acidic deposition. 

Rosenqvist's (1978, 1980) hypothesis that acidic soil can naturally result 

in acidic surface waters that are toxic to aquatic biota agree with the 

earlier observations and hypothesis of Dahl (1927) discussed in Chapter 3.3 

concerning the nature and cause of toxic acidic waters in southwestern Norway 

before the reported occurrence of acid rain in the region. 

Changes in land use appear to be pervasive in areas where it is said that 

acidic deposition is responsible for surface-water acidification. Many of 

the extensive heaths of Great Britain, Scandanavia, and the borders of the 

North Sea are the consequence of earlier and careless land use (Bramryd, 

1979). Burning, grazing, and lumbering caused severe erosion that helped to 

create the unusually thin soils and artificially lowered the treeline in the 

uplands and low mountains of southern Norway (Overrein et al., 1980). The 

remaining forests of western Europe all bear the influence of man (Stone, 
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1975). 

These careless and highly destructive land-use practices were transported 

to eastern North America with the arrival of Europeans (Defebaugh, 1906; 

1907). Extensive review of the literature shows that essentially all land in 

the northeastern United States has been cut or burned within the last century 

(Krug and Fririk, 1983a, b). The area of the Northeast with the least areal 

disturbance is New York State. New York was originally essentially 

completely forested. By the 1920's 99.5% of its forests were cut and/or 

burned, most repeatedly so (MacDonald, 1925; Marshall, 1925). It is 

difficult to conceive that watersheds of lakes sampled in the Northeast by 

the NSWS were not influenced by human disturbance and land-use change. 

Similarly, areas of concern in eastern Canada (Nova Scotia, New Brunswick, 

southern and central Quebec and Ontario) had virtually all of their lands cut 

or burned within the last century (Defebaugh, 1906; 1907). Likewise, it is 

difficult to conceive of any significant fraction of lakes in these areas of 

eastern Canada whose watersheds were not influenced by past human disturbance 

and land-use change. 

The forests of northern Europe and eastern North America are recovering 

from earlier disturbance. The degree of recovery is so great that it is 

believed to be influencing the global carbon cycle (Bramyrd, 1979; Clawson, 

1979; Armentano and Ralston, 1980; Houghton et al., 1983). 

There is little doubt that recovery of such disturbed land results in 

large increases in soil acidity as measured by Rosengyist (1978; 1980). 

Indeed, the relationship between soil acidity and vegetation had attracted 

considerable attention by the 1920's - as indicated by a review of the 

subject with 750 citations (mostly northern European), of which more than 500 
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dealt directly with acidification (Wherry, 1928). 

Disturbances such as fire, agriculture, and cutting result in large losses 

of acidity from highly acidic, organic-rich soils that typify soils of 

watersheds in areas of concern in eastern North America and northern Europe 

(Wherry, 1928; Griffith et al., 1930; Cain, 1931; Heimburger, 1934; Plice, 

1934; Young, 1934; Donahue, 1940; Joffe, 1949; Lutz and Chandler, 1946; Tamm, 

1950; Viro, 1974; Stone, 1975; Peterson, 1976; Bergseth, 1977; Overrein et  

al., 1980; Troedsson, 1980; Nilsson et al., 1982; Duhaime et al., 1983; Krug 

and Frink, 1983a,b; Veneman et al., 1984; Rush et al., 1985; James and Riha, 

1986; Kessel-Taylor, 1986). 

Regarding land-use changes, the Final Report of the SNSF-project reported 

that: 

"More than 50 years ago, Glomme (1928) carried out a large study on 
the relationship between soil-pH and vegetation in Norway. He wrote 
that: 'On the whole, there is reason to suppose that the influence of 
the pH-value on the distribution of plants in nature under humid 
conditions is less pronounced than the influence of the vegetation on 
the pH-value and the transformation of the humus layer.' He also 
showed that burning or clear-cutting in forest areas tends to increase 
soil-pH. More recent work, e.g. by Bergseth (1977), has confirmed that 
there is a correlation between vegetation and soil acidity" (Overrein 
et al., 1980, p.91). 

Bergseth (1977) reported that the influence of vegetation on soil water pH 

is large, ranging from nearly pH 3 to 7 for different types of vegetation on 

podzolized soils, which are the principal soil types found in southern Norway 

(Lag, 1979). Ecological succession on abandoned and disturbed land is one of 

succession to more acidophilic plant communities and more acidic soils with 

time (Bergseth, 1977). One of the findings of the SNSF-project regarding 

changes in land use in southern Norway, was: 

"It is quite clear that agriculture and silviculture in Norway have 
undergone dramatic changes during the last 100-150 years" (Overrein et 
al., 1980, p.92). 
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While soil properties and effects of land-use changes vary between and 

within sites, some general relationships are evident for "sensitive" 

watersheds. Land-use and forest management studies in eastern North America 

and northern Europe (Griffith et al., 1930; Cain, 1931; Lunt, 1932; 1951; 

Heimburger, 1934; Plice, 1934; Young, 1934; Donahue, 1940; Diebold, 1941; 

Eaton and Chandler, 1942; Lutz and Chandler, 1946; Tamm, 1950; Ahlgren and 

Ahlgren, 1960; Viro, 1974; Bergseth, 1977; Troedsson, 1980; Veneman et al., 

1984) show the following relationships: 

1. The more acidic the soil, the greater the loss of acidity by 
disturbance and the greater the increase in acidity by recovery; 

2. Coniferous forests tend to have more acidic and thicker organic 
forest floors soil horizons than deciduous forests. Disturbance 
of coniferous forests tends to have a greater effect on soil 
acidity than similar disturbance of deciduous forests. 

3. Disturbance and recovery of mixed conifer-deciduous forests tends 
to have an influence on soil acidity intermediate between that of 
coniferous and deciduous forests. But the effect of disturbance 
and recovery on soil acidity tends to more resemble that of 
coniferous forest; 

4. Likewise, the more severe the disturbance, e.g., clear-cutting 
versus selective cutting, the greater the effect of disturbance 
and recovery on soil acidity. The more intense the burn the more 
organic acids and plant material are converted to alkaline ash. 
Therefore, the greater the effect of such disturbance and 
subsequent recovery on soil acidity; 

5. The greater the time of recovery, the greater the acidification, 
and; 

6. Thin, rocky and upland soils tend to be more acidic and organic-
rich than equivalent downslope soils and soils with thicker 
mineral subsoils. This soil acidity gradient generally reflects a 
vegetational gradient with conifers or highly acidophilic heath 
vegetation occurring on the more acidic peaty and/or upland 
locations. 

In the northeastern United States, some of the most devastating effects of 

abusive land use has occurred in the spruce-fir forests that occupy acidic 

peaty locations and the upper slopes of the mountains (Krug and Frink, 
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1983a,b) where acid rain is believed to be responsible for especially severe 

and widespread acidification of lakes and streams. By the early 1900's 

essentially all of the spruce-fir forests had been clear-cut as pulpwood. 

While the original forest was very fire resistant, lumbering was frequently 

followed by severe fires that largely or completely destroyed the thick, 

exceedingly acidic (pH less than 4.0) forest floor (Defebaugh, 1907; 

Heimburger, 1934; Diebold, 1941; Lutz and Chandler, 1946; Krug and Frink, 

1983a, b). 

It was because of such damage done to the sensitive landscape of the 

Adirondack Mountains by cutting, fire, and erosion that the Adirondack Park 

and Forest Preserve was established (Defebaugh, 1907). Since the early part 

of this century, the Adirondacks, and similar sensitive mountainous 

landscapes of the Northeast, are protected from fire (Krug and Frink, 1983b). 

And cutting, if allowed at all, is severely limited and regulated (Krug and 

Frink, 1983b). Indeed, fire protection is so efficient that (where 

determined) the frequency and severity of fires in these forests is even less 

than that of the pre-settlement era (Krug and Frink, 1983b). 

Land-use and forest management studies (Griffith et al., 1930; Cain, 1931; 

Lunt, 1932; 1951; Heimburger, 1934; Plice, 1934; Young, 1934; Donahue, 1940; 

Diebold, 1941; Eaton and Chandler, 1942; Lutz and Chandler, 1946; Tamm, 1950; 

Ahlgren and Ahlgren, 1960; Viro, 1974; Bergseth, 1977; Troedsson, 1980; 

Veneman et al., 1984) show that the most devastating effects of abusive land 

use has occurred in precisely those landscape elements where forest recovery 

naturally results in greatest soil acidification. 

Figure 9 (altitudinal relationships between vegetation, hydrology, soil 

and water acidity of the Adirondacks) illustrates that the greatest effects 
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Figure 9. Idealized hydrologic, soil, and vegetation altitudinal gradients 
of the Adirondack Mountains of New York. Mean pH values of 
precipitation and runoff components are from Gherini et al. 
(1985). Hydrologic, soil, and vegetation gradients are idealized 
from Heimburger (1934), Diebold (1941), Eaton and Chandler (1942), 
and Lutz and Chandler (1946). The distribution of surface water 
pH to altitude is from Pfeiffer and Festa (1980). 

3-67 



of land-use change on acidification have occurred in precisely those 

landscape elements where waters are said to be most sensitive to 

acidification and where acidic waters are most prevalent. It is in these 

acidic watersheds, whose runoff is through surficial acidic soil materials 

and whose acidities are greatly influenced by land-use change, where acid 

rain is believed to be responsible for especially severe and widespread 

acidification of lakes and streams. 

Recovery from earlier disturbance may result in soils that are not yet as 

acidic as pre-disturbance soils, for example, because of insufficient 

recovery time to achieve pre-disturbance conditions. 

Recovery from earlier disturbance may result in soils that are naturally 

more acidic than pre-disturbance. For example, based on studies of 

forest/soil relationships (Griffith et al., 1930; Cain, 1931; Lunt, 1932; 

1951; Heimburger, 1934; Plice, 1934; Young, 1934; Donahue, 1940; Diebold, 

1941; Eaton and Chandler, 1942; Lutz and Chandler, 1946; Tamm, 1950; Ahlgren 

and Ahlgren, 1960; Viro, 1974; Bergseth, 1977; Troedsson, 1980; Veneman et 

al., 1984), it is expected that lower fire frequency and fire intensity will 

eventually result in soils that are more acidic than pre-disturbance soils. 

Furthermore, decreased soil thickness due to enhanced erosion caused by 

disturbance will result in thinner soils which can, in turn, result in soils 

that became more acidic than the pre-disturbance soils. 

Besides resulting in more acidic soils, erosion can change watershed 

hydrological characteristics so that surface waters receive more near-surface 

runoff. Thus, it is possible for recovery from disturbance to result in 

surface waters that are even more acidic than in pre-disturbance times for 

reasons that are independent of changes in atmospheric acid deposition. 
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In summary, the effects of land-use change are essentially ubiquitous in 

the regions of concern. Furthermore, they appear to have greatest impact in 

precisely those landscape elements where waters are said to be most sensitive 

to acidification and where acidic waters are roost prevalent. It appears that 

the effects of acidic deposition are superimposed upon watershed changes 

induced by recovery from earlier disturbance for many "sensitive" watersheds. 

The interaction of acidic deposition with non-steady state watersheds and 

the influence of such interaction on surface-water acidification have not 

been adequately evaluated. 

Failure to adequately evaluate the effect of land-use changes on surface-

water chemistry could result in serious overestimation of the role of acidic 

deposition on surface-water acidification. 
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3.6.2 Criticism of the Changing Land-Use Hypothesis 

The National Research Council's (1981) report on "Atmosphere-Biosphere 

Interactions: Toward a Better Understanding of the Ecological Consequences of 

Fossil Fuel Combustion" summarily dismissed Rosenqvist's changing land-use 

hypothesis in one paragraph: 

"The theory that the acidification observed in poorly buffered fresh 
waters was due to changing land-use patterns (Rosenqvist 1978a, b) has 
now been discounted as an explanation for the widespread effects 
observed, particularly in remote areas. Detailed study over several 
years of watersheds in Norway, same with changing land-use patterns and 
some without, has shown that, on the average, both are acidified at 
equal rates (Drablos and Sevaldrud 1980, Drablos et al. 1980). 
Moreover, studies of lakes in North America in areas where land-use 
patterns have never changed have also shown substantial increases in 
hydrogen ion or losses in buffering capacity (Dillon et al., 1978, Watt 
et al., 1979)" (National Research Council, 1981, p.147). 

As already discussed in Chapter 3.1 and 3.2, it cannot be factually said 

that widespread recent acidification has been observed for Norwegian waters 

or the Canadian lakes of Dillon et al. (1978). Thus, it seems that the issue 

of changing land-use patterns not corresponding to "observed" acidification 

is not a scientific argument. 

There are internal inconsistencies within the National Research Council's 

(1981) report itself that indicate its discounting the effects of land-use 

change is premature. For example, Figure 2 was published in the National 

Research Council (1981, p.145) report and shows that the authors of the 

report believed acidic deposition to be a phenomenon of the 1960's in 

Scandanavia. But Rosenqvist was using the changing land-use hypothesis to 

explain acidity-related fisheries problems that began to be reported at least 

as early as the turn-of-the-century (Dahl, 1927; Braekke, 1976; Rosenqvist, 

1978; 1980), a problem that may have always existed to some degree in areas 
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of southern Norway (Dahl, 1927; Rosengyist, 1980). Figure 2 is also 

inconsistent with Norwegian data showing extensive loss of fisheries prior to 

1920 (Dahl, 1927; Braekke, 1976; Rosengyist, 1978; 1980; Overrein et al., 

1980; Figure 5). Likewise, the reported consensus that acidic deposition in 

Nova Scotia is a recent phenomenon does not account for the earlier acidity-

related fisheries (Chapter 3.2). 

As already discussed in Chapter 3.1, the Nova Scotian lakes of Watt et al. 

(1979) may have undergone acidification. But the data used to support the 

statement about recent acidification shows that acidification can not be 

caused solely by increased deposition of H2SO4. The measurements of Watt et 

al. (1979), when compared to the original measurements of Gorham (1957) for 

lakes on granite (undisturbed between the sampling dates of 1955 and 1977), 

show that increase in H+ was much larger (21 ueq/L) than increase in non-

marine SO42- (9 ueq/L). Even if the increase in non-marine SO4
2- represented 

pure H2SO4, the maximum change in concentration of H+ that could be 

attributed to increased concentration of pure H2SO4 is 9 ueq/L, not 21 ueq/L 

as recorded (Watt et al., 1979). Contrary to the conclusions drawn by Watt 

et al. (1979) and the National Research Council (1981), these data strongly 

suggest that acidification of Nova Scotian lakes can not be used as 

definitive proof of acidification solely by acid rain. 

It is curious that the National Research Council (1981) and Canadian 

scientists (Watt et al., 1979) would use the selected Nova Scotian lakes as 

"proof" against the effects of land-use changes on acidification of surface 

waters. Gorham (1957), who originally studied these Nova Scotian lakes and 

whose data Watt et al. (1979) used as the pre-acidification reference state, 

recognized the earlier land-use history of repeated cutting and burning in 
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their watersheds. Gorham (1957) even suggested that such actions in their 

watersheds influenced their water chemistry and recommended research on the 

effects of land-use change on water chemistry. 

Land classification survey of mainland Nova Scotia showed that of 

9,600,000 acres, only about 200,000 acres of virgin forest or lightly culled 

hardwood forest remained by 1909-1910 (Fernow et al., 1912; Table 7). Thus, 

any consideration of historical acidification of surface water in Nova Scotia 

lakes and salmon rivers (Watt et al., 1979; Thompson et al., 1980), even 

assuming the data accurately represent such a trend, must consider land-use 

change to be essentially pervasive in geographic distribution. 

Regarding the Nova Scotian lakes studied by Gorham (1957), and later by 

Watt et al. (1979), Woodward (1906) noted that this part of Nova Scotia was 

treeless and barren as a result of widespread and very destructive fires set 

by gold miners to locate gold-bearing rock. The soils of the watersheds of 

the Nova Scotian lakes are little more than organic matter overlying rock and 

the miners literally burned the forest and organic soil to bedrock to expose 

and locate gold-bearing rock (Woodward, 1906; Gorham, 1957). Gold-bearing 

rock formations pervade the area, some lakes are abandoned quarries, and some 

bear the names of local gold mines (Gorham, 1957). 

Gorham (1957) described the watersheds as having recovered to a large 

degree from the earlier disturbance. By 1955 the watersheds were described 

as being heathy spruce forests with peaty soils. He also reported that many 

of the lakes in 1955 were surrounded by floating mats of sphagnum. Recovery 

clearly resulted in massive re-acidification of the landscape. 

Contrary to the assertions of Watt et al. (1979) and the National Research 

Council (1981), these Nova Scotian lakes can be used as a textbook case to 
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Table 7. Land Classification (1909-1910) Survey 
of the Mainland of Nova Scotia. 

Classification Acres % of Land 

1. Farm 1,832,736 19.0 
2. Meadow (natural) 21,680 0.2 
3. Savanna (open bog) 37,793 0.4 
4. Forest 5,052,838 52.5 

a. Conifer 1,036,175 10.8 
Virgin 31,120 0.3 

b. Mixed 3,685,807 38.3 
Virgin 63,376 0.7 

c. Hardwood 330,856 3.4 
Virgin and moderately cut 119,883 1.2 

5. Recent Burns 551,098 5.8 
6. Old Burns and Barrens 1,986,354 20.7 
7. Unclassified 137,424 -
8. Total Surveyed 9,619,923 100.0 

Data from Fernow et al. (1912). 
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demonstrate the influence of land-use change on the acidity of surface water: 

disturbance results in loss of acidity and recovery results in acidification. 

Five of the 21 lake watersheds sampled by Gorham (1957) in 1955 were 

disturbed prior to the re-sampling made by Watt et al. (1979) in 1977. Four 

of the five lakes in the disturbed watersheds showed an increase in pH. Of 

the sixteen that were allowed to continue recovering from earlier 

disturbance, pH values became more acidic. 

Curiously, Havas et al. (1984) referred to the changing land-use 

hypothesis are a "red herring in acid rain research". Referring to the 

Gorham (1957) and Watt et al. (1979) lakes: 

"Of the five watersheds with disturbances, four showed an increase in 
pH during the same 22-year period. Such disturbances tend to favor an 
upward shift in pH." Furthermore, 

"Schindler and Ruszczynski (1983) found similar results for lakes in 
the Experimental Lakes Area in western Ontario between 1973 and 1978. 
This area is not exposed to acid rain. During the five-year period, pH 
increased in many of the lakes that had some disturbances within their 
drainage basins (i.e., a major windstorm, fire, or clear-cut logging), 
but remained constant in 'undisturbed' lakes". 

"In the White Mountains of New hampshire, forest clearing resulted in a 
temporary increase in stream water acidity that lasted for two years. 
The drainage water then became LESS ACIDIC than it was prior to the 
deforestation (Likens, in press)". 

Havas et al. (1984) actually presented a case supporting the changing 

land-use hypothesis while claiming to disprove it. They showed that 

disturbance can result in loss of acidity from watersheds where surficial 

soil processes influence surface water-chemistry. Recovery is expected to 

result in re-acidification. 

In summary, the changing land-use hypothesis of acidification has been 

widely ignored. Data said to disprove the changing land-use hypothesis 

actually support it. 
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Even the SNSF-Project (the Norwegian forerunner of NAPAP which 

acknowledges the widespread nature of land-vise change and its influence on 

soil acidity) does not acknowledge land-use change as a major factor in 

acidification of surface waters (Overrein et al., 1980). A principle reason 

for this is the reported SNSF-Project summary conclusion of laboratory and 

field studies that soil acidity is not transmitted to runoff, but acidity 

from atmospheric H2SO4 deposition is (Overrein et al., 1980). 

The next section of Chapter 3 will examine laboratory and field 

experiments, including those of the SNSF-Project, reported to support the 

conclusion that acidic H2SO4 deposition is a necessary condition for the 

observed acidity of waters (Overrein et al., 1980). 
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3.7 Field and Laboratory Experiments 

3.7.1 Soil and Plant Ion Exchange 

3.7.1.1 SNSF-Project Research and Conclusions 

The SNSF-Project performed a number of field and laboratory experiments to 

test Rosenqvist's (1978; 1980) alternative hypotheses of acidification. 

Laboratory experiments were conducted using highly acidic (pH=4.1 in H2O) 

humus to determine if neutral salts could yield acidic runoff and, if so, to 

examine how the acidity of runoff from neutral salt treatment compares to 

runoff acidity from treatment with similar ionic concentrations of H2SO4 
(Figure 10). Ionic concentrations of 10-5 eq/L, 10-4 eq/L, and 10-3 eq/L 

sodium chloride (NaCl) and H2SO4 were used. For H2SO4 treatment, these 

concentrations result in pH 5, 4, and 3 treatments, respectively. A 1.6 inch 

thick layer of the pH 4.1 humus was subjected to high rates of leaching -

2.4 in./hr up to 7in./day (Overrein et al., 1980). These experimental 

conditions of leaching are extremely high, even for periods of high rates of 

melting snow. For example, 2.4 to 7.0 in./day runoff is equivalent to 24 to 

70 inches of snow melting in one day. This is rarely, if ever encountered in 

nature. Such high rates of leaching are expected to underestimate the 

influence of soil on runoff chemistry. 

For the 10-5 eq/L and 10-4 eq/L treatments of salt and acid, initial pH of 

leachate (pH 4.0-4.2) approximated soil pH (4.1). With continued leaching, 

leachate pH rose. The salt treatments yielded perhaps slightly more acidic 

leachate than did equivalent concentrations of acid (Figure 10). 

Treatments with H2SO4 included "resting" the soil. "Rested" soil recovered. 

Leachate pH from "rested" soil tended to recover toward the original pH of 

soil leachate. For the pH 5 and pH 4 treatments, "resting" the soil 
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Figure 10. The influence of 10-5, 10-4, 10-3N NaCl ( ), 10-5 (PH=5), 10-4 

(pH=4), 10-3N (pH=3) H2SO4, ( ), and rest periods on the pH 
of leachate from humus. pHH2O of humus = 4.1 (S). Each pore 
volume is equivalent to 30 mm of precipitation. Modified from 
Overrein et al. (1980). 
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resulted in leachate becoming up to 0.5 pH units more acidic than at the end 

of the acid treatment (Figure 10). 

These data show that highly acidic soil yields highly acidic runoff in the 

absence of simulated acidic deposition. Neutral salts had about as much 

influence on the pH of runoff (leachate) as did similar ionic strength H2SO4. 

Furthermore, these data (including "resting" soil) suggest that soil tend to 

buffer runoff at soil pH (Figure 10). 

For the 10-3 eg/L treatments of salt and acid, net overall acidity of the 

leachates were similar, with NaCl yielding slightly more acidic leachate in 

the beginning (pH 3.8 versus 3.9), and acid treatment yielding more acidic 

leachate at the end of treatment (pH 3.6 versus 3.8 for salt) (Figure 10). 

It is important to note that while the most acidic precipitation in 

southern Norway averages above pH 4 (Braekke, 1976), rain at coastal areas of 

Southern Norway may average about 10-3 eg/L seasalt (Lag, 1968), 20 times 

greater in ionic concentration relative to the strong acid content of pH 4.3 

precipitation. SNSF-Project experiments (Overrein et al., 1980; Figure 10) 

suggest that seasalts in coastal precipitation can have a larger effect on 

runoff pH than even the highest current levels of acidic deposition. 

Other Norwegian studies verified that precipitation containing principally 

neutral salts can result in highly acidic runoff (Skartveit, 1980; 1981). In 

coastal watersheds, relatively unpolluted heavy rainfall events resulted in 

runoff events with a mean pH of 4.5. The most acidic runoff event observed, 

pH=4.3 or 50 ueq H+/L, resulted from rain with only 4 ueq/L of excess 

(non-marine) SO4
2- (Skartveit, 1980; 1981). 

The 10-3 eg/L acid treatment included "resting" the soil. "Rested" soil 

recovered, issuing less acidic leachate (Figure 10). 
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The combined experiments indicate that highly acidic soils tend to buffer 

runoff around soil pH and strongly resist chemical change imposed by even 

abnormally high rates of acidic deposition. While not commented on by 

SNSF-Project scientists or Rosengyist, these experiments also suggest that an 

initial flush of highly acidic water from highly acidic soil may be a natural 

phenomenon. Thus, the initial flush of highly acidic, near-surface runoff 

issuing from snowmelt and heavy episodic rain events, which is generally 

assumed to be from release of stored atmospherically-deposited acids, may 

simply be a largely natural phenomenon in regions with highly acidic soils. 

That highly acidic soils continue to yield highly acidic runoff (leachate) 

time after time (even from high rates of simulated neutral and alkaline 

precipitation) and that soils recover after leaching to yield similarly 

highly acidic runoff (Rosengyist, 1978; 1980; Overrein et al., 1980; Table 7; 

Figure 10) indicates that chronic "acidification" of surface waters may 

simply be a natural phenomenon in some regions whose soils are naturally 

highly acidic. 

Watersheds surrounding streams and lakes are not merely a 1.6 to 4 inch 

fringe as simulated by Rosengyist (1978; 1980) and SNSF-Project scientists 

(Overrein et al., 1980; Figure 10). Accordingly, experiments conducted by 

both Rosengyist and SNSF-Project scientists were unnaturally extreme in the 

rates of precipitation and the very short contact time and distance (inches) 

between simulated rain and soil. Such experiments necessarily overrepresent 

possible influences of atmospheric deposition on runoff chemistry. Under 

less severe conditions, soils and other natural factors may exert even 

greater control on runoff chemistry than demonstrated in these experiments. 

This series of experiments verify Rosengyist's hypothesis that electrolyte 
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concentration of rain is more important than its acidity, per se, and soil pH 

has an even greater effect on runoff pH than total electrolyte content of 

precipitation. 

A number of other experiments were carried out to examine the effects of 

soil and chemical composition of snow on the chemistry of snowmelt runoff. 

Soils were put in troughs 1 meter long and frozen. Snowpack of differing 

acidities were placed on top of frozen soil, the trough inclined 30 degrees, 

and allowed to melt by placement in a roam at 8 degrees celsius (°C) 

(Overrein et al., 1980). 

It was found that the effect of snow composition had little effect on 

snowmelt pH. Snowmelt was about pH 4 coming from humus with heather, about 

pH 6 for snowmelt derived from loamy mineral soil (typical of farm fields) 

regardless of the initial acidity of the original snowpack (Overrein et al., 

1980). 

This series of snow/trough experiments can also be considered to be 

extreme in that it predisposes the results toward overestimating the effects 

of snow chemistry on acidity of runoff. In "sensitive" regions where it is 

believed that waters have been acidified by acidic deposition, field 

observations indicate that soil rarely freezes under snowpack (Likens et al., 

1977). Furthermore, runoff has to travel well over 1 meter before entering 

surface waters. Thus, the influence of soils on controlling the acidity of 

snowmelt may be even greater than depicted in the snow/trough experiments. 

Most landscapes are quite heterogeneous in respect to soils, vegetation, 

and hydrology. Seip et al. (1979a) concluded that, because of such landscape 

heterogeneity, acidification of runoff by atmospheric deposition is difficult 

to observe in watersheds as small as 0.1 km2 (about 25 acres). This 
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conclusion supports Rosenqvist's (1978; 1980) observation about the lack of 

correlation of precipitation pH with the pH of runoff for a SNSF-Project 

stream. Accordingly, the SNSF-Project established mini-catchments with which 

to better understand the relationship of precipitation chemistry to the 

acidity of runoff. The mini-catchments ranged from 30 m2 to 264 m2: 

equivalent in area from a 18' X 18' room to a 53' X 53' house. From 46% to 

74% of the mini-catchments were exposed (principally granite) "barren" 

bedrock (Seip et al., 1979a). Because of their small size, large percentage 

of bare bedrock, and only shallow patches of soil, they represent nature's 

version (as opposed to the artificial snow/trough system) of the worst case 

scenario. The influence of atmospheric deposition should be most easily 

demonstrated here. 

Rosenqvist's (1978) hypothesis about snowmelt chemistry being principally 

controlled by soil acidity was tested again in mini-catchments (Seip et al., 

1980). Mean snowpack pH was 4.3 in both 1978 and 1979. The 1979 snowpack 

was neutralized to about pH 7 with sodium hydroxide (NaOH). Runoff from 

snowpack in both years had a initial flush of highly acidic pH. While 1978 

runoff chemistry was not reported, Seip et al. (1980) concluded that the 

acidity of runoff was essentially the same in both years, and perhaps 

slightly more acidic in 1979, the year that snowpack was neutralized. Mean 

snowmelt chemistry for the pH 7.0 snowpack is reported in Table 8. Mean pH 

of snowmelt was from pH 7.0 snowpack was 4.43 (Table 8). 

The mini-catchments were also used to study the relationship between the 

pH of rain and runoff. Runoff was reported as having much more acidic pH 

values than the rain that resulted in runoff (Seip et al., 1979a). Runoff pH 

correlated well with soil pH, i.e. the more acidic the soil in the 

3-81 



mini-catchment, the more acidic was mean runoff pH (Seip et al., 1979a). 

Only for the smallest mini-catchments, and only for heaviest rains, was there 

reported to be any measurable relationship between precipitation pH and 

runoff pH (Seip et al., 1979a). The only data published by Seip et al. 

(1979a) on the relationship of comprehensive mean precipitation chemistry to 

comprehensive mean runoff chemistry are presented in Table 9. Some watershed 

characteristics of the corresponding two mini-catchments are given in Table 

10. These data show that runoff pH is at least two times more acidic than 

the pH of rain (Table 9). Runoff pH correlates to soil pH (Table 9; 10), as 

concluded by Seip et al. (1979a). Certain characteristics of the mini-

catchments appear to exert major influence on the chemistry of runoff: the 

larger the mini-catchment and the greater the percentage of soil cover and 

the greater the soil acidity, the more acidic the runoff (Table 9; 10). 

Seip et al. (1979a) concluded: 

"In soils with low pH and H+ as the dominant exchangeable cation, the 
pH in the run-off must most likely be low. The run-off from the plots 
may therefore be more acid than the precipitation." Furthermore, "It 
is likely that the total amounts of ions in the precipitation are more 
important than the H+ - concentration alone in this connection." 

Simulated pH 3.85 and unpolluted "rain" were sprayed on Norwegian mini-

catchments and the relative acidities of their runoff were compared. It was 

found that pH 3.85 "rain" could acidify runoff from mini-catchments by 

0.2-0.4 pH units relative to pH 5.0-5.3 "rain". It was concluded that this 

pH effect was due to differences in the total ionic concentration of 

simulated pH 3.85 precipitation (141 ueq/L of H+) and simulated unpolluted 

precipitation (Seip et al., 1979b). 

To summarize, SNSF-Project laboratory and field experiments also verifies 

Rosenqvist's (1978; 1980) hypothesis that electrolyte concentration of rain 
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Table 8. Mean Water Chemistry Data for Snowmelt from pH 7.0 Snowpack in a Norwegian Mini-Catchment. 

Anion 
pH H NH4 Ca Mg K Na SO4 NO3 Cl M A Deficit Al 

ug/L 

4.43 37.7 33.6 18.7 14.2 11.0 103.2 87.2 55.6 28.3 218.4 171.1 47.3 211 

M - H+ + NH4
+ + Ca2+ + Mg2+ + K+ + Na+ . 

A - SO4
2- + NP3

-+ Cl-

Anion D e f i c i t - M - A 
Data from Seip et a l . (1980). 



Table 9. Mean Rain and Runoff Chemistry Repor ted fo r Norwegian Mini-Catchments . 

Color Watershed 
Anion (Pt Na Mg 

Sample pH H NH4 Ca Mg K Na SO4 NO3 Cl Al M A Deficit Unit) (ueq/L) 

Precipitation 
Episode 2 4.70 19.9 5.4 2.1 6.4 0.6 27.4 21.8 9.0 25.5 - 61.8 56.3 5.5 - -

Runoff Plot 1, 
Episode 2 4.22 60.2 5.6 12.7 9.4 4.0 24.6 49.6 11.0 40.2 126.0 116.5 100.8 15.7 98 -18.7 -0.7 

Runoff Plot 3, 
Episode 2 4.32 48.2 0 11.0 5.2 3.0 21.2 33.3 16.5 33.0 135.9 88.5 82.8 5.7 63 -14.1 -8.1 

M = H+ + NH4
+ + Ca2+ + Mg2+ + K+ + Na+. 

A = SO42-+ NO3-+ Cl-
Anion Deficit = M - A. 

Watershed Na and Mg assumes runoff Cl- comes only from atmospheric deposition and atmospheric deposition contributions of 
Na and Mg are in the same proportion as the Na/Cl and Mg/Cl ratios in precipitation. 

Data from Seip et al. (1979a). 



Table 10. Some Characteristics of Norwegian Mini-Catchments 1 and 2 
whose Runoff Chemistry was Described in Table 9. 

Mini-Catchment 
Area 
(m2) 

Mean Soil 
(H2O) 

PH Barren Rock 
(%) 

1 264 4.1 61 

2 30 4.4 74 

Soil pH determined in pure water at soil/water volume ratio of 1:2.5. 
Data from Seip et al. (1979a). 
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is more important than its acidity, per se, and soil pH has an even greater 

effect on pH of runoff than does total electrolyte content in precipitation. 

Nevertheless, the summary conclusion of SNSF-Project laboratory and field 

studies in the Final Report of the SNSF-Project (Oerrein et al., 1980) 

summarily dismisses Rosenqvist's (1978; 1980) hypotheses of natural watershed 

acidification. It concludes that H+ from highly acidic soils is not 

transmitted to runoff but H+ from atmospheric deposition (particularly H2SO4) 

is: 

"The easiest way to understand the recent acidification of freshwater 
is by using the mobile anion concept. While most of the atmospheric 
nitrate is retained in the catchment, sulphate anions are usually quite 
mobile. The increased concentration of cations, including H+, 
resulting from an increase in the sulphate concentrations in runoff, 
explain at least a substantial part of the observed acidification 
"(Overrein et al., 1980, p.110). 

It is quite clear that field and laboratory evidence does not allow 

Rosenqyist's hypothesis to be summarily dismissed. Rosenqyist's hypothesis 

appears to have been rejected simply because it does not support the 

conclusion of widespread and detrimental aquatic effects of acidic 

deposition. 

The acidification theory cited above and established by the end of the 

SNSF-Project (Overrein et al., 1980) is the theory of surface-water 

acidification. Watersheds were claimed to be steady-state filters of varying 

efficiency in neutralizing inputs of acid. Near-surface runoff through 

organic rich, highly acidic surficial soil horizons, peats, and their 

associated acidophilic ecosystems are considered to be highly inefficient in 

neutralizing acidic deposition by processes of ion exchange or mineral 

weathering. For one, they are acid-rich and base poor, therefore have little 

bases with to buffer inputs of acid (i.e., they have F values that approach 
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0). Humic acids are recognized as strongly reacting with and, thereby, 

inactivating ionic aluminum and iron that can physicochemically retain SO4
2-. 

Considerations of acidic deposition/watershed interactions involve humic 

acids only to the extent of those interactions that enable the efficient 

passage of deposited H+ and SO4
2- through watersheds. Thus, highly acidic, 

organic-rich soils and peats and their associated acidophilic ecosystems are 

theorized as being incapable of acidifying runoff. Accordingly, acidic, 

near-surface runoff is stated to be acidified by acidic deposition (Seip and 

Tollan, 1978; Overrein et_al., 1980; Seip, 1980). These considerations of 

acidic deposition/watershed interactions are the foundation of H-ion 

input/output budgets of current acidification theory (e.g., Johnson et al., 

1981; Driscoll and Likens, 1982; Nilsson et al., 1982; Van Breemen et al., 

1984; 1985; Reuss et al., 1986; 1987; De Vries and Breeuwsma, 1987). 

Formally, however, there is an inconsistency (Krug, 1985) in that the role 

of organic acids and complexation of organic acids in acidifying soil and 

watersheds is not considered in regard to H-ion budgets used to compare the 

magnitude of acidic deposition to internal acidification processes (Seip, 

1980; Overrein et al., 1980; Johnson et al., 1981; National Research Council, 

1981; Driscoll and Likens, 1982; Nilsson et al., 1982; Havas et al., 1984; 

Peterson, 1984; Van Breemen et al., 1984; Neal et al., 1986; Reuss et al., 

1986; 1987; De Vries and Breeuwsma, 1987). Acidification of watersheds is 

considered to be determined by net loss of bases which is defined in H-ion 

watershed budgets as loss of ANC (acid neutralizing capacity) from the 

watershed. Thus limestone, and similar terrain, with high rates of mineral 

weathering that export much mineral bases and alkalinity in their runoff are 

defined as highly acidifying watersheds. Granitic watersheds with low rates 
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of mineral weathering and alkalinity production are considered to be but 

slightly acidifying (Seip, 1980; Overrein et al., 1980; Johnson et al., 1981; 

National Research Council, 1981; Driscoll and Likens, 1982; Nilsson et al., 

1982; Havas et al., 1984; Peterson, 1984; Van Breemen et al., 1984; Neal et  

al., 1986; Reuss et al., 1986; 1987; De Vries and Breeuwsma, 1987). 

That limestone, and similar terrains are considered by H-ion budgets to be 

"highly acidifying" while granitic, and similar terrains are considered to be 

"slightly acidifying (Seip, 1980; Overrein et al., 1980; Johnson et al., 

1981; National Research Council, 1981; Driscoll and Likens, 1982; Nilsson et 

al., 1982; Havas et al., 1984; Neal et al., 1986; Peterson, 1984; Van Breemen 

et al., 1984; Reuss et al., 1986; 1987; De Vries and Breeuwsma, 1987). That 

granitic landscapes in many "sensitive" watersheds in eastern North America 

and northern Europe have highly acidic, organic-rich soils and peats with 

acidity equivalent of 1,000's of years of high rates of acidic deposition is 

not recognized by H-ion budgets (Seip, 1980; Overrein et al., 1980; Johnson 

et al., 1981; National Research Council, 1981; Driscoll and Likens, 1982; 

Nilsson et al., 1982; Havas et al., 1984; Peterson, 1984; Van Breemen et al., 

1984; Neal et al., 1986; Reuss et al., 1986; 1987; De Vries and Breeuwsma, 

1987). 

In summary, this assumption/conclusion is internally inconsistent, 

counter-intuitive as well as counter-real-world-observational. Nevertheless, 

this reasoning is basic to the determination of how acidic 

deposition/watershed interactions are defined by H-ion budgets incorporated 

into current acidification theory and dynamic acidification models (Krug, 

1985; 1987; 1988). 

It is quite clear that SNSF-Project field and laboratory evidence does not 
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support the theory of surface-water acidification. It does not attempt to 

consider watershed processes and conditions that enable the theory to be 

consistent with field and laboratory results showing strong acidification of 

surface-waters by natural watershed processes. Nevertheless, the theory of 

surface-water acidification appears to be accepted and Rosengyist's 

hypothesis appears to be rejected on the basis of their agreement or 

disagreement with the conclusion that widespread and detrimental aguatic 

effects of acidic deposition have occurred. 
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3.7.1.2 Alternative Hypothesis of Acidification by Soil 
and Plant Ion Exchange 

The hypothesis that soil and plant ion exchange can produce highly acidic 

water on a sustained basis by converting neutral salts to strong mineral 

acids is supported by the field and laboratory studies discussed in Chapter 

3.7.1.1, the existence of life, watersheds, and highly acidic soils. 

In respect to ion exchange, the theory of acidification implicitly 

considers watersheds to be literal analogs to the laboratory ion exchange 

column. Watersheds and their soils are theorized as being closed systems 

where all inputs and outputs are ionic except, of course, for water and 

atmospheric gases (Overrein et_al., 1980; Seip, 1980; Johnson et al., 1981; 

Driscoll and Likens, 1982; U.S. EPA, 1984; NAPAP, 1984; 1986; 1987a; 1988; 

Van Bremmen et al., 1984; 1985; Berden et al., 1987; Reuss et al., 1987). As 

discussed in Chapter 3.7.1.1, ion exchange of neutral salts with plants and 

acidic soils is considered to be incapable of sustained acidification of 

runoff (Overrein et al., 1980; Seip, 1980; Johnson et al., 1981; Driscoll and 

Likens, 1982; U.S. EPA, 1984; NAPAP, 1984; 1986; 1987a; 1988; Van Bremmen et 

al., 1984; 1985; Berden et al., 1987; Reuss et al., 1987). Continued input 

of neutral salt is defined as saturating and neutralizing the acid soil 

system: as happens with H+ ion exchange resin that is trapped and sealed 

inside the canister of the laboratory ion exchange column: 

1. H+ Soil- + M+ + Cl- = M+ Soil- + H+ + Cl-; 

2. M+ Soil- + M+ + Cl- = M+ Soil- + M+ + Cl-. 

The theory of acidification predicts that, eventually, in the absence of 

acidic deposition, the H+ in watershed soils (like the H+ in the laboratory 

ion exchange resin) becomes "spent" (replaced with other cations) and the 
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watershed can not impart acid to water (Overrein et al., 1980; Seip, 1980; 

Johnson et al., 1981; Driscoll and Likens, 1982; Van Bremmen et al., 1984; 

1985; Berden et al., 1987; Reuss et al., 1987). 

Unfortunately, the very existence of highly acidic soils invalidates the 

theory of acidification. By this theory, the existence of such soils is 

impossible because they have been receiving input of thousands of years of 

such non-acidic deposition. The acidity (H+) in the soil should have been 

"spent" a long time ago. Nevertheless, the highly acidic soils common to 

"sensitive" watersheds of Scandanavia and areas of eastern North America have 

an acid content equivalent to thousands of years of current levels of highly 

acidic deposition (Griffith et al., 1930; Heimberger, 1934; Plice, 1934; Lutz 

and Chandler, 1946; Tamm, 1950; Bergseth, 1977; Rosenqvist, 1978; 1980; 

Troedsson, 1980; Krug and Frink, 1983a, b). Such high levels of soil acidity 

can not be accounted for by recent man-made acidic deposition. Thus, the 

highly acidic soils of many "sensitive" regions of northern Europe and 

eastern North America must be naturally acidic. 

The very process of life itself also invalidates the theory of 

acidification. For plants to live, they must take up mineral nutrient 

cations and anions. Because plants take up more cations than anions, the net 

result of nutrient uptake process is one of acidification since nutrient 

cations taken out of solution (plant ion exchange) are replaced by H+ (Clymo, 

1963; 1984; Rosengyist, 1978; 1980; Driscoll and Likens, 1982; Nilsson et 

al., 1982; Krug et al., 1985; Rush et al., 1985; Neal et al., 1986). Thus 

the very process of nutrient uptake by plant life is one of acidification of 

water. 

Unlike the closed laboratory ion exchange column whose H+ ion exchange 
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resin is fixed and contained, new "H+ ion exchange resin" is constantly being 

created by process of life. 

Also, tinlike the laboratory acid exchange resin, the original "resin" 

(biomass) is further modified by biochemical processes upon its death. In 

many "sensitive" watersheds, it is partially oxidized to create more acid: 

organic acids that are collectively known as humic acids. The creation of 

these additional (humic) acids does not lend itself to ion input/output 

budgets either. Organic acids are created by partial oxidation of biomass. 

The ultimate source of their H+ is the non-ionic hydrogen of water (H2O). 

Thus, input of ionic hydrogen is not involved in the creation of organic 

acids. 

The world is not made solely of ionic compounds (salts and mineral acids) 

and, therefore, can not be realistically described in terms of ion 

input/output budgets, as is done in studies of acidic deposition/watershed 

interaction. Elements (such as hydrogen) in non-ionic compounds can be 

chemically transformed into ionic compounds. Indeed, this is the process by 

which acid rain itself is created: acid (H+) is created from non-ionic 

hydrogen in fossil biomass and water by oxidation which transforms 

covalently-bound hydrogen to more ionic forms. Combustion and the creation 

of acid rain involve such oxidation of non-ionic hydrogen, much as naturally 

occurs in "sensitive" watersheds with the creation of highly acidic soil 

organic matter. Thus, the creation of acid rain itself, like soil acidity, 

can not be realistically described in terms of hydrogen ion input/output 

budgets, as is done in studies of acidic deposition/watershed interaction. 

The physical existence of watersheds also invalidates the theory of 

acidification. Watersheds and topography are created by erosional and 

3-92 



depositional processes: processes that remove "spent" resin. This is why we 

have watersheds and drainage patterns. This is why lakes and ponds fill up. 

Unlike the laboratory ion exchange column, nature automatically and 

continuously produces fresh H+ "ion exchange resin" and continuously removes 

spent "ion exchange resin". According to acidification theory, however, the 

dynamic biogeochemical processes of watersheds that enable soil and plant ion 

exchange to acidify water are assumed to be static or non-existent and, 

thereby, incapable of sustained acidification of water (Overrein et al., 

1980; Seip, 1980; Johnson et al., 1981; Driscoll and Likens, 1982; U.S. EPA, 

1984; NAPAP, 1984; 1986; 1987a; 1988; Van Bremmen et al., 1984; 1985; Berden 

et al., 1987; Reuss et al., 1987). 

These omissions of and erroneous considerations of biogeochemical 

processes from acidification theory are not random. Omission and errors are 

consistently those that necessitate overestimation of aquatic acidification 

by acid rain. 

The following research results illustrate that biological processes can 

have a significant influence on the acidity of water even in environments 

that are commonly perceived as essentially "lifeless". Natural landscape 

development from such barren and "lifeless" landscapes is also illustrative 

of acidification and other natural watershed processes. 

Accordingly to acidification theory, soils in "sensitive" landscapes are 

essentially transparent to acidic deposition: they are theorized as doing 

little to influence acid/base chemistry of acidic deposition passing through 

them. Also, exposed granitic rock, such as in the Norwegian mini-catchment 

studies, are often considered "barren". But even exposed granitic bedrock is 

not without life and the erosional/depositional processes required for 
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natural acidification. 

Commonly, exposed bedrock has patches of lichens and moss. Lichens 

represent the start of biological colonization that will eventually transform 

exposed bedrock to soil. In this process, lichens survive by taking 

nutrients out of rain, melting snow, and weathering rock (which they help to 

weather). This life process is one of acidification (the net exchange of H+ 

for positive ions taken up as nutrients). 

Abrahamsen et al. (1978) researched the interaction of simulated 

precipitation with "barren" bedrock having only 20% lichen cover. The pH of 

runoff was found to be both a function of neutral salt/biological ion 

exchange and the acid content of simulated rain. Runoff from simulated pH-5 

rain with concentrations of neutral salts typical of local precipitation was 

initially pH 4.1-4.3 and increased with time to pH 4.6-4.7 (Figure 11). When 

this simulated pH-5 "rain" was replaced by "rain" without neutral salts, 

runoff pH quickly rose to about pH-5, the pH of "rain" (Figure 11). 

Application of pH 4.3 "rain", which is approximately the mean annual pH of 

annual precipitation in southernmost Norway, resulted in pH 4.3 runoff 

(Abrahamsen et al., 1978). 

The results from "barren" bedrock (Abrahamsen et al., 1978) are unlike the 

mini-catchment and soil leaching experiments of the SNSF-Project documented 

in Chapter 3.7.1.1 where there is little or no measurable change between 

control treatments and simulated ambient levels of acidic deposition (Seip et  

al., 1979a; 1980; Overrein et al., 1980). Despite assertions otherwise, the 

data show that highly acidic soil systems are decidedly robust in their 

ability to acidify/buffer runoff. They display homeostasis, resisting 

change. Exposed granite-like bedrock exerts less influence than does soil on 
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Figure 11. The effect of simulated pH 5 with normal background level of 
salt ( ) and, partly through the experiment, without salt 
( ) on runoff pH from "barren" bedrock with 20% lichen cover 
in southern Norway. Modified from Overrein et al. (1980). 
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runoff chemistry. However, net acidification is not 50 ueq H+/L, as expected 

from acidification theory, but only about 25 ueq H+/L, i.e., from pH 4.6-4.7 

to pH 4.3 (Abrahamsen et al., 1978). Net acidification of initial 

runoff may even be less as unpolluted simulated rain resulted in pH-4.3 

runoff. Whether this initial flush of acidity is natural (the result of 

initially high rates of nutrient uptake that diminish as lichens satiate 

their demands for food) or the result of stored anthropogenic acidity is 

unclear. 

Thus, even this supposedly unreactive landscape element ("barren" granitic 

rock) naturally acidifies and resists change; it displays homeostasis. 

The next successional stage is occupation by mosses. Here, even greater 

acidification/buffering is observed. For example, pools on exposed granite 

in Australia have a pH of about 6.4, except when occupied by the mosses 

Isoetes sp. and Campylopus bicolor. When mosses are present, water pH values 

are 3.7-3.8, apparently due to plant ion exchange (Bayley, 1982). 

Another study of exposed granite-like rock in Norway involved the effect 

of patches of moss on the pH of snowmelt from exposed granite-like rock. 

Rueslatten and Jorgensen (1978) found that patches of moss acidify pH 4.9-5.0 

snowmelt to pH 3.9. However, after the pH 3.9 runoff from the moss runs 50 

meters over the rock, runoff pH rises to about pH 4.5. 

Greater acidification also results in greater rates of mineral weathering 

by acids. In this case, about 75% of the acid from moss runoff is 

neutralized, apparently by mineral weathering (Rueslatten and Jorgensen, 

1978). In the aquatic effects literature, if 75% of H2SO4 deposition is 

converted in a watershed to basic SO4
2-, i.e. (Ca2+ + Mg2+ + K+ + Na+)SO4

2-, 

the watershed is said to have a F-factor (or value) of 0.75. 
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Enhancing mineral weathering by acidification appears to be a way that 

ecosystems modify the environment to enhance the supply of nutrients that 

they need to live, especially acidophilic ecosystems in base-poor and 

nutrient-poor environments. It also results in accelerated soil formation. 

The greater biological activity of mosses relative to lichens can result in 

the accelerated development of mineral soil (by physicochemical weathering of 

rock). Greater biomass production can also help to develop the humic acid 

rich soils that tend to develop in rocky terrains of "sensitive" regions 

(Cain, 1931; Heimburger, 1934; Diebold, 1941; Lutz and Chandler, 1946; 

Bergseth 1977; Troedsson, 1980). 

The next sequence of stages in landscape development is the shallow 

soil/ecosystem successional sequences, like those seen in the Norwegian mini-

catchments. As already discussed, these systems are even more robust in 

their homeostasis, their ability to resist change. Ambient levels of acidic 

deposition produce little or no measurable change in runoff acidity from the 

rocky mini-catchments (Seip et al., 1979a; 1980; Overrein et al., 1980; Table 

8; 9; 10). The absence or presence of acidic deposition seems to make little 

or no measurable difference in the acidity of runoff (Seip et al., 1979a; 

1980; Overrein et al., 1980; Table 8; 9; 10), contrary to what the theory of 

acidification predicts. Apparently, one of the reasons why levels of acidic 

deposition have so little influence on the acidity of runoff from Norwegian 

mini-catchments is that runoff is naturally acidic due to acidification by 

ion exchange. Nevertheless, Rosenqvist's hypothesis (1978; 1980) predicts 

that there will be measurable acidification by acidic deposition. Therefore, 

Rosenqvist's (1978; 1980) ion exchange hypothesis (which accounts for the F-

factor due to ion exchange) apparently underestimates natural 
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acidification/buffering processes of watersheds and does not take into 

consideration all watershed processes of acidification and buffering. 

Nevertheless, acidification of runoff from Norwegian min-catchments by ion 

exchange is apparent. Table 9 shows that concentrations of sodium (Na) and 

magnesium (Mg) in runoff are less than values predicted from atmospheric 

inputs alone. On the basis of hydrogen ion budgets or ionic input/output 

budgets, watersheds contribute negative concentrations of Na and Mg to 

runoff. Negative concentrations are a physical impossibility. 

Objective analysis of Table 9 data suggest that the mini-catchment is 

storing and/or eroding (in particulate form) atmospherically-deposited Na and 

Mg as well as some Na, Mg, K, and Ca produced by mineral weathering. Net 

negative concentrations of Na and Mg mean that even rates of mineral 

weathering can not meet with the ion exchange uptake demands and/or erosional 

output of the watershed. The net uptake of Na and Mg and replacement with H+ 

is about 20 ueq/L, which is the same as the input of H+ from the pH 4.7 acid 

rain (Table 9). But some indeterminant portion of the acid rain input of 20 

ueq H+/L is necessarily consumed by mineral weathering. Atmospheric input of 

H+ necessarily increases concentrations of mineral base cations in runoff. 

So, for example, pH 4.7 acidic deposition is expected to contribute less than 

its full 20 ueq H+/L to runoff because some of its H+ is retained in the 

watershed and replaced by base mineral cations in runoff (F-factor). 

Enhanced leaching of base mineral cations (F-factor) by acidic deposition 

masks the true degree of net contribution of H+ to runoff by ion exchange, 

i.e., the net acidification of water by ion exchange before acidic 

deposition. 

Enhanced leaching of base mineral cations resulting from acidic deposition 
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(F-factor) is yet another example of how acidification by acid rain can be 

overestimated, and natural processes of acidification can be underestimated, 

by not considering factors that act to neutralize or buffer acidic 

deposition. 

Apparently, naturally-acidic lakes existed in Nova Scotia in 1955 

acidified by both weak organic acids and strong acids (Gorham, 1957; Table 

11). Natural strong acid production may be by both soil and plant ion 

exchange, given the descriptions of the watersheds (heathy peaty forested 

watersheds with lakes often surrounded by sphagnum peats and lakes containing 

floating sphagnum mats (Gorham, 1957)). Mean concentration of non-marine Mg 

in lakewater (an estimate of net watershed mineral weathering contribution of 

Mg) is negative (Table 11) which indicates net strong acid production by ion 

exchange. 

Watt et al. (1979) claimed that Nova Scotian lakes surveyed earlier by 

Gorham (1957) had subsequently become acidified by acidic deposition. They 

claimed that acidification of these Nova Scotian lakes was consistent with 

H2SO4 titration loss of alkalinity because of the increase in concentrations 

of non-marine SO4
2- and H+ in lakewaters between 1955 and 1977 (Watt et al., 

1979). 

Table 11 shows that mean concentration of non-marine SO4
2- for lakes on 

granite increased by 9.3 ueq/L whereas concentration of H+ increased by 21.1 

ueq/L (Table 11). Acidification theory considers increased concentration of 

non-marine Ca2+ to be a direct indicator of increased mineral weathering and 

increased alkalinity production (Henriksen, 1979; 1980; Watt et al., 1979). 

By acidification theory (Watt et al., 1979; U.S. EPA, 1980a, b; 1984; NAPAP, 

1984; 1986; 1987a; 1988), alkalinity of Nova Scotian lakes on granite should 
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Table 11. Water Chemistry Data (1955, 1977) for Nova Scotian Lakes on Granite Bedrock Watersheds. 

Lakes on Granite 
(1977) 4.26 55.4 64.6 68.8 364. .0 15.7 156.6 407.0 568.5 563.6 4.9/55.4 114.8 17.0 -15.5 62.2 

Lakes on Granite 
(1955) 4.46 34.3 49.2 44.7 232. .3 10.9 128.6 225.2 371.3 353.8 17.6/34.3 105.5 40.3 - 1.9 47.4 

1977 - 1955 -0.20 21.1 - - - - - 181.8 197.1 209.8 -12.7/21.1 9.3 -23.3 -13.6 14.8 

Lake 5 (1955) 4.85 14.1 90.0 49.4 147. 8 12.7 177.1 160.0 314.0 337.1 -23.1/14.1 160.7 11.4 33.1 86.6 

Lake 8 (1955) 3.95 112.2 40.0 32.9 217. 3 7.7 198.0 203.1 410.1 401.1 10.0/112.2 177.2 44.1 - 9.2 32.4 

Data from Gorham (1957) and Watt et al. (1979). 
All data are in ueq/L except pH. 
Data for lakes on granite are mean values for the 7 lakes analyzed and without watershed disturbance between 1955 and 1977. 
M = H+ + Ca2+ + Mg2+ + Na+ + K+. 
A = SO4

2-+ Cl-

Anion D e f i c i t = M - A. 

Anion 
Deficit/ 

Non-
Marine 

Non-
Marine 

Non- Non-
Marine Marine 

Lakes pH H Ca Mg Na K SO4 Cl M A H+ SO4 Na Mg Ca 



have increased by 14.8 ueq/L, the amount that the increase in non-marine Ca2+ 

exceeded the increase in non-marine SO4
2- between 1955 and 1977 (Watt et 

al., 1979; Table 11). 

Thus, strong acid (H2SO4) titration of alkalinity predicts a slight 

increase in pH and alkalinity for these Nova Scotia lakes. But what 

actually happened was acidification not alkalinization (Table 11). This is 

exactly opposite of what is expected to have occurred from acidification 

theory. These Nova Scotian lakes can not have been acidified by acidic 

deposition as has been asserted (Watt et al., 1979; National Research 

Council, 1981; Havas et al., 1984). 

Lakewater chemistry data (Table 11) show that in 1977, Nova Scotia lake 

watersheds retained even more Na and Mg, 36.9 ueq/L more, than they did in 

1955. Also, anion deficit decreased by 12.7 ueq/L (from 17.6 ueq/L in 1955 

to 4.9 ueq/L in 1977 ) indicating organic acid buffering of these waters that 

were already highly acidic in 1955 (Table 11). In combination with the non-

marine SO4
2- and Ca2+ data, these data indicate that most of the increased 

acidity of these waters can probably be attributed to strong acid production 

by natural watershed processes of ion exchange. Acidification would probably 

have been even greater in the absence of organic acid buffering. 

Watt et al. (1979) recognized that concentration of seasalt in Nova 

Scotian lakes were considerably higher in 1977 relative to 1955 and noted 

that storms off the Atlantic Ocean were more prevalent prior to the 1977 

sampling than prior to the 1955 sampling. Thus, seasalts being more heavily 

deposited in precipitation prior to the 1977 can be used to explain the 

elevated concentrations of the chemical components of seawater in Nova 

Scotian lakes in 1977 relative to 1955 (Watt et al., 1979). However, Watt et 
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al. (1979), being consistent with the theory of acidification, did not 

consider seasalts to be capable of surface-water acidification (Watt et al., 

1979). 

As shown earlier for a number of Norwegian studies, however, seasalt and 

other neutral salts are capable of acidification of surface waters 

(Abrahamsen et al., 1978; Rosengyist, 1978; 1980; Overrein et al., 1980; 

Skartveit, 1980; 1981; Figure 10; 11; Table 6; 8; 9; 10). Sodium (Na) is the 

most common cation in seawater. But of the base cations (Ca2+, Mg2+, K+, and 

Na+), Na+ is often the cation most weakly retained by ion exchange reactions 

in soil and the least in demand as a nutrient to be taken up by plant ion 

exchange. 

Lag (1968) showed that coastal soils of southern Norway are greatly 

enriched in exchangeable Mg2+ relative to inland soils but only slightly 

enriched in respect to Na+ (Table 12). This soil chemical gradient is 

related to the coastal gradient of seasalts in precipitation (Lag, 1968). 

Thus, marine Mg2+ appears to be a more likely ion-exchange acidifier of near-

surface runoff from highly acidic soils and their associated acidophilic 

ecosystems than is marine Na+. 

Magnesium (Mg2+) is plentiful in seawater. The concentration of Mg2+ is 

about 24% that of Na+ on a charge-equivalent basis. The concentration of 

Mg2+ in seawater is about 200% that of SO4
2- on a charge-equivalent basis. 

The concentration of SO4
2- in seawater is considered to be so significant 

that marine SO4
2- is subtracted out of coastal freshwaters to estimate non-

marine SO4
2-. Thus, concentration of non-marine SO4

2- and all other marine-

derived ions (including Na+ and Mg2+) in coastal freshwaters are subtracted 

out of overall freshwater chemical composition because the accepted theory of 
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Table 12. The Influence of Proximity to the Ocean of Exchangeable 
Bases in Humus of Southern Norway. 

Ytre Nord-Trandelag 22 43.6 41.0 10.4 5.0 
Midtre Namdalsbygdene 46 49.4 34.6 11.8 4.2 
Nord-Trondelag 198 52.8 31.8 12.0 3.4 
Sorli-Nordli-Royrvik 33 59.7 26.2 12.4 1.7 
Oppland 487 72.9 15.3 10.4 1.4 
Buskerud 296 74.2 14.9 9.5 1.4 

Data from Lag (1968). 
Districts arranged in increasing distance from the ocean. 
Oppland and Buskerud are considered true inland locations. 
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acidification predicts that inputs of neutral salts are incapable of 

acidifying water. However, we have already seen that there is Norwegian and 

Canadian data showing otherwise. 

Data from the eastern lakes NSWS (Kanciruk et al., 1986) also suggests the 

possibility of surface-water acidification by strong mineral acids 

produced by ion exchange of seasalt for some lakes. For example, Reuss 

(1988) presented data for a NSWS Clearwater (DOC = 1.62 mg C/L), acidic (pH 

=4.50) Cape Cod lake, Cahoon Pond, as being a classic example of 

acidification by deposition of H2SO4: Clearwater, no anion deficit (actually 

anion excess), and both the concentrations of non-marine SO4
2- and "acid 

cations" (H+ and ionic Al) equal about 40 ueq/L. Furthermore, the ratio of 

Na/Cl was slightly greater than that of seawater and was claimed to prove 

that ion exchange for seasalt can not acidify water (Reuss, 1988) as has been 

earlier hypothesized (Krug et al., 1985). 

The data used by Reuss (1988) for Cahoon Pond (Kanciruk et al., 1986) show 

that concentration of Mg2+ in pondwater is more than 100 ueq/L less than 

predicted just from atmospheric deposition of seasalts (Table 13). Thus, 

soil and plant ion exchange of H+ for Mg2+ not only accounts for the 

approximately 40 ueq/L of "acid cations", but also accounts for the total 

elimination of alkalinity that must occur before there can be significant 

concentrations of "acid cations" in water (Krug, 1988; Table 13). 

But the real extent of natural acidification of Cahoon Pond, and other 

NSWS lakes by soil and plant ion exchange remains unknown because acidic 

deposition necessarily increases the concentration of base cations to surface 

waters (F-factor), thereby, making uncertain pre-acidic deposition net strong 

acid production by ion exchange. Nevertheless, Cape Cod surface waters 
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Table 13. Some Measured and Predicted Chemical Values for 
Cahoon Pond (1D2- 078) -- A NSWS pH<5.0 
Clearwater Seepage Pond on Cape Cod. 

PH/H 4.50/31.6 35.1* -

Na 779.1 722.2 56.9 

Ca 45.2 33.9 11.3 

Mg 73.2 175.4 -102.2 

K 14.7 15.8 -1.1 

SO4 128.2 86.9 41.3 

Cl 847.1 847.1 0.0 

Data from Kanciruk et al. (1986). 
Both closed and equilibrium pH = 4.50. 
Marine contributions assume that all Cl- is derived from seasalt and marine 
contributions are in proportion to mean seawater chemistry. 
* Marine H+ = Non-marine Na+ + Ca2+ + Mg2+ + K+. That the sum of non-marine 
(watershed) base cations is negative is assumed to represent H+ supplied to 
water by ion exchange of H+ for Mz+. 
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can provide a useful case study with which to determine the relative 

importance of acidification of surface waters by strong acids from acidic 

deposition and from ion exchange. The NSWS suggests that Cape Cod has the 

highest proportion of highly acidic (pH<5.0) lakes in the Northeast (Kanciruk 

et al., 1986). 

Cape Cod lakes are fed principally by emerging groundwater from highly 

permeable sands. They receive negligible amounts of near-surface runoff and 

direct inputs of precipitation are expected to be relatively minor. Many 

Cape Cod lakes and ponds are seepage lakes, as is Cahoon Pond (Mitchell and 

Soukup, 1981; Dowd, 1984; Kanciruk et al., 1986). Such seepage lakes can be 

described as big holes that expose the groundwater, i.e., such lakes are 

literally windows of the regional groundwater table which is tens of feet 

beneath the land surface. The groundwaters at Cape Cop are completely 

neutralized by mineral weathering (Mitchell and Soukup, 1981; Dowd, 1984). 

The principal effect of acidic deposition on water chemistry of such aged 

groundwater is to increase the concentration of mineral cations (Ca2+, Mg2+, 

K+, Na+) and SO4
2- (N.M. Johnson, 1979; 1982; Johnson et al., 1981; 

Henriksen, 1982; Jones et al., 1983; NAPAP, 1984; 1987a; Cosby et al., 1985; 

Gherini et al., 1985; Neal et al., 1986). This increased supply of base 

cations necessarily results in underestimation of natural acidification of 

water by ion exchange by current water chemistry data by the extent that 

deposition results in increased concentrations of basic sulfate to surface 

waters (e.g., Ca2+ + Mg2+ + Na+ + K+ + SO 4
2 -). For example, if 40 ueq/L of 

H2SO4 deposition results in an increase of bases by 20 ueq/L, 20 ueq/L of 

acidification by ion exchange is masked acidic deposition/watershed 

interaction. For this hypothetical example, in the absence of acidic 
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deposition, ion exchange acidified water 20 ueq/L more than predicted by 

current water chemistry. In the case of Cape Cod Kettle Ponds (which are 

windows on regional groundwater), apparently all H2SO4 deposition is 

neutralized in the aged groundwater that seeps into these lakes and ponds. 

Unlike the incomplete (75%) neutralization by mineral weathering of acid in 

runoff from moss/rock (Rueslatten and Jorgensen, 1978), there appears to be 

sufficient contact in the very deep gravelly sands of the low relief 

watersheds of Cape Cod to completely neutralize acidic deposition, i.e. F-l 

(Mitchell and Soukup, 1981; Dowd, 1984). 

Thus, Cape Cod surface waters appear not to be acidified by either acidic 

deposition or acidic soils. Acidification appears to be by in-lake 

processes. Apparently, acidification is by sphagnum, and other mosses, that 

live within these waters (Winkler, 1985; 1988; personal communication). 

Paleolimnological investigations indicate that these waters have been highly 

acidic clearwaters for the last 12,000 years (Winkler, 1988; personal 

communication). 

It has been long known that acidophilic ecosystems of the type common in 

many "sensitive" watersheds of eastern North America and northern Europe have 

been acidifying the environment on the order of the geologic time scale 

(Clymo, 1963; 1984; Gore, 1983; Andrus, 1986; Carter, 1986). Indeed, the 

very existence of acidophilic ecosystems (ecosystems that prefer or require 

highly acidic terrestrial and aquatic habitats) in "sensitive" watersheds 

present a simple and compelling de facto argument that many of these systems 

are naturally acidic. 

Sphagnum mosses flourish in and create unusually acidic habitats. 

Sphagnum mosses are the best-known example of acidification of water by plant 

3-107 



ion exchange (Clymo, 1963; Gore, 1983; Andrus, 1986; Carter, 1986; Maimer, 

1986). 

There is a common misconception that sphagnum acidifies water by releasing 

organic acids. Thus, acidification by sphagnum is asserted to be a 

process that produces highly colored waters acidified by weak organic acids. 

Clymo (1963; 1984) showed, however, that organic acids do not issue from the 

living plant but may issue from peats underlying the moss. 

That oligotrophic (nutrient poor) wetland ecosystems typified by sphagnum 

reduce total concentration of ions in water is well recognized among wetland 

ecologists (Gore, 1983; Andrus, 1986; Carter, 1986; Maimer, 1986). Studies 

done on water moving through, and in intimate contact with oligotrophic 

wetland vegetation (as opposed to channelized flow somewhat isolated from 

vegetation) show that reduction in total ionic concentration is associated 

with increased acidity of water (Gorham and Pearsall, 1956; Pearsall, 1956; 

Newbould, 1960; Retzsch et al., 1982; Vitt and Bayley, 1984). 

Sphagnum and other oligotrophic wetland communities exist where rates of 

nutrient inputs by water are low, i.e., relatively low flow and low rate of 

mineral weathering (Gorham and Pearsall, 1956; Pearsall, 1956; Newbould, 

1960; Clymo, 1963; 1984; Gore, 1983; Andrus, 1986; Carter, 1986; Maimer, 

1986). Thus, the hydrological settings of these naturally-acidifying 

ecosystems tend to be headwaters in siliceous geologic terrain with 

relatively low rates of mineral weathering having cool to temperate humid 

climates. 

Thus, acidophilic plant communities can acidify waters in precisely those 

locations said to be acidified by acid rain. And the nature of such 

acidification can be precisely that attributed solely to acid rain: 
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acidification by strong mineral acids. 

Data from a watershed study of an acidic (pH<5.0) clearwater pond, Emmons 

Pond, in Connecticut is useful in illustrating the influence of plant ion 

exchange on the creation of highly acidic clearwaters acidified by strong 

mineral acid. Emmons Pond is located in a region receiving relatively high 

rates of acidic (H2SO4) deposition. And, it is located precisely in that 

type of landscape believed to be most sensitive to acidification by acidic 

deposition: a headwater pond in recently-glaciated terrain on granite-like 

bedrock (Rush et al., 1985). Emmons Pond was one of 229 headwater lakes and 

streams in New England surveyed by the U.S. Fish and Wildlife Service (Haines 

and Akielaszak, 1983). Emmons Pond was reported to be a clear-cut case of 

acidification by acidic H2SO4 deposition (Haines and Akielaszak, 1983). 

However, research shows that at Emmons Pond, lite the Cape Cod lakes and 

ponds (Mitchell and Soukup, 1981; Dowd, 1984), there is essentially complete 

neutralization of acidic deposition within the watershed because of 

sufficient contact in the gravelly sands of the low relief watershed (Rush et  

al., 1985). Emmons Pond is fed by emerging pH-6 groundwater. The 

groundwater is acidified to pH-4.3 as it passes through a sphagnum "lawn" 

(Table 14). Water chemistry data indicate that acidification is by moss 

uptake of nutrient cations and replacement with H+ rather than by release of 

organic acids from the moss (Table 14). Concentrations of DOC actually 

decrease as water passes through sphagnum, from 6.1 mg/L in shallow 

groundwater to 2.0 mg/L after passing through the moss (Table 14). Also, 

there is an anion deficit of 41.4 ueq/L in the highly acidic Clearwater 

issuing from the moss (Table 14) which is typical of acidic clearwaters 

having dissolved ionic metals (Table 4). 
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Table 14. Select Mean Water Chemistry Data for the 
Emmons Watershed, 1983-84. 

Shallow groundwater 

Outlet Sphagnum 
lawn (Hurricane Brook) 

6.07 6.1 107.3 

4.28 2.0 23.5 

56.3 

31.8 

31.3 107.7 38.5 

7.2 61.7 50.0 

197.4 

168.0 

73.5 

-46.4 

Data from Krug (1988). 
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Total ionic concentration of water is reduced from 309 to 218 ueq/L as 

emerging groundwater is acidified by sphagnum (Table 14). Such decrease in 

ionic concentration has also been shown in other studies for water passing 

through similar acidophilic wetland ecosystems (Gorham and Pearsall, 1956; 

Pearsall, 1956; Newbould, 1960; Retzsch et al., 1982; Vitt and Bayley, 1984). 

Wetlands occupy only 5% of the watershed of Emmons Pond (Rush et al., 

1985). Nevertheless, the wetlands appear to be the predominant factor 

influencing water chemistry. While only occupying a very small fraction of 

the watershed, these wetlands are hydrologically very significant because 

virtually all water passing through the watershed passes through these 

wetlands (Rush et al., 1985). Water passing through the wetlands lose 

mineral bases and gain H+ and ionic metals. The wetlands in the Emmons 

watershed also appear to significantly influence sulfur chemistry by lowering 

mean concentration of water passing through them (Krug, 1988; Table 14). 

The Emmons Pond study illustrates that while SO4
2- is the dominant anion 

in water issuing from sphagnum, it can not be factually claimed that 

atmospheric deposition of H2SO4 is the source of H+. The role of acidic 

deposition in this case appears to be little more than to increase the total 

ionic concentration of water and total supply of nutrients to the wetland 

ecosystem. Without the sphagnum in the wetlands, Emmons Pond would not be an 

acidic, Clearwater pond, it would be a circumneutral, Clearwater pond (Krug, 

1987; 1988). Contrary to common scientific belief, that the highly acidic 

Clearwater coming out of the sphagnum is SO4
2- dominated does not mean that 

atmospheric H2SO4 deposition is the source of H+. 

Application of acidification theory to contemporary water chemistry data 

and watershed input/output budgets miss possible offsetting sources and sinks 
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of SO4
2- in watersheds. Therefore, it is uncertain that without direct study 

of internal watershed sources and sinks of SO4
2- the degree to which the 

overall flux of SO4
2- responds to increased SO4

2- deposition. Application of 

acidification theory to contemporary water chemistry data and watershed 

input/output budgets without objectively-designed and objectively-interpreted 

watershed studies also miss the uptake of nutrients by sphagnum and the 

release of H+ by sphagnum. Such studies interpreted by the theory of 

acidification would simply assert, erroneously, that there is insufficient 

mineral weathering to neutralize inputs of H2SO4 in Emmons Pond and similar 

clearwaters. 

Thus, certain correlations (H+ to SO4
2-, insufficient base cations to 

charge balance inorganic "strong acid" anions) are taken as causal. But 

correlation does not establish cause no matter how good the correlation. 

In summary, Chapter 3.7.1.2, "Alternative Hypotheses of Acidification by 

Soil and Plant Ion Exchange", has demonstrated that soil and plant ion 

exchange can strongly acidify water, both on an episodic and sustained basis. 

Many of the field and laboratory data and observations used to demonstrate 

natural acidification of surface waters by soil and plant ion exchange are 

actually data and observations originally used to support the conclusion that 

such natural acidification is impossible and that the strong acidity of 

surface waters is necessarily a recent phenomenon due to the recent advent of 

acidic (H2SO4) deposition. 

It is quite clear that considerable evidence exists that invalidates the 

theory of surface-water acidification. 

The real extent of natural acidification of surface waters by soil and 

plant ion exchange are necessarily understated by application of current 
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acidification theory to contemporary water chemistry data. This is because 

acidic deposition necessarily alters water chemistry. But this alteration of 

water chemistry is far more complex than H2SO4 titration of alkalinity and 

interaction with assumedly steady state, closed mineral landscape systems. 

Well known, natural watershed acidification/buffering processes indicate 

that the theory of acidification has major shortcomings. Nevertheless, very 

little process-oriented field and laboratory research has been sponsored by 

acidic deposition programs for studies of these well known watershed 

processes of acidification/buffering. Accordingly, very little data exists 

for laboratory and field experiments appropriately designed to assess these 

acidification/buffering processes in the context of their influence on the 

assessment of surface-water acidification by acidic deposition. 

It is obvious that by not considering all factors that act to buffer 

against acidification, the damaging effects of acidic deposition on surface 

waters will be necessarily overestimated. Similarly, by not considering 

factors (other than acidic deposition) that act to acidify water, the 

damaging effects of acidic deposition on surface waters will be necessarily 

overestimated. Thus, ignoring any factor related to acidification, whether 

that factor acts to buffer or acidify, will necessarily overrepresent, by 

default reasoning, the role of the only acidifying agent being considered. 

Without process-oriented research specifically designed to investigate the 

effects of acidic deposition/watershed interaction on soils and biology (more 

comprehensively than that research designed to support acidification theory), 

we will not be able to adequately evaluate the role of acidic deposition in 

surface-water acidification. 
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3.7.2 Score Acidification and Buffering Mechanisms of Highly 
Acidic, Organic Rich landscape Elements 

The theory of surface-water acidification assumes that processes necessary 

and sufficient to scientifically describe acidic deposition/watershed 

interactions are the interactions of acidic deposition with the processes 

occurring in deep, well drained mineral soil landscape elements (Henriksen, 

1979; 1980; Overrein et al., 1980; Seip, 1980; U.S. EPA, 1980a, b; 1984; 

Johnson et al., 1981; National Research Council, 1981; NAPAP, 1984; 1986; 

1987a; Van Breeman et al., 1984; 1985; Cosby et al., 1985; Reuss et al., 

1986; 1987; Henriksen and Brakke, 1988). 

Thus, the theory of surface-water acidification may be a reasonably 

accurate predictive tool for waters whose chemistries are solely controlled 

by the processes of deep soil, well drained mineral landscapes. 

Acidification theory is probably adequate for the majority of waters in 

"highly impacted" regions like southern Norway and the Northeast. Even in 

these "highly impacted" regions most waters have considerable alkalinities 

(Wright and Snekvik, 1977; Haines and Akielaszak, 1983; Kanciruk et al., 

1986) which indicates that water chemistry is principally that of relatively 

aged, mineral-rich groundwater. 

But, waters of concern tend to be very dilute and mineral poor, having 

little or no alkalinity. It is counter-intuitive and counter-real-world-

observational to believe that watershed processes of "sensitive" watersheds 

are principally controlled by the processes of deep, well drained mineral 

landscapes are weakest. Studies show that most highly acidic surface waters 

are not controlled by processes of deep, well drained mineral soil landscape 

elements (Braekke, 1976; Likens et al., 1977; N.M. Johnson, 1979; Rosenqvist, 

1978; 1980; Johnson et al., 1981; Overrein et al., 1980; Seip, 1980; Driscoll 
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and Likens, 1982; Duhaime et al., 1983; Jones et al., 1983; Krug and Frink, 

1983a, b; Retzsch et al., 1983; Gherini et al., 1985; Lefohn and Klock, 1985; 

Rush et al., 1985; Schofield et al., 1985; James and Riha, 1986; Kessel-

Taylor, 1986). It is precisely in such "sensitive" watersheds that any 

theory of surface-water acidification based on processes of deep, well 

drained mineral soil landscapes is weakest, subject to greatest error, and is 

least appropriate. Ironically, this is precisely where the theory of 

acidification is being applied - to situations where it is least relevant and 

least applicable. 

But, if there is one area of interest where the theory of surface-water 

acidification may be a reasonably accurate predictive tool, it is for those 

waters whose chemistries are solely controlled by the processes of deep soil, 

well drained mineral landscapes. The acidification issue that may be 

addressable by acidification theory is the potential future acidification of 

currently non-acidic waters. However, the following discussion suggests that 

such surface waters are unlikely to become acidified by acidic deposition in 

the foreseeable future. 

Runoff from mineral soils typical of recently-glaciated terrain of the 

northeastern United States contains negligible amounts of H+ (e.g., Likens et  

al., 1977; N.M. Johnson, 1979; Johnson et al., 1981; Gherini et al., 1985). 

Numerous experiments show that ion exchange of acid added to mineral soils 

rapidly results in nearly complete replacement of added H+ with base mineral 

cations (Ca2+, Mg2+, Na+, K+), i.e. the F-factor due to ion exchange alone 

approaches 1.0 (Reuss and Johnson, 1985). Only when base saturation of soil 

(base saturation is that portion of exchangeable cations that are base 

mineral cations) is less than 2% does the ion exchange F-factor go below 0.5 
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(Reuss and Johnson, 1985). Base saturations of 2%, or lower, are almost 

unheard of for even highly acidic Northeast (Prince and Raney, 1961) and 

Norwegian soils (Lag, 1968; Bergseth, 1977). 

Chapters 3.6 and 3.7.1 show that the water chemistry of runoff is 

controlled by even brief and imperfect contact with soils through cation 

exchange reactions. Cation exchange reactions in soils are exceedingly 

rapid, generally being completed in microseconds for physically-unobstructed 

surfaces; commonly requiring only up to several seconds due to hysteresis for 

physically-obstructed surfaces (Kelley, 1948; Adamson, 1973; Sposito, 1984). 

Thus, it is not surprising that F values for even pH<5.0 waters examined so 

far are greater than 0.5 (Rueslatten and Jorgensen, 1978; Mitchell and 

Soukup, 1981; Dowd, 1984; Rush et al., 1985; Winkler, 1985; 1988; Krug, 1988; 

Table 14). 

In conclusion, it appears that ion exchange F-Factor, alone, can account 

for the essential absence of appreciable H+ in runoff from mineral soil 

landscape elements of recently-glaciated terrain. 

The question then arises as to whether acidic H2SO4 deposition will soon 

deplete the soil's supply of base cations. Is the landscape, particularly 

granitic landscape of recently-glaciated terrain, capable of replenishing 

base mineral cations lost to ion exchange with H+? 

Simple considerations of geology and mineralogy suggest that runoff from 

mineral soil landscape elements of recently-glaciated terrain is unlikely to 

became acidified in the foreseeable future (N.M. Johnson, 1979; 1982; Krug 

and Frink, 1983a, b). Even granitic watersheds, which are commonly believed 

to have relatively little bases to resist acidification, have been shown to 

have enormous acid neutralizing capacity relative to rates of acidic 
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deposition (N.M. Johnson, 1979; 1982; Krug and Frink, 1983a, b). For 

example, the bedrock and soils of the Hubbard Brook Experimental Watershed 

are considered to be especially poor in bases with which to neutralize acidic 

deposition (Likens et al., 1977). Nevertheless, just two feet of unweathered 

Hubbard Brook soil (C horizon) has the capacity to neutralize about 220,000 

years of acidic deposition, pH=4.3 at 1/m·yr (Krug and Frink, 1983b). It is 

inconceivable that current levels of fossil fuel consumption can be kept up 

for 2,200 centuries. 

In conclusion, it appears that even granitic, shallow mineral soil 

landscapes have essentially infinite quantities of base mineral cations 

relative to inputs of acidic H2SO4 deposition. 

However, the above statements are based on the implicit assumption that 

watersheds are static, closed systems (except for inputs of acidic deposition 

and inputs and outputs of atmospheric gases and water). Nevertheless, the 

very existence of watersheds belie such an assumption. The physical 

existence of watersheds is due to erosional and depositional processes that 

create the topography of watersheds which, in turn, influences the flow and 

direction of flow of water. Assuming rates of erosion of 1 in./100 yr. and 1 

in./1,000 yr. means that a new two feet of soil will present itself in 2,400 

and 24,000 years, respectively. 

In conclusion, it appears that base depletion by acidic deposition can not 

keep up with erosional/soil-forming processes of granitic terrains of the 

Northeast. On the long-term average, new supplies of weatherable bases are 

being exposed faster than acidic deposition can deplete them from the 

landscape. Waters currently not acidic are not likely to become acidified 

because of acidic H2SO4 deposition depleting the acid neutralizing capacity 
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of mineral landscape elements of recently-glaciated terrains, such as occur 

in the northeastern United States. 

The questions then arise, if acidic H2SO4 deposition is largely incapable 

of acidifying runoff from mineral soils of recently-glaciated terrains 1.)-

why are currently acidic waters acidic, and 2.) - what role has acidic 

deposition played in their acidification? 

The answers to these questions lies in determining: 

1.)- What landscape elements does acidic runoff issue from, and; 

2.)- How does acidic deposition interact with landscape elements that 
supply acidic runoff to surface waters? 

The "classic" view of an acidic lake or stream that has been passed on to 

us from studies in Scandinavia (Braekke, 1976; Overrein et al., 1980; Seip, 

1980), Hubbard Brook (Likens et al., 1977; N.M. Johnson, 1979; Johnson et 

al., 1981; Driscoll and Likens, 1982), and the ILWAS research in the 

Adirondacks (Gherini et al., 1985; Schofield et al., 1985). All of these 

studies show that highly acidic surface waters receive disproportionately 

large amounts of water as near-surface runoff from the highly acidic, 

organic-rich surficial soil materials and peats that mantle the studied 

watersheds (Braekke, 1976; Likens et al., 1977; N.M. Johnson, 1979; Johnson 

et al., 1981; Overrein et al., 1980; Seip, 1980; Driscoll and Likens, 1982; 

Gherini et al., 1985; Schofield et al., 1985). 

There appears to be a true consensus on the nature of "sensitive" 

watersheds. The advocates of the alternative hypotheses of acidification 

also report that acidic, near-surface runoff issues from the above mentioned 

highly acidic, organic rich soil material and/or acidophilic ecosystems 

(Rosenqvist, 1978; 1980; Duhaime et al., 1983; Jones et al., 1983; Krug and 

Frink, 1983a, b; Retzsch et al., 1983; Lefohn and Klock, 1985; Rush et al., 
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1985; James and Riha, 1986; Kessel-Taylor, 1986). 

Accordingly, the acidic deposition/watershed interactions relevant to the 

issue of aquatic acidification for many sensitive watersheds are not simply 

the interactions of acidic deposition with mineral bases but also the 

interactions of acidic deposition with highly acidic, organic-rich soils and 

peats. In these mantles, organic acids are formed and these acids are the 

first and primary terrestrial camponents to interact with acidic deposition 

(Krug and Frink, 1983a, b). It has been hypothesized that it is 

inappropriate to attribute the properties and processes of deep, well drained 

mineral soils to the highly acidic, organic-rich soils and acidophilic 

ecosystems that mantle many sensitive watersheds of eastern North America and 

northern Europe from which acidic runoff issues (Krug and Frink, 1983a; Krug 

et_al.,1985; Krug, 1987; 1988). 

In summary, the chemistry of acidic deposition/watershed interaction for 

many "sensitive' watersheds includes the interaction of acid-with-acid 

(organic) and not just acid-with-base (mineral) as advocated by the theory of 

surface-water acidification. It should be expected that the reaction of 

acid-with-acid can be quite different from the reaction of acid-with-base. 

The theory of acidification asserts that highly acidic soils necessarily 

yield alkaline water and have little capacity to neutralize inputs of acid. 

Accordingly, only small additions of strong acid to highly acidic soils and 

peats are asserted to result in large pH depressions because these base-poor, 

highly acidic materials have few bases with which to offset inputs of acid 

(Seip, 1980; Johnson et al., 1981; Driscoll and Likens, 1982; Nilsson et al., 

1982; Peterson, 1984; U.S. EPA, 1984; NAPAP, 1984; 1986; 1987a; Van Bremmen 

et al., 1984; 1985; Ad Hoc Committee on Acid Rain: Science and Policy, 1985; 
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Cosby et al., 1985; Krug, 1985; Reuss et al., 1986; 1987; De Vries and 

Breeuwsma, 1987). 

Nevertheless, numerous laboratory and field data already presented show 

that highly acidic soils can strongly buffer against pH depressions from 

addition of strong acids and can yield highly acidic waters in the absence of 

inputs of acid (e.g., Tables 6, 8, 10, Figure 10, and other experimental and 

field results presented in Chapter 3.7.1). 

Table 15 shows a soil acidity/vegetation altitudinal relationship for the 

Smoky Mountains of North Carolina which resembles that of the Adirondack 

Mountains of New York (Krug and Frink, 1983a, b; Figure 9). Given the 

relationship of soil leachate pH to soil pH, and combined with the 

altitudinal gradient in hydrology, it has been hypothesized that natural soil 

acidity plays a significant role in the relationship of increasing altitude 

to increasing water acidity observed in the Adirondacks and elsewhere (Krug 

and Frink, 1983a; Figure 9). 

Table 15 also shows that acidic soils exert a remarkable ability to buffer 

runoff from acidification by exceptionally high rates of simulated acidic 

deposition: pH 3.2 simulated precipitation has, relative to simulated 

unpolluted precipitation, little effect in acidifying runoff from highly 

acidic soil from the Smoky Mountains (Table 15). Also, the more humified and 

the more acidic the soil, the more acidic the water derived from that soil. 

Also, the more acidic and humified the soil, the better it resists change in 

pH upon even exceptionally high rates of acid addition (Table 15). 

That highly acidic soils yield highly acidic water in the absence of 

acidic deposition (Table 15), is impossible to reconcile with the theory of 

acidification. That highly acidic soils also strongly buffer runoff against 
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Table 15. The pH of Leachate Generated by Passing 
Simulated Precipitation Through Soil 
Horizons From Three Forest Cover Types 
on the Raven Fork Watershed. 

Northern Oe 4.8 4.8 4.6 
Hardwood Oe + Al 4.2 4.1 4.1 

Red Spruce- Oi 4.6 4.6 4.4 
Yellow Birch Oi + Oa 3.9 3.8 3.6 

Oi + Oa + Al 3.8 3.8 3.7 

Red Spruce- Oi 4.0 3.9 3.6 
Frazier Fir Oi + Oa 3.6 3.5 3.4 

Oi + Oa + A 3.5 3.5 3.4 

Data from Jones et al. (1983). 
Oi = partially decomposed litter, little humified. 
Oa = moderately decomposed litter, moderately humified. 
Oa = well decomposed humus, well humified. 
A and Al = mineral soil enriched with humic acids. 
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acidification (Table 15) is, likewise, impossible to reconcile with the 

theory of acidification. 

In summary, Table 15 (as well as data earlier presented in Tables 6, 8, 

10, Figure 10, and other experimental and field results presented in Chapter 

3.7.1) illustrate that highly acidic soils strongly buffer against change in 

pH upon addition of strong acid. These data also show that such highly 

acidic soil materials yield highly acidic runoff in the absence of acidic 

deposition. 

By ignoring processes that act to acidify and/or buffer water in landscape 

elements that supply acidic runoff to currently-acidic surface waters the 

theory of surface-water acidification necessarily overstates the role of 

acidic deposition in acidification of surface waters. 

Thus, the theory of acidification does not accurately predict acidic 

deposition/watershed interactions for landscape elements that supply acidic 

runoff to many currently acidic surface waters. These data suggest an 

alternative hypothesis that many currently acidic surface waters were 

naturally acidic prior to the advent of man-made acidic deposition and that 

the effects of acidic deposition are superimposed upon natural processes that 

strongly acidify and buffer water (Krug and Frink, 1983a, b). 

The following chapters discuss four processes of organic 

acidification/buffering generally ignored by acidification theory but which 

can help explain the data already presented and additional data concerning 

the water chemistry of "sensitive" watersheds: 

1. - weak acid buffering by humic substances; 

2. - pH-dependent solubility of terrestrial humic substances; 

3. - flocculation of humic substances from solution; and 
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4. - strong acid production by weak acids in soils. 
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3.7.2.1 Weak Acid Acidification/Buffering By Humic Substances 

There are both similarities and differences in the properties and behavior 

of bicarbonate and humic solutions. Both bicarbonate and humic solutions of 

weak organic acids buffer against changes in pH associated with the addition 

of strong mineral acid, such as H2SO4 (Figure 12; 13). Not much change in 

water pH should be expected until most of the humate (RCOO-) is consumed by 

titration with H2SO4 (Krug, 1987; Figure 13), much as little change in pH 

should be expected for bicarbonate solutions until most of the bicarbonate 

(HCO3-) is consumed by titration with H2SO4 (Figure 12). One important 

difference between the two surface-water solutions is that humic solutions 

can be buffered at pH values considerably more acidic than is possible by 

carbonate solutions. Such buffering of acidic waters is indicated in 

Henriksen's predictive nomograph for waters in southern Norway (Chapter, 3.5; 

Figure 8). And, NSWS data for eastern U.S. lakes (Kanciruk et al., 1986) 

show that humic acids acidify surface waters to pH values as acidic as pH 3.8 

(Reuss, 1988; Krug, 1988). 

Weak acid acidification/buffering of both carbonate and humate solutions 

is considered by some scientists in regard to aquatic acidification (e.g., 

Krug and Frink, 1983a, b; Oliver et al., 1983; Gherini et al., 1985) but not 

by most who consider waters to be naturally inorganic solutions produced by 

carbonic acid weathering of minerals (Henriksen, 1979; 1980; Overrein et al., 

1980; Seip, 1980; U.S. EPA, 1980a, b; 1984; Johnson et al., 1981; National 

Research Council, 1981; NAPAP, 1984; 1986; 1987a; Van Breeman et al., 1984; 

1985; Cosby et al., 1985; Reuss et al., 1986; 1987; Henriksen and Brakke, 

1988). Furthermore, weak acid acidification/buffering of water by humic 
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Figure 12. Titration of a bicarbonate solution of mineral bases. Little 
change in pH is observed until most bicarbonate is consumed by 
titration with sulfuric acid. 
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Figure 13. Titration of a humic acid solution by sulfuric acid. Like the 
bicarbonate solution, the humic solution buffers against pH 
change by addition of strong acid. The humic solution is 
buffered at a range of pH values considerably more acidic than 
is possible by carbonate solutions open to the atmosphere. 
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acids does not appear to be incorporated into acidification theory vised by 

NAPAP (U.S. EPA, 1984; NAPAP, 1984; 1986; 1987a; 1988; Cosby et al., 1985; 

Reuss et al., 1986; 1987; Henriksen and Brakke, 1988). 

While researchers believe that present-day concentrations of HCO3- do not 

represent pre-acid rain levels, they often do not consider that present-day 

concentrations of RCOO- do not represent pre-acid rain levels. Besides 

examples already presented in Chapter 3.5, 3.6, and 3.7.1, interpretation of 

Regional ILWAS (RILWAS) data by Driscoll and Newton (1985; Table 16) further 

illustrate this problem. 

Barnes and Little Echo are seepage ponds in the Adirondack Mountains of 

New York, as are many of the highly acidic, base-poor waters of the lake 

district of coastal Australia which do not receive highly polluted man-made 

acidic deposition (Table 16; Chapter 3.9). The chemistry of seepage ponds is 

believed to be principally influenced by the chemistry of precipitation, 

especially if these waters are very dilute (contain few base mineral 

cations). Actually, all that can be said from the fact that waters are very 

dilute is that the water chemistry of such seepage ponds are little 

influenced base-rich groundwater. Seepage ponds like Barnes and Little Echo, 

and those in coastal Australia, receive most of their water from the 

surrounding watershed but the concentrations of the products of mineral 

weathering in their waters are very low. It seems that if surface waters are 

not chemically indicative of aged, mineral-rich groundwaters, they are 

automatically and incorrectly assumed, by default reasoning, to be influenced 

principally by atmospheric deposition (U.S. EPA, 1984; Driscoll and Newton, 

1985). 

Because sulfate is the principal anion in these acidic seepage ponds and 
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Table 16. Comparison of Some Highly Acidic Adirondack 
and Australian Waters. 

Cl SO4 Inorganic Anions/ 
Color % of Inorganic Total Cation 

Site PH (Pt Units ) Anions 

Austral ian Waters (Cooloola -Noosa River Area) 

W6 4.5 1 91 9 1.02 
W18 4.6 63 83 17 0.97 
W22 4.4 91 84 16 0.92 
W44 4.4 178 95 5 0.72 
W23 3.8 215 98 2 0.65 
W24 3.9 245 95 5 0.71 
W25 4.0 262 86 14 0.71 
W26 4.2 900 97 3 0.68 

Adirondack Seepage Lakes (RILWAS) 
DOC 
(mg/L) 

Barnes 4.7 5.4 12 88 0.90 
Little Echo 4.3 13.2 7 93 0.64 

Inorganic Anions = Cl-+ SO42- + NO3-. 
Total Cations = H+ + Ca2+ + Mg2+ + K+ + Na+ + NH4

+ for Australian data. 
Total Cations = H+ + Ca2+ + Mg2+ + K+ + Na+ + NH4

+ + Alz+ for Adirondack data. 
Australian data from Reeve et al. (1985). 
Adirondack data estimated from Driscoll and Newton (1985). 
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anion deficits are only about 10% and 36% for Barnes and Little Echo, 

respectively (Table 16), these ponds are stated to be acidified principally 

by deposition of H2SO4 (Driscoll and Newton, 1985). Such a conclusion is 

consistent with the theory of surface-water acidification; the titration of 

humic acids by acidic H2SO4 was not considered (Driscoll and Newton, 1985). 

However, consideration of H2SO4 titration of humic acids suggests that 

humic acids may have been an important acidifying agent for Barnes and Little 

Echo ponds in pre-deposition times. A value of 10 ueq/L reactive capacity 

per mg DOC/L of aquatic humic acid is considered to be a representative value 

for aquatic humic acids that have not been titrated by other acids (Oliver et 

al., 1983; Jones et al., 1986). Assuming that pre-deposition concentrations 

of humic acids were the same as current concentrations (assuming that acidic 

deposition has not reduced concentrations of aquatic humic acids), the 

reactive capacity of DOC in Barnes and Little Echo are estimated to have been 

67% and 100% of their respective total ionic concentrations in pre-deposition 

times. Thus, when the interaction of acidic deposition with RCOO- is 

considered, using the same chemical considerations that is used for the 

interaction of acidic deposition with HCO3
-, we find that Barnes and Little 

Echo ponds probably were not originally HCO3- solutions of mineral bases. 

They were probably acidic humic waters before the advent of acidic 

deposition. 

By being consistent with weak and strong acid/base chemistry, we see that 

Barnes and Little Echo were probably (H+ + Ca2+) + RCOO- waters that were 

transformed to (H+ + Ca2+) + SO4
2- -dominated waters by titration with H2SO4 

(Figure 13). The transformation of acidic humic waters to acidic sulfuric 

waters (Figure 13) is analogous to the transformation of Ca2+ + HCO3-
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-dominated waters to Ca2+ + SO4
2- -dominated waters by titration with H2SO4 

(Figure 12). 

Not considering that deposition of strong acids also acts to titrate 

aqueous humic acids, thereby dininishing the concentration of ROOO-, 

necessarily results in underestimation of the influence of current 

concentrations of aqueous humic acids on the acidity/buffering of water 

chemistry. Such a conclusion is further supported by paleolimnological study 

of Little Echo Pond, current pH=4.3 (Table 16), which shows that it has 

experienced no measurable change in pH since pre-industrial times (Norton and 

Charles, 1986). Paleolimnological data and principals of weak and strong 

acid/base chemistry do not support the conclusion necessarily derived from 

acidification theory that Barnes and Little Echo were Ca2+ + HCO3- waters 

that had been transformed to (H+ + Ca2+) + SO4
2- by acidic H2SO4 deposition. 

The essentially universal use of non-marine SO4
2- in surface waters as a 

quantitative surrogate for atmospheric H2SO4 deposition highlights a 

fundamental inconsistency within the aquatic effects literature on the use of 

anion to indicate source of cation. No one in the aquatic effects literature 

claims that appreciable concentrations of non-marine SO4
2- in surface waters 

indicates that the Ca2+ in surface waters comes from atmospheric deposition 

of CaSO4. It is commonly believed that Ca2+ was originally associated with 

HCO3- and some of the HCO3- has been subsequently titrated with and replaced 

by SO4
2-. However, with H+, the presence of appreciable non-marine SO4

2- is 

almost invariably considered proof that the source of H+ in surface waters is 

from the atmospheric deposition of H2SO4. Few scientists appear to recognize 

that currently acidic waters may have been previously acidic having H+ 

associated with RCOO-, some of which has been subsequently titrated with and 

3-130 



replaced by SO4
2-. But if anion indicated source of H+, or any cation, then 

one would have to conclude from Table 16 that the highly acidic and base-poor 

waters of coastal Australia, many of which are seepage waters (Bayley, 1964; 

Bayley et al., 1975; Reeve et al., 1985), suffer from a severe HC1 acid rain 

problem. This is simply untrue. Apparently, inputs of seasalt are leaching 

H+ out of the runoff through the highly acidic podzol soils and peats in 

their watersheds (Reeve and Fergus, 1983; Reeve et al., 1985). Acidification 

theory needs to consider that, not only can groundwater and precipitation 

influence the chemistry of surface waters, but near-surface runoff through 

acidic soils and/or acidophilic ecosystems can also autonomously influence 

the chemistry of surface waters. 

In summary, consistent and scientific application of weak and strong 

acid/base chemistry and field data all indicate that even an accurate 

estimate of increase in non-marine SO4
2- is not a scientifically-sound 

quantitative surrogate for acidification of surface waters by acidic H2SO4 

deposition. These data and chemical principals show that the use of non-

marine SO4
2- as a quantitative surrogate for acidification necessarily 

overstates the role of acidic H2SO4 deposition in acidification of surface 

waters. Current acidification theory necessarily overstates the role of 

acidic H2SO4 deposition by not adequately considering the role of aquatic 

humic acids in acidifying and buffering surface waters. 

The next Chapters suggest that the error in overestimation may be even 

larger because pre-deposition concentrations of humic acids may have been 

even larger than they are today. 
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3.7.2.2 pH-Dependent Solubility of Terrestrial Humic 
Substances 

Many "sensitive" watersheds of eastern North America and northern Europe 

are mantled by highly acidic, organic-rich soil materials and peats. 

Furthermore, acidic surface waters generally receive mostly near-surface 

runoff from their highly acidic, organic-rich watershed mantles. Thus, 

highly acidic organic (humic) material is not only the first terrestrial 

component that acidic deposition interacts with, but it is also the principal 

terrestrial component that controls acidic deposition/watershed interaction 

of many currently acidic surface waters (Braekke, 1976; Rosenqvist, 1978; 

1980; Johnson et al., 1981; Overrein et al., 1980; Seip, 1980; Driscoll and 

Likens, 1982; Duhaime et al., 1983; Jones et al., 1983; Krug and Frink, 

1983a, b; Retzsch et al., 1983; Gherini et al., 1985; Lefohn and KLock, 1985; 

Rush et al., 1985; Schofield et al., 1985; James and Riha, 1986). 

Based on considerations of hydrologic flowpath and the nature of watershed 

materials which interact with runoff to currently highly acidic surface 

waters, an hypothesis was advanced that most currently highly acidic surface 

waters were not bicarbonate solutions of mineral bases in pre-deposition 

times (Krug and Frink, 1983a, b). It was hypothesized that most currently 

highly acidic surface waters in the Northeast were highly acidic in pre-

deposition times and that the principal influence of acidic H2SO4 deposition 

was the qualitative change in the nature of acidity rather than the 

transformation of surface waters with alkalinity (HCO3-) into surface waters 

with acidity (H+). It was claimed that the principal effect of acidic 

deposition falling on many "sensitive" watersheds was to decrease the 

concentration of humic acids in near-surface runoff with little or no 
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measurable change in runoff pH because of the pH-dependent solubility of 

terrestrial humic substances (Krug and Frink, 1983a, b). Thus, many waters 

now acidified principally by H2SO4, and having what are considered 

"negligible" concentrations of organic acids, may have been originally highly 

acidic and humic-rich in pre-deposition times (Krug and Frink, 1983a, b). 

This hypothesis based on the pH-dependent solubility of terrestrial humic 

substances has profound consequences regarding the perceived aquatic effects 

of acidic deposition. The organic-acid buffering hypothesis of Krug and 

Frink (1983a, b) predicts that current acidification theory grossly 

overstates the magnitude and extent of surface-water acidification by acidic 

deposition. For example, current acidification theory would assume that a 

surface water having a pre-deposition value of 60 ueq/L of non-marine, base 

mineral cations, which is about the current value for Little Echo Pond 

(Driscoll and Newton, 1985), would have a pre-deposition pH of about 7.1 

produced by carbonic acid weathering of minerals1. Thus, such a surface 

water with a current pH value of about 4.3, which is the about the current 

[H+][HCO3
-] = 1 0 - 6 . 3 8 X 10 - 4 . 9 7, or 

pH + pHCO3- = 6.38 + 4.97 : assume base cations (BC) = HCO3-
Therefore 60 ueq BC/L = 60 ueq HCO3-/L 
60 ueq/L of HCO3- = 60 X 10-6, or 
p(20 X 10-6) =4.22 

pH + 4.22 = 6.38 + 4.97, or 

pH = 6.38 + 4.97 - 4.22, or 

pH = 7.13 
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mean pH value for Little Echo Pond (Driscoll and Newton, 1985; Table 16), 

would be predicted to have been principally acidified from pH 7.1 to 4.3 by 

acidic deposition (acidified nearly 3 pH units by acidic deposition). But 

the organic-acid buffering hypothesis of Krug and Frink (1983a, b) predicts 

that Little Echo Pond was probably highly acidic in pre-industrial times and 

that the principal effect of acidic deposition on Little Echo Pond was to 

transform it from a highly acidic humic water to a highly acidic, largely 

SO4
2- water with little or no measurable change in pH. The predicted result 

of the organic-acid buffering hypothesis (little or no measurable change in 

pH) is quite different from that predicted by current acidification theory (a 

nearly 3 pH unit change in pH) using carbonate chemistry and assuming no 

change in the F-factor . 

Paleolimnology supports the organic-acid-buffering hypothesis for Little 

Echo Pond in the Adirondack Mountains of New York, showing that no measurable 

change in pH (within the resolution of the paleolimnological method, + 0.3 pH 

units) has occurred for Little Echo Pond over the last several hundred years 

(Charles and Norton, 1986). 

The organic-acid buffering hypothesis of acidic deposition/watershed 

interaction considers the interaction of acid-with-organic-acids and not just 

acid-with-mineral-bases in "sensitive" watersheds. It should be expected 

that the reaction of acid-with-acid can be quite different from the reaction 

of acid-with-base. Likewise, it is expected that the conclusions derived 

from considering only acid-to-mineral-bases deposition/watershed interactions 

can be significantly different from conclusions that also consider acid-to-

organic-acids deposition/watershed interactions. 

Nevertheless, as is also the case with the comparison of strong acid 
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titration of HCO3- versus RCOO- discussed in Chapter 3.7.2.1, the heart of 

the organic-acid-buffering hypothesis is just the consistent application of 

chemical principles already used in acidification theory for describing the 

interaction of acid-with-mineral-bases and applied to the material that 

acidic deposition is interacting with in the watersheds of many "acidified" 

surface waters, i.e., acidic deposition is interacting largely with highly 

acidic, organic materials. The same chemical principles dictating that 

inputs of H2SO4 will increase dissolution and loss of mineral bases from 

watersheds also dictate that inputs of sulfuric acid will decrease the 

dissolution and export of humic acids from the watershed. These solubility 

effects are described by well known and fundamental chemical principles and 

laws, e.g., the Law of Mass Action, Le Chatelier's Principle, and the Common 

Ion Effect1. 

The unity of underlying fundamental principles allows the use of pre-

1.) - Highly acidic soil humus and peat are principally composed of molecules 
of humic acids that are held together in a solid or gel state by hydrogen 
bonding between H and 0 of acidic functional groups (e.g., RCOOH) of the 
organic acids themselves (Krug and Frink, 1983a; Krug et al., 1985). Thus 
any process that influences the proportion of H+ that remains on the acidic 
functional groups of humic acids influences the proportion of humic acids 
that themselves dissociate and separate from acid humus and peat to go into 
solution. The concentration of IT in water influences the degree that RCOOH 
dissociates (RCOOH = RCOO- + H+) and, thereby, the proportion of RCOO- itself 
that dissociates to enter solution from acid humus and peat. Accordingly, 
humic acids have a pH-dependent solubility that is described by a number of 
well known chemical principles and laws, e.g., the Law of Mass Action, Le 
Chatelier's Principle, and the Common Ion Effect. The pH-dependent 
solubility of humic acids is illustrated by what soil chemists do in order to 
study the chemistry of humic acids. To get humic acids into solution, soil 
chemists add base to highly acidic peat or soil humus, commonly pH 10 sodium 
hydroxide (NaOH). This dissolves most of the humus or peat. They do not use 
pH 5.6 water to dissolve these solid-phase organic acids because only a small 
fraction of the acids dissolve: albeit the solutions produced by treatment 
with pH 5.6 water will be highly colored and acidic. It is expected that if 
even more acidic water is passed through these materials (e.g., pH 4.0 acid 
rain), an even smaller proportion of the humic acids dissolve. 
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existing concepts and terminology to explain the interaction of acidic 
deposition with the pH-dependent solubility of terrestrial humic substances. 

The term and concept of F-factor, already in the aquatic effects 
literature (e.g., Henriksen and Brakke, 1988), which I will define here as 
F m i n e r a l ' is a quantitative estimate of the proportion H+ of added H2SO4 

which is consumed by dissolution of base mineral cations and transmitted to 
the receiving water as basic sulfate: 
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Thus, the proportion of deposited H2SO4 which goes to increase H+ in 
receiving waters of watersheds as predicted by Fmineral is: 

H+H2SO4 = [SO4*] - [Ca* + Mg* + K* + Na*], or 

H+H2SO4 = (1 - F mineral) X ([SO4*]) 
For example, if Fmineral is 0.5 then H+H2SO4 (1-0.5) X ([SO4*]), or 
H+H2SO4 = 0.5[SO4*]. This means that, by considerations of Fmineral, it is 

estimated that 50% of H+ in deposited H2SO4 is transmitted to the receiving 
water if Fmineral = 0.5, i.e., acidic H2SO4 deposition has increased the 
concentration of H+ in the receiving water by about 50% of its estimated 
increase in concentration of SO4

2-. 
I now propose a new F-factor, F o r g a n i c , as a term to express the 

quantitative estimate of the predicted (or measured) decrease in dissolution 
and concentration of humic acids in solution induced by addition of strong 
acids, such as H2SO4: 



Thus, the proportion of deposited H2SO4 which goes to increase H+ in 
receiving waters of watersheds by considerations of only F o r g a n i c is:  

H+H2SO4 = [SO4*] - [RCOO-**], or 

H +
H 2 S O 4 = (1 + Forganic) X ([SO4*]) 

For example, if F o r g a n i c is 0.5 then H+H2SO4 = (1 - 0.5) X ([SO4*]), or 
H +

H 2 S O 4 = 0.5[SO4*]. This means that, by considerations of F o r g a n i c only, 
acidic H2SO4 deposition is estimated to have increased the concentration of 
H+ in the receiving water by about 50% of its estimated increase in 
concentration of SO4

2-. 
In one sense, the result of reaction of acid-with-acid is quite different 

to the reaction of acid-with-base. In another very real sense, however, they 
are closely related. Not only are both F-factors fundamentally linked by 
common chemical principles, but both F-factors work toward the same end. 
Both F-factors are part of overall watershed homeostasis that resists change 
- acidification by acidic deposition. To the degree that runoff to a 
receiving water contacts mineral material (in the watershed or in the stream 
or lake bottom) or acts in increase ion exchange loss of base mineral cations 
from soil (either base mineral cations held in highly acidic organic soils 
and peats or mineral soils), Fmineral acts to resist acidification. To the 
degree that water is in contact with highly acidic organic matter, Forganic 

acts to resist further acidification by decreasing the amounts of organic 
acids that would otherwise be in solution. 

I propose that for "sensitive", currently acidic waters, the overall net 
increase of H+ in surface waters as the result of acidic H2SO4 deposition is: 

H+H2SO4 = (1 - F m i n e r a l - Forganic) X ([SO4*]) 
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A review of peer-reviewed literature by Krug (1987) found 11 publications 

that report results of laboratory simulated acidic deposition/organic soil 

and peat interaction. 

"All of these studies report decreased concentrations of organic acids 
accompanied by relatively little measurable change in solution pH upon 
application of simulated acid rain." (Krug, 1987). 

However, only one (James and Riha, 1986) of these 11 laboratory studies 

was performed so that the relative importances of Fmineral and Forganic could 

be quantitatively estimated. 

Quantitative mechanistic study of highly acidic, organic-rich New York 

forest soils by James and Riha (1986) showed that Fmineral became 

progressively less important in buffering input of acid with increasing soil 

acidity. This fact is well known in the aquatic effects literature and is 

used to support the theory that highly acidic, organic-rich soils and peats 

acid soils do little to remove acidity deposited on them. Acidification 

theory predicts that the more acidic the soil, the less able it is to filter 

out added H+ (Braekke, 1976; Seip et al., 1979a, b; 1980; Van Breemen et al., 

1984; Reuss et al., 1986; 1987). However, organic-acid buffering accounted 

for 38% to 79% of total buffering of acid input to highly acidic, New York 

forest soils. The greater levels of organic acid buffering occurred in the 

most highly acidic soils. The studied soils buffered from 67% to 96% of 

added H+ (James and Riha, 1986). 

Thus, for highly acidic, organic-rich soils of New york typical of 

"sensitive" watersheds in the Adirondacks and elsewhere in New York (James 

and Riha, 1986), only 4% to 33% of added strong acid went to increase the 

acidity of water passing through such soils. These results expressed in 

terms of acidic H2SO4 deposition to increase flux of H+ are: 
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H+H2SO4 = (1 - F m i n e r a l - Forganic) X ([SO4*]), 
H+H2SO4 = (1 - Fmineral - (0.38-0.79)) X ([SO4*]), 

H+H2SO4 = (1 - (0.67-0.96)) X ([SO4*]), 

H+H2SO4 = 0.04-0.33 [SO4*]. 
Accordingly, organic-acid buffering can be a very important process in 

highly acidic, organic-rich soils that is not accounted for in acidification 

theory. 

These New York forest soils data, and data of the other 10 similar but 

less detailed studies of organic-acid buffering (Krug, 1987), offer an 

explanation for the Smoky Mountain soils' ability to acidify/buffer water and 

that greatest buffering occurred in the most acidic soils and water (Table 

15). Organic-acid buffering also helps explain why Norwegian SNSF-Project 

laboratory and field studies show little or no measurable change in water pH 

upon addition of ambient levels of acidic deposition (Table 8; 9; 10; Figure 

10; Seip et al., 1979a,b; 1980; Overrein et al., 1980). 

Whereas the earlier Norwegian SNSF-Project studies did not measure the 

organic chemistry of waters (waters were assumed to be inorganic solutions), 

recently, mini-catchments in southernmost Norway were studied for the 

relative effects of acid rain and simulated "clean rain" on the inorganic and 

organic chemistry of runoff with a long-term acid exclusion experiment (1984 

- 1987) at the Risdalsheia mini-catchments (Wright et al., 1988; Table 17). 

Because of their very small size and high proportion of exposed bedrock 

and patches on thin, highly acidic, organic-rich soil, there is comparatively 

little opportunity for such Norwegian mini-catchments to modify runoff 

chemistry relative to larger, and more fully soil-covered catchments. Thus, 

such mini-catchments are recognized as being worst-case situations where the 

3-139 



Table 17. Some Mean Chemical Data for Runoff from the Risdalsheia Mini-
Catchments in Southernmost Norway Receiving Amient Acidic 
Deposition and Simulated "Clean Atmospheric Deposition". 

PH 4.1 4.0 4.1 4.1 4.1 4.1 4.0 4.1 4.1 4.1 

NO3- 72 37 22 38 37 62 5 9 17 7 

SO42- 106 112 99 131 106 137 73 68 64 53 

TOC 5.3 9.1 14.1 10.7 9.4 8.4 17.3 19.8 15.6 15.4 

Data from Wright et al. , (1988). 
TOC = Total Organic Carbon. 
TOC in mg/L. 
NO3- and SO42- in ueq/L. 
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influence of acidic deposition on the acidity of water is expected to be most 

pronounced - where H+H2SO4 is expected to be largest (Seip et al., 1979a,b; 

1980; Overrein et al., 1980). 

The long-term acid exclusion experiment at the Risdalsheia mini-catchments 

show no measurable influence of ambient levels of acidic deposition on the pH 

of runoff from the very small and rocky mini-catchments (Table 17; Wright et 

al., 1988). The results of Wright et al. (1988; Table 17) are consistent 

with the results of the earlier mini-catchment studies (Seip et al., 1979a,b; 

1980; Overrein et al., 1980). Wright et al. (1988) noted that effect of the 

clean precipitation treatment compared to that of ambient acidic deposition: 

"The decline in strong-acid anion concentrations is compensated for 
partly by a decrease in concentrations of base cations (55%) and partly 
by an increase in alkalinity (45%)." (Wright et al., 1988). 

"Alkalinity" is actually the anion deficit estimate of acid organic anions, 

RCOO-, because surface waters with pH 4.0 - 4.1, as measured for the "clean 

rain" Risdalsheia mini-catchment experiment of Wright et al. (1988), do not 

have alkalinity. The choice of the term alkalinity by Wright et al. (1988) 

can be misleading in that it may cause readers to conclude that acidic 

deposition/watershed interaction for the Risdalsheia mini-catchments is well 

described by the theory of acidification - acidic deposition is acting to 

reduce alkalinity produced by carbonic acid weathering of minerals in the 

mini-catchments. This is not true. The buffering ascribed to by Wright et 

al. (1988) is buffering by organic acids not buffering due to HCO3-. 

Relating the influence of acidic deposition on surface water H+ in terms 

of "strong acid anions", in this case assuming total "strong acid anions" 

equal SO4
2-, the results of acid-exclusion experiments for the Risdalsheia 

mini-catchments show: 
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H+
H2SO4 = (1- F m i n e r a l - Forganic) X ([SO4*])' 

H+H2SO4 = (1 - (0.55) - (0.45)) X ([SO4*]): replace = with - because it is 
unlikely that no change in 
[H+] has occurred. 

H+H2SO4 - 0 X ([SO4*]), or 

H+H2SO4 - 0. 
Examination of the data from the Risdalsheia mini-catchments show two 

major reasons why the high ambient levels of acidic deposition in 

southernmost Norway have no measurable influence on runoff pH from the mini-

catchments: 

1.) - runoff is acidified by strong acids produced by ion exchange in 
the absence of acidic deposition. Fmineral induced by acidic 
deposition masks natural strong acid production by ion exchange 
in the mini-catchments and, thereby, results in overestimation 
of change in strong acidity, and; 

2.) - runoff is acidified by weak organic acids in the absence of 
acidic deposition. Forganic shows that the mini-catchments were 
acidified to a much greater degree by weak organic acids in the 
absence of acidic deposition. 

Input/output budgets for the Risdalsheia mini-catchments (Wright, 1987) 

show that strong acid production by ion exchange is about 50% of Fmineral 
induced by acidic deposition. Thus, in the absence of acidic deposition, 

natural levels of strong acidity in mini-catchment runoff are about 50% of 

Fmineral induced by acidic deposition. For the "acid rain" min-catchment, 

deposition input of base cations (Ca2+ + Mg2+ + Na+ + K+) for 1984 - 1986 is 

202 meg/m2 and dissolved runoff output is 225 meg/m2 (Wright, 1987). For the 

"clean rain" mini-catchment, deposition input of base cations for 1984 - 1986 

is 208 meg/m2 and dissolved runoff output is 187 meg/m2 (Wright, 1987). 

Thus, the input/output budget for the "clean rain" experiment indicates that 

21 meq H+/m2 was produced by ion exchange for 1984 - 1986 which (for the 

1,427 mm of runoff produced in 1984 - 1986) is 14.27 ueq H+/L. 
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Thus, the mean annual pH of runoff for the "clean rain" mini-catchment is 

naturally pH = 4.83 due to strong acids alone produced by ion exchange. 

Because of seasalt input in "clean rain" (Wright, 1987), strong acidity 

produced by ion exchange appears to be HC1. As seen in Table 16, strong 

mineral acidity of the highly acidic waters in coastal Australia associated 

with highly acidic podzol soils and peats appears to be HC1. In the presence 

of acidic deposition, however, Fmineral causes output of base cations 

dissolved in runoff to be greater than depositional inputs, thereby, masking 

the natural production of strong acidity by ion exchange in the mini-

catchment. 

F o r g a n i c induced by acidic deposition masks natural acidification by weak 

organic acids in the mini-catchments. Table 17 shows that "strong acid 

anions" (NO3-, SO4
2-) are strongly influenced by the absence or presence of 

acidic deposition. Runoff from simulated "clean rain" had only about half 

the concentration of NO3- + SO4
2- present in runoff from acid rain for the 

four years of the experiment (74 ueq/L versus 145.5 ueq/L, respectively). 

Despite a net difference of about 70 ueq/L in mean concentration of strong 

acid anions between the acid rain and simulated "clean rain" experiments, 

measured mean pH values were virtually identical for all four years of both 

treatments: pH-4.1 for runoff from acid rain and pH-4.1 for runoff from 

simulated "clean rain" (Table 17). 

The relationship between change in strong acid anions and organic acids 

(as represented by TOC) is profound, obvious, and precisely as predicted by 

F o r g a n i c (Table 17). Concentrations of TOC are considerably higher in pH-4.1 

runoff from the simulated "clean rain" treatment than they are in pH-4.1 

runoff from "acid rain" (Table 17). And, just as important, there is a 
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within-treatment relationship between concentrations of strong acid anions 

and TOC: mainly that the lower the concentration of strong acid anions the 

higher the concentration of TOC (Table 17). For the acid rain mini-

catchment, using a roof in 1984 resulted in a mean decrease in NO3-

concentration of 35 ueq/L. The decrease in concentration of NO3- was 

accompanied by an increase in TOC from 5.3 to 9.1 mg/L (Table 17). The next 

year (1985) there was a further decrease in both mean concentrations of SO4
2-

and NO3- for an additional decrease of 28 ueq/L. Mean concentration of TOC 

rose again, this time to 14.1 mg/L. In 1986 and 1987, mean concentrations of 

strong acid anions increased and mean concentrations of TOC decreased to 

around 10 mg/L (Table 17). All of this time mean pH remained essentially 

unchanged at pH-4.1. 

In conclusion, the principal effect of acidic deposition on runoff 

chemistry of mini-catchments in southernmost Norway is the qualitative shift 

in the nature of the acidity of runoff, not its pH. In the absence of acidic 

deposition, runoff pH is about 4.1, acidified primarily by weak organic acids 

and, secondarily, by strong mineral acids produced by ion exchange. It is 

interesting to note that the nature and quantitative proportions of weak and 

strong acidity of mini-catchment runoff from "clean rain" is quite similar to 

that of pH-4 waters of coastal Australia (Table 16), an area that does not 

receive acidic deposition. In the presence of acidic deposition, runoff pH 

is still about 4.1 but acidified, however, primarily by strong acids from 

acidic deposition and, secondarily, by weak organic acids. 

Wright et al. (1988) concluded from the results of their acid-exclusion 

experiments for the Risdalsheia mini-catchments that: 

"Our data from the acid-exclusion experiment at Risdalsheia show that a 
decrease in acid deposition results in decreased concentrations of 
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strong-acid anions in runoff. It is therefore likely that a major 
reduction in the flux of strong-acid anions will cause a major change 
in pH" (Wright et al., 1988). 

Their data (Table 17) support the conclusion of Wright et al. (1988) 

regarding the influence of acidic deposition on concentration of "strong acid 

anions" but do not support their conclusion regarding the influence of acidic 

deposition on pH. As is seen in Table 17, there is no measurable effect of 

"clean rain" versus "acid rain" on the mean annual pH values of runoff from 

the Risdalsheia mini-catchments. 

Recently, Driscoll et al. (1988b) presented data that they claim supports 

the organic-acid buffering hypothesis of Krug and Frink (1983a), i.e., the 

principal influence of acidic deposition on currently acidic waters is to 

qualitatively change the nature of the acidity rather than the level of the 

acidity. Driscoll et al. (1988b) studied what are claimed to be two 

equivalent mountainous watersheds with similar altitudinal streamwater 

acidity gradients: one unpolluted (Jamieson Creek, British Columbia), and one 

polluted (Hubbard Brook, New hampshire). Because the highly acidic 

headwaters of Jamieson Creek are principally acidic due to organic acids and 

those of Hubbard Brook are principally acidic due to strong acids led 

Driscoll et al. (1988b) to conclude their study suggests that the principal 

effect of acidic deposition is the qualitative shift in the nature of acidity 

(shifting organic acidic waters to waters acidified by strong acids and 

containing appreciable concentrations of toxic, ionic aluminum) rather than 

the level of acidity, as previously believed. 

In summary, the organic-acid-buffering hypothesis (Forganic) is consistent 

with chemical principles applied previously only to the interaction of 

acidic/deposition with mineral landscape elements. This hypothesis simply 
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acknowledges the nature and composition of the landscape elements that are 

principally responsible for highly acidic runoff to receiving waters (Krug 

and Frink, 1983a, b). 

Laboratory and field experiments show that the pH-dependent solubility of 

humic acids is likely to play an important role in acidification/buffering of 

acidic, near-surface runoff in many "sensitive" watersheds. Addition of 

H2SO4 (and other strong acids) reduces solubilization of humic acids, 

transforming RCOOH solutions to H2SO4 (and other strong acids) solutions. 

Change in pH is much smaller than predicted by the dominant theory of 

acidification. The magnitude of estimated change in SO4
2- is much greater 

than change in H+ and other cations. Again, anions, such as SO42-, do not 

necessarily indicate source of H+ and the change in concentration of "strong 

acid anions", even corrected for Fmineral, does not necessarily quantify the 

magnitude of change in concentration of H+. Laboratory and field experiments 

verify the hypothesis that the dominant theory of acidification can grossly 

overstate the magnitude and extent of surface-water acidification by acidic 

deposition by not considering the pH-dependent solubility of terrestrial 

humic substances. 
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3.7.2.3 Flocculation of Humic Substances from 
Solution 

Many currently highly acidic surface waters in "sensitive" watersheds 

receive principally near-surface runoff that has passed through highly 

acidic, organic-rich material. Accordingly, it has been hypothesized that in 

pre-deposition times many currently acidic surface waters were naturally 

highly acidic and humic-rich (Krug and Frink, 1983a, b). Because acidic 

deposition necessarily influences surface-water chemistry, the interactions 

of acidic deposition with aquatic humic substances can be an important 

interaction to consider for many "sensitive" watersheds. 

Acidic deposition can interaction with aquatic humic substances through 

the process of flocculation by which aquatic humic substances aggregate into 

particles large enough to settle out of solution. Physicochemical 

flocculation of humic substances from solution by cations can be categorized 

into two main categories: 

1.) - Intermolecular bonding with H+ (weak-acid buffering), and; 

2.) - Intermolecular bonding with cations other than H+. 

It appears that flocculation of aquatic humic substances by acidic 

deposition/aquatic humic substance interactions are particularly relevant to 

the issue of aquatic acidification because acidic deposition is widely 

considered to result in increased concentrations of both H+ and ionic 

aluminum in surface waters. This chapter will show that both H+ and ionic 

aluminum can have significant roles in the flocculation of aquatic humic 

substances. Furthermore, it will be shown that the interactions associated 

with the two mechanisms of flocculation categorized above, and which are 

represented by H+ and ionic aluminum, do acidify and buffer water. 
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The weak acid nature of aquatic humic acids that buffer against changing 

pH with the addition of H+ also cause humic acids to flocculate upon addition 

of H+ (Hayes and Swift, 1978; Davis and Mott, 1981; Ritchie and Posner, 1982; 

Krug and Isaacson, 1984). Flocculation causes concentration of dissolved 

organic carbon (DOC) to be reduced. Thus, even if accurate measurements of 

the acidification/buffering capacity of dissolved humic substances were made, 

(vis-a-vis Oliver et al., 1983; Gherini et al., 1985; Kramer and Davies, 

1988), such measurements would not include the acid consumed and removed from 

solution by weak-acid buffering and flocculation of aquatic humic substances1 

(Krug, 1987). 

Humic substances can also be removed from solution through the mechanism 

of intermolecular bonding with cations other than H+, the most notable of 

1.) - Hydrogen bonding is the principal mechanism by which humic acids in 
highly acidic humus and peats are held together. To get humic acids into 
solution, soil chemists add base to highly acidic peat or soil humus, such as 
pH 10 sodium hydroxide (NaOH). The reverse of this procedure is to rapidly 
precipitate the solubilized humic substances by addition of strong acid, such 
as pH 1 solution. The precipitation of humic substances from solution by 
addition of strong acid is a standard method long used to operationally 
define humic and fulvic acids. The relatively large humic acid molecules 
precipitate rapidly upon acid addition while the relatively small fulvic acid 
molecules do not. It is commonly believed that fulvic acids do not 
flocculate with additions of acid and, because about 80% of aquatic humic 
substances are operationally defined as fulvic acids (Thurman, 1984), it 
could be argued that H+-induced flocculation of aquatic fulvic acids does not 
occur. I disagree with this supposition for the following reasons: these 
fulvic acids were originally aggregated in a solid or gel state before they 
were solubilized by dissociation of hydrogen bonds through removal of H+ so 
it should be expected that they can re-aggregate by hydrogen bonding induced 
by addition of H+; laboratory experiments show that fulvic acid molecules do, 
in fact, polymerize and aggregate upon addition of acid (e.g., Wershaw and 
Pinckney, 1971; Ritchie and Posner, 1982; Thurman et al., 1982; Cressey et 
al., 1983; Krug and Isaacson, 1984); that time required for precipitation 
from solution is strongly dependent on the original size of polymers is well 
established (e.g., Hsu, 1973), and; H+-induced aggregates of fulvic acids may 
became large enough to flocculate given the much longer retention times of 
lakes relative to the rapid separations necessary for benchtop chemical 
analysis. 
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these being aluminum (Hargrove and Thomas, 1982). A practical and relevant 

demonstration of this process is the use of alum - a compound of potassium 

aluminum sulfate, ALK(SO4)2·12H2O - in treating water to remove organic 

color. 

Humic-alunrinum interactions are naturally important in surface waters: 

especially highly acidic surface waters. Some aspects of these humic-

aluminum interactions are well known in the aquatic effects literature. For 

example, organically-complexed Al is generally believed to be the natural 

product of podzolization - the predominant soil-forming process of many 

"sensitive" watersheds in eastern North America and northern Europe. 

Organically-complexed Al is believed to be less toxic to aquatic organisms 

than ionic Al. Ionic Al in water is believed by many to be the unique 

product of acid rain (Driscoll et al., 1980; Johnson et al., 1981; U.S.EPA, 

1984; Reuss et al., 1986; 1987). 

The natural formation of organoaluminum complexes is only considered in 

the sense that natural processes are not "harmful" to or relevant to the 

issue of aquatic acidification. The same logic has been applied to the 

immobilization of humic acids by ionic Al and Fe in soils. This process is 

only considered in regard to humic acids "inactivating" the ability of ionic 

Al and Fe to sorb SO4
2-. Also, these same organic acids are "informally" 

recognized as acidifying soils so that highly acidic, organic-rich soils and 

peats are considered to be "transparent" to acidic deposition - do little to 

stop the movement of either H+ or SO4
2- through them (Seip, 1980; Overrein et 

al., 1980; Johnson et al., 1981; National Research Council, 1981; Driscoll 

and Likens, 1982; Nilsson et al., 1982; Havas et al., 1984; Neal et al., 

1986; Peterson, 1984; Van Breemen et al., 1984; Reuss et al., 1986; 1987; De 
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Vries and Breeuwsma, 1987). 

However, waters are acidified by complexation of organic acids with 

cations (such as Al, Fe, Ca, and Mg) that complex fairly strongly with humic 

acids. Such complexation releases H+ thereby creating free hydrogen ion: 

2RCOOH + AlCl3 + H2O = A1(0H) (RCOO-)2 + 3HCl. 

In this case, the addition of AlCl3 to humic acid (RCOOH) results in the 

formation of hydrochloric acid (HC1). The original source of the H+ is 

flocculated out of solution. By considerations of solution chemistry alone, 

it appears, quite erroneously, that the water is acidified by addition of 

HC1. If alum was added, it would appear, quite erroneously, that the water 

had been acidified by addition of H2SO4. 

Figure 14 illustrates the creation of strong mineral acid from weak humic 

acid. Solutions of AlCl3 and humic acids are weak acid solutions, as 

described by their titration curves in Figure 14. However, when they are 

mixed together, their titration curves are displaced to increasingly more 

acidic pH values. Added A1C13 displaces H+ off humic acids (as described in 

the equation above). Ihe resulting solutions are more acidic than either the 

solution of humic acid or A1C13 by themselves. 

Ihe release of H+ and subsequent lowering of pH is the creation of strong 

mineral acid from weak organic acid. It is a well known phenomenon in the 

aqueous chemistry literature. Aqueous chemists have for many years used the 

production of strong acid produced by salts added to organic acids as a 

classical means to quantify complexation of the cations of neutral salts with 

organic acids (Martel and Calvin, 1952). 

Ihe complexation of ionic Al with humic acids is naturally important in 

both soils and waters. The creation of strong mineral acids from 
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Figure 14. Potentiametric titration curves for acid-saturated peat in the 
presence of 0, 0.004, 0.01 M AlCl3, and 0.01 M AlCl3 alone. 
Displacement of peat titration curve to increasingly more acidic 
pH values with addition of increasing concentrations of AlCl3 
illustrates the creation of strong acid from weak organic acids 
by ion exchange. From Hargrove and Thomas (1982). 
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complexation of neutral salts (including Al) with humic acids is well 

recognized by soil chemists (e.g., Stevenson, 1977; Hargrove and Thomas, 

1982), but is overlooked in regard to acidification of water (Krug, 1987). 

The interaction of aquatic humic substances with cations, such as aluminum 

(Al) and iron (Fe), create free H+ that can be measured in solution as strong 

mineral acid. This source of strong acid from flocculated humic acids is not 

apparent from considerations of solution chemistry alone, as is done by 

acidification theory. 

That flocculation of humic substances and Al occurs in Adirondack lakes 

has been shown for Darts Lake, downstream of Big Moose Lake (White and 

Driscoll, 1985). Krug (personal observation) is familiar with this drainage 

basin and has observed that humic flocculation can be particularly intense 

above Big Moose Lake. The bottom of Constable Creek (a major tributary to 

Big Moose Lake) can be covered by flocculated humic substances to the degree 

that the creek bottom appears to be covered by "black snow". Krug has also 

observed that flocculated humic substances can cover the bottom of Big Moose 

Lake itself. 

The ILWAS study reported that the DOC concentration of water leaving 

acidic Woods Lake (pH-5) is about half that of water entering the pond. 

Likewise, about half of the Al entering the pond is retained in the pond. 

The amount of retained Al is significant, being equivalent to about one-fifth 

of the output of base cations from the watershed (Schofield et al., 1985). 

Assuming base cations represents an equivalent quantity of alkalinity, 

aluminum flocculated in Woods Lake alone may produce enough strong acid to 

titrate one-fifth of the alkalinity produced by net mineral weathering in the 

watershed. 
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In conclusion, chemical theory, and laboratory and field experiments show 

that flocculation of aquatic humic substances occurs and can play an 

important role in acidification/buffering of surface waters in "sensitive" 

watersheds. Humic-aluminum interactions are naturally important in surface 

waters, especially highly acidic surface waters. Some aspects of these 

humic-aluminum interactions are well known in the aquatic effects literature, 

particularly that flocculation and detoxification of Al are involved. But 

the natural formation of organoaluminum complexes is selectively considered 

in acidic deposition studies only in the sense that this process is not 

"harmful" and is, therefore, not a contributor to acidification and is not 

associated with detrimental effects of aquatic acidification. That such 

complexation/flocculation can also convert weak organic acidity to strong 

mineral acidity is not considered by the theory of acidification. By not 

considering the contribution of organic complexation to strong acidity of 

surface waters, acidification theory, by default reasoning, necessarily 

attributes strong acidity to the one factor it considers capable of producing 

strong acidity - acidic deposition. By not considering that strong acid 

addition necessarily acts to protonate (re-associate H+) aquatic humic acids 

and can cause their aggregation and flocculation, acidification theory, by 

default reasoning, necessarily underestimates the role of aquatic humic acids 

in buffering and, thereby, necessarily overestimates the role of acidic 

deposition in acidification of surface waters. 

Thus, acidification theory, by not considering acidification/buffering 

mechanisms associated with flocculation of aquatic humic substances, by 

default reasoning, necessarily overestimates the role of acidic deposition in 

the acidification of surface waters. 
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3.7.2.4 Strong Acid Production by Weak Acids in 
Soils 

An alternative hypothesis has been advanced that podzolization, the 

predominant soil-forming process in many sensitive watersheds of eastern 

North America and northern Europe (Bridges, 1970; Petersen, 1976; Krug and 

Frink, 1983a, b; Figure 9), can naturally impart strong acids and ionic 

aluminum to surface waters (Krug and Frink, 1983a, b; Krug et al., 1985; 

Krug, 1987). By this hypothesis, acidic deposition can increase 

concentrations of strong acids and ionic aluminum in surface waters by such 

watershed interactions as organic-acid buffering, removal of camplexing 

organic anions, and ion exchange. However, contrary to acidification theory, 

the alternative hypothesis predicts that acidic deposition is not solely 

responsible for the existence of strong acids and ionic aluminum in runoff 

from highly acidic, organic-rich soils and peats typical of many "sensitive" 

watersheds (Krug and Frink, 1983a, b; Krug et al., 1985; Krug, 1987). 

This alternative hypothesis of acidification is based upon consideration 

of the processes inherent to soil-forming process of podzolization. 

Podzolization is characterized by the formation of humic acids and subsequent 

complexation of a substantial portion of these humic acids in soil solution 

by ionic aluminum and iron (Joffe, 1949; Petersen, 1976). The creation of 

free H+ by complexation of weak organic acids is well recognized by soil and 

solution chemists (e.g., Martell and Calvin, 1952; Stevenson, 1977; Hargrove 

and Thomas, 1982), but is overlooked by acidification theory (Krug and Frink, 

1983a, b; Krug et al., 1985; Krug, 1987). Accordingly, it is hypothesized 

that highly acidic, organic-rich soils and peats typical of many "sensitive" 

watersheds of eastern North America and northern Europe) can naturally 
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produce strong acids which is overlooked by acidification theory (Krug and 

Prink, 1983a, b; Krug et al., 1985; Krug, 1987). 

This alternative hypothesis of acidification is also based on the 

assumption that ionic aluminum must be a natural constituent of podzolized 

soils because it is required by the pozolization, soil-forming process to 

flocculate and complex organic acids. Additionally, that aluminum toxicity 

is a pervasive and natural problem in highly acidic forest soils, regardless 

of whether the area is receiving acidic deposition or not (e.g., Joffe, 1949; 

van Wambeke, 1976), further supports chemical camplexation theory and 

experiments that toxic, ionic aluminum in the environment can be a natural 

product of highly acidic soils (Krug and Frink, 1983a, b; Krug et al., 1985; 

Krug, 1987). 

That omission of such processes by acidification theory can result in 

significant error in overestimating the role of acidic deposition is 

suggested by the aquatic effects literature itself. It is well recognized in 

the aquatic effects literature that organometallic complexation reactions of 

the podzol soil-forming process have a significant influence on the chemistry 

of many "sensitive", acidic surface waters, i.e., many "sensitive" acidic 

surface waters have appreciable concentrations of organically-complexed 

aluminum and camplexation of humic acids by ionic Al and Fe within the 

drainage basin tends to remove most of the humic acids from runoff before it 

enters acidic surface waters (e.g., Driscoll et al., 1980; Johnson et al., 

1981; U.S. EPA, 1984; Reuss et al., 1986; 1987). For example, lysimeters 

show that soil solution draining highly acidic, organic-rich surficial soil 

material of the Woods Lake watershed in the Adirondacks average 20 mg DOC/L 

(Schofield et al., 1985). But the same study shows that most of this 
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solubilized organic matter never makes it to Woods Lake; water entering Woods 

Lake averages 4 mg DOC/L (Schofield et al., 1985). 

It has become recently recognized that the podzolization soil-forming 

process can play an important role in altitudinal surface water acidity and 

chemistry gradients. It appears that many acidic lakes and streams in 

"sensitive" watersheds are fed principally by near-surface runoff whose water 

chemistry reflects the podzolization process of surficial soil horizons (0 

and A horizons): 

"The factors thought to make these landscapes sensitive to acid rain 
also limit neutralization of runoff acidified by acid soil. The thin 
and rocky soils that develop on these areas naturally produce such 
thick humus that they are often classified as organic soils (17, 24, 
27-31), and they have a lower pH than the thicker soils downslope (27, 
31-33). This topographic gradient in soil chemistry and other 
properties, where the upland soils are "leaky" and act as A horizons 
and the lower-lying sites act as B horizons, is known as a geochemical 
soil catena (34). Thus, a gradient in stream acidity paralleling a 
soil catena in mountainous areas should not be surprising, although it 
is not always evident. Such gradients have been observed at Hubbard 
Brook and other mountainous watersheds in the northeastern United 
States, but the acidification has been attributed entirely to acid 
rain." (Krug and Frink, 1983a). 

The role of organametal camplexation in the podzol soil-forming process in 

relation to surface-water chemistry has been subsequently verified by data 

from the Hubbard Brook Experimental Forest watershed in the White Mountains 

of northern New Hampshire. While there is considerable watershed 

variability, there is a general altitudinal gradient in soils, vegetation, 

and hydrology similar to those described for the Adirondack Mountains of New 

York (Figure 9) and the Smoky Mountains of North Carolina (Jones et al., 

1983; Table 15). In the Hubbard Brook watershed, soils become thinner and 

more acidic with altitude, the forest ecosystem becomes more coniferous and 

acidophilic, and streamwater becomes more acidic with altitude (Likens et 

al., 1977; Johnson, 1979; Driscoll et al., 1985; 1988a,b; Lawrence et al., 
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1986). Low altitude streamwater is circumneutral with very low 

concentrations of dissolved organic carbon (DOC) and aluminum. With 

altitude, streamwater becomes more acidic and organic- and aluminum-rich with 

mean pH as low as 4.1 and mean DOC for pH 4.1 headwaters between 12 and 15 

mg/L (Lawrence et al., 1986; Driscoll et al., 1988b). Elevated levels of 

total aluminum in the highly acidic headwaters reflect elevated levels of 

organically-complexed aluminum, and other forms of aluminum (including ionic 

aluminum), in the organic-rich, highly acidic headwaters of the Hubbard Brook 

watershed (Lawrence et al., 1986). 

Similar altitudinal and drainage relationships between pH, DOC, and 

aluminum chemistry have been reported for a number of acidic lakes over a 

relatively large area in the Adirondacks (Driscoll et al., 1987; 1988b). 

While acidity in the Hubbard Brook watershed and for the reported 

Adirondack lakes is positively correlated to DOC and, thereby, humic acids, 

it appears that strong acidity is the principal form of acidity in these 

highly acidic, relatively organic-rich headwaters (Lawrence et al., 1986; 

Driscoll et al., 1987; 1988b). Driscoll et al. (1988b) agree with the 

organic acid buffering hypothesis (qualitative change from weak acidity to 

strong acidity induced by acidic deposition) but the possibility that 

complexation of humic acids with metals can naturally, to some extent, create 

strong acidity and ionic aluminum in the absence of acidic deposition has not 

been suggested (Lawrence et al., 1986; Driscoll et al., 1987; 1988b). 

However, that the podzol soil-forming process can result in the creation 

of strong acidity and ionic aluminum in water has been addressed in an area 

that can be considered as a control area - an area with highly acidic, 

organic-rich podzol soils and associated peats but not having acidic 
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deposition. The podzol soil-forming process that predominates in many 

"sensitive" watersheds of eastern North America and northern Europe also 

occurs in some unpolluted coastal areas of Australia. Australian soil 

scientists have shown that podzolization can produce both strong mineral 

acidity as well as weak organic acidity (Reeve and Fergus, 1983; Reeve et  

al., 1985). The coastal area of eastern Australia studied by Reeve and 

Fergus (1983) and Reeve et al. (1985), the Cooloola National Park and 

adjoining Noosa River area, have podzolized sandy soils and associated acidic 

peats but does not have acidic deposition. The inorganic chemistry of 

surface waters here reflects the chemistry of precipitation containing very 

dilute seaspray and no acidic H2SO4 deposition: mean anion concentrations for 

acidic waters are Cl- = 91 % and SO4
2- = 9% of total anion concentration, 

which is exactly the proportions found in seawater (Reeve et al., 1985; Table 

16). 

Reeve and Fergus (1983) demonstrate that podzol soils can create highly 

acidic clearwaters by leaching acidic black water through subsoil (C) 

horizons of two podzol soils (Table 18) obtained from watersheds of the 

Cooloola-Noosa area in Australia that have naturally highly acidic clear and 

colored waters (Table 16). The highly acidic Cooloola-Noosa black water (pH 

= 4.5; color = 106 platinum units) is transformed into remarkably clear and 

highly acidic water (pH = 4.6; color = 2 platinum units) after passing 

through the C horizon material (Table 18). These data suggest that 

clearwaters acidified by mineral acids can be a natural by-product of the 

podzolization soil-forming process. 

Most highly acidic Australian waters studied were considered by Reeve et 

al. (1985; Thompson, personal communication; Table 16) to be acidified by a 
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Table 18. Composition of Australian Humic Water Before and 
After Leaching Through Two Podzol A and Two 
Podzol C Horizons. 

Parameter 
Humic Water 

Before Leaching 
Leached through 
A Horizons 
1 2 

Leached 
C Hor 

1 

through 
rizons 

2 

Color (Pt Unit) 
PH 
Al (mg/L) 
Fe (mg/L) 

106 
4.5 
0.22 
0.06 

106 
4.4 
0.32 
0.10 

106 
4. 
0. 
0. 

0 
.36 
13 

2 
4.6 
0.47 
0.04 

2 
4.6 
0.63 
0.11 

Data from Reeve and Fergus (1983). 
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natural mix of weak and strong acidity of relative proportions similar to 

that observed in the Adirondacks (Table 16). The existence of highly acidic 

clearwaters due to podzolization appears to be due to the presence of ionic 

Al and Fe which flocculate out humic acids but is limited to conditions where 

there are insufficient bases in subsoils with which to neutralize H+. The 

absence of sufficient bases appears to be the consequence of long periods of 

intense weathering of coastal marine quartzose sands uninterrupted by 

glaciation (Thompson, 1981; Thompson and Moore, 1984; Reeve et al., 1985), as 

is also observed in other sandy coastal plain areas not subject to recent 

glaciation, such as the Atlantic Coastal Plain of the eastern United States 

extending from New Jersey into Florida (Gammon et al., 1953; U.S. Soil 

Conservation Service, 1967; Long et al., 1969; Rhodehamel, 1973; Holzhey et 

al., 1975; Krug, 1981; Means et al., 1981). 

The leaching experiment of Reeve and Fergus (1983) also indicates that 

ionic aluminum can naturally issue from highly acidic, podzol soils. The 

naturally, highly acidic Clearwater issuing from podzol soil in their 

experiment contained considerable concentrations of Al, averaging about 500 

ug/L (Table 18). Some of this dissolved aluminum is presumably toxic, ionic 

aluminum given what is essentially the absence of humic substances and the 

highly acidic pH of 4.6 of the leachate (Table 18). 

Surface water chemistry data support the conclusion drawn from the soil 

leaching experiment of Reeve and Fergus (1983; Table 18) that aluminum, and 

other metals, can naturally be in waters issuing from highly acidic soils. 

Highly acidic and colored waters of the Coolcola-Noosa area can have anion 

deficits (Table 16) that typify waters acidified by large concentrations of 

humic acids. However, highly acidic, clearwaters of Cooloola-Noosa having no 
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anion deficit (Table 16) and even anion excesses of up to 75.7 ueq/L have 

been reported (Reeve et al., 1985). As seen in Table 4, low DOC (D0C<2 mg/L) 

pH<5.0 NSWS eastern lakes average about 25 ueq/L anion excess - can be 

attributable to ionic metals not accounted for in the ion balance equation. 

The large anion excesses of some naturally acidic Australian waters equal the 

highest found in the NSWS of eastern U.S. lakes (Kanciruk et al., 1986). 

That highly acidic, organic-rich soil naturally releases highly acidic 

waters containing ionic aluminum and is highly toxic to fish has been 

demonstrated by the research of Jones et al. (1983). Jones et al. (1983) 

passed simulated unpolluted rain through highly acidic, organic-rich soil 

(Table 15). Not only did this soil strongly acidify water (Table 15), but it 

also imparted concentrations of monomeric ionic Al to water (Jones et al., 

1983). Water derived from Smoky Mountain soil by simulated unpolluted rain 

was highly toxic to trout even when greatly diluted (Jones et al., 1983). 

In summary, acidification theory predicts that (in the absence of acid 

mine drainage) acidic deposition is the only factor capable of sustaining 

strong acidity in surface waters. Scientific consensus is so strong about 

the presence of ionic Al being an artifact of acidic deposition that 

virtually any indication of ionic Al in water is taken as proof of acidic 

deposition's detrimental, toxic effect on surface waters (Aimer et al., 1974; 

Braekke, 1976; Overrein et al., 1980; Driscoll et al., 1980; Henriksen, 1980; 

Seip, 1980; Haines, 1981; Johnson et al., 1981; Driscoll and Likens, 1982; 

U.S. EPA, 1984; Van Breemen et al., 1984; 1985; Driscoll and Newton, 1985; 

Gherini et al., 1985; Reuss et al., 1986; 1987; Brakke et al., 1987; 

Malanchuk and Turner, 1987; Brakke et al., 1988; Reuss, 1988; Wright et al., 

1988). 
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An alternative hypothesis has been advanced which acknowledges that acidic 

deposition can increase concentrations of strong acids and ionic aluminum in 

surface waters but claims acidic deposition is not solely responsible for the 

existence of strong acids and ionic aluminum in runoff from highly acidic, 

organic-rich soils and peats typical of many "sensitive" watersheds (Krug and 

Frink, 1983a, b; Krug et al., 1985; Krug, 1987). 

Considerable data published in the scientific literature contradict the 

reported scientific consensus that acidic deposition is solely responsible 

for the existence of strong acidity and ionic aluminum in surface waters. 

The podzolization soil-forming process that predominates in many "sensitive" 

watersheds in eastern North America and Northern Europe necessarily produces 

strong acidity and ionic aluminum. Cases are presented for southern 

Hemisphere watersheds where the podzolization soil-forming process acidifies 

water strictly through the production of strong acidity and essentially all 

aluminum in solution is ionic. However, it is expected that weak organic 

acids and organically-complexed aluminum are naturally present, if not 

predominant, in runoff issuing from highly acidic soils and peats typical of 

many "sensitive" watersheds. 

This review suggests that research is needed to quantify the pre-

acidification concentrations of strong acid and ionic aluminum in runoff from 

highly acidic soils of many "sensitive" watersheds. Only when this is 

accomplished can quantitative estimates be derived for the influence of 

acidic deposition on the chemistry of near-surface runoff in many "sensitive" 

watersheds of eastern North America and northern Europe. 
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3.8 Paleolimnological Investigations 

Paleolimnology offers an independent means by which to test the 

acidification theory and the alternative hypotheses of acidification. 

Paleolimnology can provide a direct answer to the question - in the pre-

industrial era, were currently acidic, pH<5.5, lakes HCO3- solutions of 

mineral bases, pH>5.5, as predicted by the acidification theory, or were most 

currently acidic lakes naturally acidic prior to acidic deposition, as 

predicted by the alternative hypotheses of acidification? 

I have been able to find reported paleolimnological investigations for 29 

currently acidic surface waters in southern Norway and "sensitive" areas of 

the northeastern United States - two areas in which numerous studies have 

claimed recent widespread and profound acidification of surface waters. And 

two of these acidic lakes examined paleolimnologically were also the focus of 

especially intensive, long-term acidification research which has been used to 

support acidification theory - Lake Langtjern in southern Norway, and Woods 

Lake in the Adirondack Mountains of New York. Accordingly, conclusions of 

studies based on acidification theory and paleolimnology can be directly made 

for both Lake Langtjern and Woods Lake. 

The contention that widespread, recent acidification of surface waters has 

occurred in southern Norway and the northeastern United States is not well 

supported by the results of paleolimnological investigations. 

Review of paleolimnological investigations shows that 9 of 10 lakes in 

southern Norway with present pH less than 5.5 also had a pH less than 5.5 in 

pre-industrial times (Scruton et al., 1987; Krug, 1988). Lake Langtjern is 

one of the 10 lakes examined (Overrein et al., 1980; Scruton et al., 1987). 
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Its watershed and water chemistry have been studied continuously for at least 

seven years, 1974 - 1980, (Henriksen and Wright, 1977; Overrein et al., 1980; 

Wright, 1983) and this lake has also had the last 800 years of its sediment 

examined paleolimnologically (Overrein et al., 1980; Scruton et al., 1987). 

By acidification theory, Lake Langtjern is considered to be a model case 

of acidification by acidic deposition. It is a headwater lake with a very 

short water retention time (0.2 years) in the interior of southern Norway so 

that: 

"streamwater and lakewater chemistry at Langtjern is dominated by 
strong acids, particularly sulfate, the major anion. Langtjern is 
thus highly affected by chemical components such as H+ and SO4." And, 
in conclusion, "If the H+ budget for Langtjern is typical then we have 
an explanation for the general observation that uppermost, head-water 
lakes are often lowest in pH and lose their fish populations first 
(Wright & Johannesen 1980)." (Wright, 1983). 

However, there was no attempt to reconcile the conclusion derived from 

acidification theory (Wright, 1983) with the earlier published 

paleolimnological results (Overrein et al., 1980) that Lake Langtjern has 

been acidic for at least the last 800 years. Over the last 800 years, Lake 

Langtjern was reported to be most acidic, pH-4.3, around 1200 A.D. (Overrein 

et al., 1980; Scruton et al., 1987). Current pH is reported to be -4.7 

(Henriksen and Wright, 1977; Overrein et al., 1980; Wright, 1983; Scruton et 

al., 1987). Thus, paleolimnology does not support the conclusion derived 

from acidification theory that Lake Langtjern (and similar headwater lakes in 

southern Norway) was transformed to an acidic lake from a lake with 

bicarbonate alkalinity (pH greater than 5.5). 

Davis et al. (1983) examined a number of lakes in southern Norway and New 

England (5 in New England and 6 in southern Norway) with pH values currently 

less than pH 5.5. While they reported evidence suggesting recent but only 
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very slight changes in acidity (and only for some, not all lakes examined) 

correlated to increased acidic deposition, they also reported evidence 

suggesting that land-use changes and other types of disturbance can 

influence the acidity of surface waters: 

"Even minor land use changes or disturbances in lake watersheds 
introduce ambiguity to the sedimentary evidence relating to atmospheric 
influences." Furthermore, "It is very difficult to find lakes whose 
sediments are completely free of the influences of human and non-human 
disturbances to the watersheds" (Davis et al., 1983). 

In conclusion, the Davis et al. (1983) study showed that currently acidic 

lakes were acidic in pre-industrial times and it supports the changing land-

use hypothesis of Rosenqyist (1978; 1980). 

Subsequently, Davis et al. (1985) studied 2 lakes in southern Norway to 

determine not only changes in pH, but also changes in organic acidity 

(changes in total organic carbon (TOC)). The 2 lakes studied are now 

subjectively described as clearwaters with relatively low concentrations of 

TOC, 2.2 - 3.2 mg/L (Davis et al.. 1985). But in the past their TOC levels 

were 2 - 3 times higher than the present: 

"The results indicate that in pre-industrial times both lakes were 
acidic (pH 4.9-5.1, no bicarbonate alkalinity) and relatively humic 
(TOC 6-9 p.p.m.). This acidification started around 1920 at Hovvatn 
and in the 1940's at Holmvatten, and was accompanied by TOC decreases 
of 3-6 p.p.m. This supports the hypothesis and suggests that the 
acidification of such lakes transformed them from organic weak acid 
dominated to mineral strong acid dominated" (Davis et al., 1985). 

In conclusion, the study of Davis et al. (1985) supports the organic acid 

buffering hypothesis (Krug and Frink, 1983a). 

For the northeastern United States, the National Academy of Science 

review of paleolimnological studies found that of 16 lakes examined with 

current acidic inferred pH values (pH<5.5), 14 of the 16 also had acidic 

pre-industrial inferred pH values of less than 5.5 (Charles and Norton, 
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1986). Charles and Norton (1986) concluded: 

"The number of lakes with a pre-1800 diatom-inferred pH value less than 
5.5 suggests that these types of lakes were relatively common in the 
Adirondack Mountains and New England before the Industrial Revolution" 
(Charles and Norton, 1986, p.357). 

Charles and Norton (1986) observed that there has been some acidification 

of some currently acidic surface waters (but not all currently acidic surface 

waters) that appeared to correlate with the advent of acidic deposition. But 

what acidification had been observed was not nearly as great as is predicted 

by the dominant theory of acidification which assumes that bicarbonate 

alkalinity waters were titrated to sulfuric acid waters (Charles and Norton, 

1986). An example of this was given in Chapter 3.7.2.1 where very dilute 

water with only 60 ueq/L of HCO3- produced by mineral weathering is 

calculated to have a pre-industrial pH of 7.1, which is a much higher pH 

value than 5.5. Thus, the observation between acidification predicted by 

acidification theory and that acidification observed (if seen at all) is 

remarkably large. 

Paleolimnological analysis, laboratory studies and observations of loss of 

humic color from waters led Norton and Charles (1986) to conclude that for 

most currently pH<5.5 waters examined, acidic deposition was converting humic 

acid waters to sulfuric acid waters. This conclusion supports the organic 

acid buffering hypothesis (Krug and Frink, 1983a). The principal detrimental 

effect for most currently acidic surface waters does not appear to be 

acidification (because these waters were already acidic) but the loss of 

humic acids which can result in increasing proportion of ionic Al (Davis et  

al., 1985; Krug et al., 1985; Charles and Norton, 1986). 

Lakes that appear to have been bicarbonate waters which could have become 

acidified by acidic deposition appear to be the exception rather than the 
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rule in the northeastern United States (Norton and Charles, 1986). One of 

the two lakes in the Northeast that has been transformed from a pH>5.5 lake 

to a currently acidic lake is Big Moose lake in the Adirondack Mountains of 

New York. It has undergone the largest recorded change in pH of any 

currently acidic water in the Northeast that has been examined 

paleolimnologically, having gone from around pH 5.8 to 4.8 (Norton and 

Charles, 1986). However, the magnitude of pH change for even Big Moose lake 

is considerably less than commonly believed to be possible by acidification 

theory. By acidification theory, "sensitive", acidic lakes have an estimated 

change in F of about 0.2 (Henriksen and Brakke, 1988). Nevertheless, Big 

Moose Lake has a calculated change in F of 0.76, or 76% of input of H2SO4 is 

converted to basic sulfate (Charles et al., 1987). Furthermore, historical 

observations of changes, in water color, paleolimnological records of changes 

in diatoms and chrysophytes all indicate that in pre-deposition times the 

water of Big Moose Lake was more highly colored and humic rich than present 

(Charles et al., 1987). 

Like Lake Langtjern in southern Norway, Woods Lake in the Adirondacks has 

had both intensive watershed study and paleolimnological investigation. 

Indeed, Woods Lake is the most intensively studied acidic (pH-5) lake in the 

northeastern United States. It was used to develop the ILWAS model, the most 

data intensive, mechanistic, and comprehensive of the three process-oriented 

acidification models used by NAPAP (Malanchuk and Turner, 1987). The ILWAS 

model predicts that a 50% reduction in sulfate deposition will cause the pH 

of Woods Lake to rise from pH-5 to pH-6 during the growing season, late April 

through November (Malanchuk and Turner, 1987), the time when diatoms (the 

fossils of which were used in the paleolimnology study of Woods Lake) are 
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principally deposited in sediments (Davis et al., 1988). Nevertheless, two 

separate paleolimnological studies of Woods Lake indicate that it was pH-5 in 

pre-industrial times (Del Prete and Galloway, 1983; Davis et al., 1988). The 

reported composition of pre-industrial diatoms of Woods lake is different 

than the current composition even though both current and pre-industrial era 

waters are at essentially the same pH (Davis et al., 1988) which suggests a 

qualitative shift in the nature of the acidity, such as a change from acidic 

humic water to acidic clearwater. 

Woods Lake underwent a marked rise in pH to above 5.5 that corresponded 

to large fires and cutting around the turn-of-the-century (Davis et al., 

1988). Subsequently, Woods Lake became re-acidified (Davis et al., 1988). 

It was reported that acidic deposition is responsible for the re-

acidification of Woods Lake following the intensive disturbance around the 

turn-of-the-century (Davis et al., 1988). However, it should be noted that 

Woods lake is now located in the Adirondack Park and Forest Preserve which is 

protected from any such re-occurrence of destructive fires and where highly 

destructive land use (such as was practiced earlier) is forbidden. 

Accordingly, acidic deposition may not be the only possible explanation for 

the re-acidification of Woods Lake. 

Paleolimnological studies of three currently acidic lakes in the 

northeastern United States have been reported that are not summarized in the 

National Academy of Science review (Charles and Norton, 1986). They are: 

Lake Colden (pH-5), an high altitude lake in the High Peaks Region of the 

Adirondacks (Douglas and Smol, 1988); Duck Pond (pH-4.6) in the Cape Cod 

National Seashore in Massachusetts (Winkler, 1985; 1988), and; Sargent 

Mountain Pond (pH-4.6) in Acadia National Park in Maine (Kahl et al., 1985). 
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Like the majority of other Northeast lakes examined, all three of these 

currently acidic lakes were found to be acidic in pre-industrial times (Kahl 

et al., 1985; Winkler, 1985; 1988; Douglas and Smol, 1988). 

Thus, out of 19 currently acidic lakes in the Northeast examined whose 

data have been reported, 17 were acidic in pre-industrial times. As in 

southern Norway, roughly speaking, only about 1 in 10, or about 10% of 

currently acidic lakes were found to have pH values greater than 5.5 in pre-

industrial times. 

Lake Colden, is a high altitude, clearwater lake (pH = 5.00, TOC =3.21 

mg/L (Krug, personal observation, August 28, 1985)) in the High Peaks of the 

Adirondacks. Lake Colden has been used as a symbol of a scenic, high 

altitude trout lake that has become sterilized by acidic deposition. It was 

well known as an excellent trout lake in the early 1900's but is currently 

acidic (pH-5) and fishless (Douglas and Smol, 1988). However, paleolimnology 

shows that it was highly acidic in pre-industrial times. Furthermore, after 

the watershed began to be cut and burned, water pH levels went up, apparently 

allowing fish to survive. In the 1920's, the State of New York acquired the 

land around lake Colden and added it to the Adirondack Park and Forest 

Preserve, protecting it from fire and lumbering. Subsequently, lake pH fell 

towards pre-settlement levels and fish disappeared (Douglas and Smol, 1988). 

"Its present fishless state is not an unprecedented event, as in 1859 
it was described as supporting 'only lizards and leeches in its cold 
waters' (Masten, 1968)" (Douglas and Smol, 1988). 

In conclusion, the absence and presence of fish, and acidity of water in Lake 

Colden appears to strongly related to land-use change. 

Duck Pond is an acidic (pH-4,6) clearwater seepage pond of exceedingly 

high transparency in Cape Cod (Winkler, 1985; 1988). Paleolimnoiogical 
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investigation indicates that Duck Pond a naturally acidic clearwater pond 

that is no more acidic now than it was 12,000 years ago. At times in its 

past it has been more acidic than it is at present (Winkler, 1985; 1988). 

However, the pond experienced several pH 5 to 6 excursions over the last 

12,000 years. The latest high pH excursion occurred in the 1600's when 

colonists came in and cleared the forest. Upon land abandonment around 1800, 

pH dropped within decades to its present level from about pH 5.5 (Winkler, 

1985; 1988). 

Three more lakes in the Cape Cod National Seashore are currently 

undergoing paleolimnological investigation. Preliminary results indicate 

that these three lakes are similar to Duck Pond in history of their 

watersheds and water chemistries (Winkler, personal communication). It 

appears that lake acidity is strongly related to man-made and natural 

watershed disturbances in the Cape Cod National Seashore. 

Sargent Mountain Pond is a clearwater (mean color 14 Co-Pt units, perfect 

ion balance) acidic (pH-4.6) pond in Acadia National Park in Maine whose 

inferred pH has not significantly changed in the approximately 300 years 

represented in the sediment core. No land-use changes for its watershed were 

reported (Kahl et al., 1985). 

In summary, acidification theory is not well supported by 

paleolimnological studies. The alternative hypotheses of acidification are 

well supported by paleolimnological investigations. These studies indicate 

that approximately 90% of currently acidic surface waters examined in 

southern Norway and the northeastern United States are naturally acidic 

waters that were acidic in the pre-industrial era. Lakes that appear to have 

been bicarbonate waters which could have become acidified by acidic 
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deposition appear to be the exception rather than the rule. 

The effects of land-use change and other types of watershed disturbance on 

acidification of surface waters is reported for many of the lakes examined. 

Acidification of surface waters by acidic deposition appears to be 

superimposed upon natural processes of acidification. The principal 

influence of acidic deposition appears not to be a marked acidification of 

surface waters but rather a qualitative shift in the nature of acidity from 

organic acid water to sulfuric acid water. Paleolimnology suggests that most 

naturally acidic surface waters were more organic rich in the pre-industrial 

era, although at least one naturally acidic surface water was apparently 

naturally acidified by strong acidity produced by soil/plant ion exchange. 

Paleolimnological studies suggest that the principal detrimental aquatic 

effect of acidic deposition may be the loss of humic substances in naturally-

acidic surface waters and a concomitant shift in the speciation of aluminum. 
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3.9 Observations of Naturally-Acidic Waters Associated with Acidic Soils 
not Exposed to Man-Made Acidic Deposition 

The absence or presence of acidic surface waters in "sensitive" watersheds 

not receiving man-made acidic deposition can be used as an independent test 

of the fundamental premises of acidification theory and the alternative 

hypotheses of acidification (and results of paleolimnology): 

1.) - Acidification theory - currently acidic surface waters are acidic 
because of acidic deposition. 

2.) - Alternative hypotheses of acidification (and results of 
paleolimnology) - acidification of surface waters by acidic 
deposition is superimposed upon natural processes of 
acidification. Most currently acidic surface waters were acidic 
in pre-industrial times. The principal effect of acidic 
deposition on currently acidic surface waters has been a 
qualitative shift in the nature of acidity. 

The first objective of such a test is to determine if there are 

"sensitive" watersheds in areas of the world not receiving man-made acidic 

deposition that are analogous to "sensitive" watersheds said to have been 

acidified by "acid rain". If so, the second objective is to obtain water 

chemistry data for these "sensitive", unpolluted watersheds to determine if 

highly acidic surface waters do, or do not, exist in percentages comparable 

to similar "sensitive" regions receiving acidic deposition. 

The highly acidic, humic-rich landscapes typical of many "sensitive" 

watersheds in eastern North America and northern Europe are the result of the 

soil-forming process known as podzolization. The development of highly 

acidic, organic-rich podzol soils and associated peaty soils is most favored 

by cool, moist climates of the type encountered in recently-glaciated 

terrains such as southeast Canada, the Adirondack Mountains, New England, 
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parts of the upper Midwest, southern Scandinavia, and maritime portions of 

northern mainland Europe. The intensity of the podzol soil-forming process 

diminishes as climate becomes progressively colder (to the north), drier (to 

the west in North America and east and south in Europe), and warmer to the 

south in both Europe and North America (Bjorlykke, 1928; Jenny, 1941; Joffe, 

1949; Bridges, 1970; Petersen, 1976; Foth, 1984). 

Quartz sands in non-glaciated terrains enable podzolization to be 

pronounced in moist warm, and even moist tropical climates. An example of 

this are the strikingly podzolized soils and associated highly acidic peats 

of the Atlantic Coastal Plain of the eastern United States which extend into 

the moist subtropical climate of Florida (Marbut, 1935; Joffe, 1949). Podzol 

soils and associated highly acidic peats are also widespread in the Amazon 

Basin and are developed from sandy deposits derived from granites and 

gneisses (Klinge, 1965; Sioli, 1975). Podzolized soils and peats analogous 

to those of the Atlantic Coastal Plain (Marbut, 1935; Joffe, 1949; Holzhey et 

al., 1975) also predominate on the sandy coastal deposits of coastal eastern 

Australia, going from relatively moist and cool Tasmania through the moist 

subtropical and tropical climates of Queensland (Bayley, 1964; Thompson, 

1981; 1983; Thompson and Moore, 1984; Reeve et al., 1985). 

Highly acidic podzolized soils and associated peats more typical of 

southern Scandinavia (Bergseth, 1977; Lag, 1979) and southeastern Canada 

(Clayton et al., 1977) exist in the recently-glaciated terrain of western 

Tasmania (Davies, 1965) and the recently-glaciated terrain of the moist, cool 

to temperate climates of the west coast of the South Island of New Zealand 

(McLintock, 1960; Mew and Lee, 1981). 

This worldwide distribution of highly acidic podzolized soils and 
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associated peats is clearly delineated as soils with toxic levels of acidity 

on the world soil map of problem acid soils prepared by the Soil Geography 

Unit of the U.S. Department of Agriculture (Van Wambeke, 1976). 

In conclusion, there are a number of locations identified above (the 

Amazon, Tasmania and much of the coastal plain of eastern Australia, and the 

west coast of the South Island of New Zealand) where "sensitive" watersheds 

occur in essentially the total absence of man-made acidic deposition 

(Galloway et al., 1982; Keene et al., 1983; Ayers and Gillett, 1984; Ayers et 

al., 1986; Verhoeven et al., 1987). 

Florida is one location having "sensitive" watersheds where there is man-

made acidic deposition but it is questioned as to whether deposition is 

acidic enough to result in acidification of surface waters (Linthurst et al., 

1986; Reuss et al., 1987). 
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3.9.1 Recently-Glaciated "Sensitive" Watersheds 

Most of Tasmania's several thousand lakes were created by recent 

glaciation (ice sheets and mountain glaciers) and these lakes predominantly 

occur in the moist (40 to 100+ in. ppt/yr) western half of Tasmania which is 

largely an unsettled wilderness (Davies, 1965; Buckney and Tyler, 1973). 

Many lakes in the drier east were formed by periglacial activity (Buckney and 

Tyler, 1973). Tasmania is over 26,000 mi2; the main island being about 340 

miles wide from west to east (from Cape Grim, a pristine background 

atmospheric monitoring site for the World Meteorological Organization, WMO 

(Ayers et al., 1986) to Eddystone Point) and about 350 from north to south 

(from Cape Grim to S.E. Cape). 

There are corresponding west-to-east climatic, soil, and vegetational 

gradients across Tasmania. Highly acidic podzol soils and peats, and 

associated acidophilic vegetation occur in the moist and recently-glaciated 

terrain of the west (Davies, 1965; Buckney and Tyler, 1973). 

The alternative hypotheses of acidification and the results of 

paleolimnological investigations predict that acidic surface waters will co-

occur with the highly acidic, organic-rich soils and peats of the west. A 

surface water acidity gradient paralleling the soil acidity gradient is also 

predicted. 

Buckney and Tyler (1973; Table 19) conducted a regional survey of 170 

Tasmanian lakes and rivers: 75 of which are in the west; 54 in the 

mountainous, high rainfall southwest, and; 21 in the more moderate rainfall 

and less mountainous northwest. Buckney and Tyler (1973) report that the 

surveyed surface waters are representative of their respective, distinct 
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Table 19. Some Chemical Parameters of the 17 pH<5.0 Surface Waters Found of 75 Surveyed in Western Tasmania by 
Buckney and Tyler (1973). 

SOUTHWEST 
1 4.5 140 304 17 42 103 472 27 -21 498 499 -1 499 466 33 
2 4.5 160 283 15 60 100 460 32 -15 490 492 -2 492 458 34 
3 4.9 100 266 23 42 93 420 80 37 436 500 -64 463 424 39 
4 4.2 280 239 24 13 23 315 33 1 362 348 14 347 299 48 
5 4.8 120 140 8 52 61 200 37 16 277 237 40 221 261 -40 
6 4.8 200 152 13 60 83 324 35 2 324 359 -35 357 308 49 
8 4.8 200 167 11 47 85 234 69 45 326 303 23 258 310 -52 
9 4.8 60 153 9 39 53 244 23 -2 270 267 3 267 254 13 
10 4.8 80 189 9 33 69 271 27 -1 316 298 18 298 300 - 2 
11 4.5 100 145 3 37 73 241 27 2 290 268 22 266 258 8 
12 4.7 100 118 21 35 58 248 21 -4 252 269 -17 269 232 37 
28 4.3 140 313 19 42 103 472 27 -21 527 499 28 499 477 22 
30 4.5 100 129 8 26 44 211 19 -3 239 230 9 230 207 23 
31 4.8 120 121 5 24 74 220 23 0 240 243 -3 243 224 19 
32 4.9 150 154 10 45 74 287 48 19 295 335 -40 316 283 33 

MEAN 4.6 137 192 13 40 73 308 35 4 343 343 0 335 317 18 
NORTHWEST 

5 4.8 280 566 105 283 400 842 320 234 1370 1162 208 928 1354 -426 
21 4.8 560 610 105 55 277 1430 115 -32 1063 1545 -482 1545 . 1047 498 

Color - Platinum-cobalt units, PCU. 
Non-marine SO4 - surface water SO4 - SO4marine. SO4marine is estimated by the SO4/Cl equivalent ratio of seawater, 0.1026. 
Negative values mean that net watershed retention of SO4 exceeds watershed plus estimated marine input. 
H - H+ + Na+ + K+ + Ca2+ + Mg2+. 
A - CK + SO42-
Anion Deficit - M - A. Negative values are anion excesses. 
BCINPUT - Total ionic concentration of base cations (Na+ + K+ + Ca2+ + Mg2+) in surface water is estimated to be 
equivalent to seaspray input. Seaspray input is estimated by assuming that all Cl- is due to seaspray and that all SO42-
present in surface waters up to the SO4/Cl equivalent ratio of 0.1026 (that of seawater) is due to atmospheric inputs of 
seaspray. 
BCOUTPUT - watershed output of base cations, which is defined as the total ionic concentration of base cations in 
surface waters. 
Net H+ - NET ION EXCHANGE STRONG ACID PRODUCTION - BCINPUT - BCOUTPUT. Values of BCINPUT - BCOUTPUT> 0 are assumed to 
represent soil and plant ion exchange production of strong acid, principally HC1. Values of BCINPUT - BCOUTPUT< 0 are 
assumed to represent net watershed production of BC-SO42-, BC-RCOO-, and BC-HCO3-, i.e., in other words, production of 
basic non-marine sulfates, humates, and alkalinity exceeds watershed conversion of seasalts to strong mineral acidity. 
This definition of NET ION EXCHANGE STRONG ACID PRODUCTION assumes that watershed retention of marine SO4 converts input 
of BC-SO4marine to BC-HCO3-. By this definition, because of watershed retention of marine SO4, there can be net watershed 
retention of base cations without net ion exchange production of strong acidity. 

Sample pH Color Na K Ca Mg Cl 
Non-Marine 

SO4 SO4 M A 
Anion 
Deficit BCINPUT BCOUTPUT 

Net 
H+ 



surface water provinces of Tasmania (Buckney and Tyler, 1973). 

Clearly, in terms of numbers of surface waters sampled, the numerous 

glacial lakes and streams of the wilderness west are underrepresented in 

favor of the more accessible surface waters of the drier and more settled 

east. 

Overall, 10% of the surveyed Tasmanian surface waters have pH values less 

than 5.0 (Buckney and Tyler, 1973; Table 19). There are no pH<5.0 surface 

waters reported from the east. However, in the glaciated and mountainous 

southwest, 28% of sampled surface waters are pH<5.0, and 9.5% are pH<5.0 in 

the less mountainous and somewhat drier northwest (Buckney and Tyler, 1973; 

Table 19). In the southwest, 37% of the sampled surface waters are pH<5.5 

(Buckney and Tyler, 1973). 

Concentrations of DOC or TOC are not reported by Buckney and Tyler (1973), 

however, color (Pt units) is. All pH<5.0 Tasmanian waters surveyed have 

color ≥60 Pt units (Buckney and Tyler, 1973; Table 19). Thus, highly acidic 

(pH<5.0) Tasmanian surface waters can be subjectively described as humic 

colored (Krug et al., 1985). 

Limnological investigations of highly acidic, southwest Tasmanian waters 

indicate that they have a sparse fauna and flora typical of acid-stressed 

aquatic ecosystems (Bayley, 1964; 1973; King and Tyler, 1981). 

In most pH<5.0 Tasmanian watersheds, ion exchange processes appear to play 

an important complementary role in acidification. Ion exchange appears to 

often result in the near-complete removal of watershed-produced alkalinity 

through strong acid titration (Table 19). Thus, ion exchange processes 

enable organic acids to have the apparent primary role in acidification of 

surface waters by removing most, or all, alkalinity so that organic acids can 
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impart free H+ to water rather than simply use H+ to titrate alkalinity. 

There appears to be a net release of strong acidity to a number of pH<5.0 

surface waters by ion exchange processes (Table 19). For a few waters, the 

amount of strong acid production appears to be great enough to result in 

anion excesses (Table 19), which is indicative of unaccounted for ions, 

possibly ionic metals dissolved by strong acid (Chapter 3.5). 

In conclusion, acidic Tasmanian surface waters are generally acidified by 

a mix of weak and strong acids (Table 19) like the waters in the "clean rain" 

experimental Risdalsheia mini-catchment in southernmost Norway (Table 17; 

Wright, 1987; Wright et al., 1988) and Jamieson Creek in British Columbia, 

which is said not to be receiving man-made acidic deposition (Driscoll et  

al., 1988b). Both the Risdalsheia experiment and the comparison of Jamieson 

Creek with Hubbard Brook, New Hampshire (Driscoll et al., 1988b) support the 

alternative hypotheses of acidification (Chapter 3.7.2.2; Table 17) in that 

the principal effect of high rates of acidic deposition is not to increase 

the acidity of water but to cause a qualitative shift in the nature of water 

acidity, i.e., acidic deposition transforms acidic humic water to acidic 

sulfate water and acidic deposition increases watershed leaching of bases 

and, thereby, masks natural strong acid production. 

The "sensitive" watersheds of Tasmania have a proportion of highly acidic 

surface waters that favorably compare with percentages reported for 

"sensitive" watersheds receiving high rates of acidic deposition. For 

example, excepting Florida, the NSWS1 found that 3.7% of lakes sampled in 

1.) - The NSWS survey may not be directly comparable with other surveys of 
"sensitive" watersheds because (to the best of my knowledge) it is the only 
survey published that reportedly has a statistically-valid basis (Kanciruk et  
al., 1986) for developing population estimates of acidic surface waters. 
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"sensitive" watersheds in the eastern United States (the upper Midwest and 

Northeast) have pH values less than 5.0 (Kanciruk et al., 1986). For 

recently-glaciated terrain, the NSWS found that the Adirondacks have the 

highest percentage of pH<5.0 surface waters, 10% are pH<5.0. However, the 

percentage of pH<5.0 lakes and ponds in the Adirondacks is likely to be 

higher than 10% because NSWS excluded impoundments with areas of less than 4 

ha. Smaller impoundments tend to be more acidic than larger ones (Malanchuk 

and Turner, 1987; Krug, 1988). 

Survey of 226 small New England headwater lakes and streams located in 

"especially sensitive" watersheds found that 8.4% have pH<5.0 (Haines and 

Akielaszak, 1983). A survey of 155 small headwater lakes in southern Norway 

found that 18% have pH<5.0 (Wright et al., 1977). 

Gotham's (1957) survey of Nova Scotian lakes reported 43% having pH values 

less than 5.0. The Canadian national acid rain lake survey reports that 

47.3% of Nova Scotian lakes surveyed are pH<4.7 (Kelso et al., 1986), easily 

the highest percentage reported for a region in North America, with Florida 

coming in second (Kanciruk et al., 1986; Kelso et al., 1986). Curiously 

neither Florida (Reuss et al., 1987) nor Nova Scotia (Underwood et al., 1987) 

receive high rates of acidic deposition. 

These Nova Scotian and Florida surface-water data merit further comment. 

The Florida region of the NSWS may not to be receiving acidic deposition 

severe enough (pH>4.7) to result in chronic surface-water acidification 

(Linthurst et al., 1986; Reuss et al., 1987) and the mean annual 

precipitation pH for Nova Scotia ranges from 4.6 to about 4.9 across the 

Province (Underwood et al., 1987). Gorham's (1957) lakes may not have been 

receiving acidic deposition at all (Likens et al., 1979; Watt et al., 1979; 
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National Research Council, 1981; Havas et al., 1984). Indeed, Henriksen 

(1980) reported that he vised early post World War II Nova Scotia and Georgia 

surface waters as waters not receiving acidic deposition in order to develop 

his predictive surface water acidification nomograph. 

That the highest percentages of highly acidic lakes in North America exist 

in relatively low or no acidic deposition areas, by itself, suggests the 

possibility that, contrary to the predictions of acidification theory, highly 

acidic surface waters can be a natural phenomenon of these regions. 

Returning to the Tasmanian surface waters, the highly acidic surface 

waters in "sensitive" watersheds of Tasmania occur in percentages that 

compare favorably to percentages reported for similar "sensitive" regions 

receiving high rates of acidic deposition. This finding does not support the 

basic premise of acidification theory that such proportions of highly acidic 

surface waters are necessarily due to acidic deposition. However, this 

finding does support the basic premise of the alternative hypotheses of 

acidification (and the results of paleolimnology) that highly acidic surface 

waters in such "sensitive" regions were relatively common prior to acidic 

deposition. The nature of acidity in highly acidic Tasmanian surface waters 

supports the other fundamental premise of the alternative hypotheses of 

acidification that the principal effect of acidic deposition is the 

qualitative shift in the nature of water acidity rather than acidification 

per se. 

The survey of Tasmanian surface waters supports the following predictions 

of the alternative hypotheses of acidification: 

1.) - acidic surface waters naturally co-occur with highly acidic, 
organic-rich soils and peats typical of many "sensitive" 
watersheds of eastern North America and northern Europe. Natural 
soil acidity gradients can result in natural surface water 
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acidity gradients. 

2.) - the qualitative and quantitative nature of acidity in Tasmanian 
waters supports the hypothesis (and results of paleolimnology) 
that acidification of surface waters by acidic deposition is 
superimposed upon natural processes of acidification and that 
most currently acidic surface waters were acidic in pre-
industrial times. The principal effect of acidic deposition on 
currently acidic surface waters is a qualitative shift in the 
nature of acidity resulting in the transformation of waters 
naturally acidified principally by weak organic acids to waters 
acidified principally by strong sulfuric acid with relatively 
little change in pH. Also, acidic-deposition-induced increased 
leaching of mineral base cations (Ca2+ + Mg2+ + K+ + Na+) can 
mask the natural production of strong acid by soil and plant ion 
exchange that may co-occur with organic acidity in naturally-
acidified waters. 

A second area of recently-glaciated terrain having highly acidic podzol 

soils and associated peats typical of many "sensitive" watersheds of eastern 

North America and northern Europe is the west coast of the South Island of 

New Zealand. Verhoeven et al. (1987) report that precipitation chemistry of 

this area is remarkably clean, similar to that of the WMO site at Cape Grim 

in Tasmania. Precipitation pH is 5.6-5.7. Land airmass storms produce 

exceedingly dilute precipitation (1-2 uS/cm) and seastorms contain elevated 

levels of seasalts (concentrations of Cl- in coastal precipitation from 

seastorms range 10 - 165 ueq/L). Fog and cloud water have essentially the 

same chemistry as rain, e.g. ,pH-5.6, indicating an amazingly pristine 

atmospheric environment (Verhoeven, 1987). In May 1988, Dr. John Adams 

(Lincoln College, Canterbury, New Zealand) and I collected precipitation from 

a land airmass storm on the west coast (along with samples of local surface 

waters). It had a pH of 5.67 and a conductivity of 1.55 uS/cm, being little 

more than distilled water having dissolved CO2. West coast precipitation is 

apparently even lacking simple organic acids that are present and acidify 

precipitation to pH-5, or less, at some other pristine sites (Keene et al., 
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1983) . 

Highly acidic surface waters (other than those derived from volcanic 

waters of the North Island) in New Zealand occur in considerable numbers 

(Jolly and Brown, 1975; McDowall and Eldon, 1980; Pearce and Griffiths, 1980; 

Collier and Winterbourn, 1987) under the Rimu and Rata forests of the west 

coast in association with the highly acidic, gley (imperfectly drained) 

podzols developed on the granites and glacial tills in Westland, west of the 

Alpine Fault of the South Island (Holloway, 1954; McLintock, 1960; Mew and 

Leamy, 1977; Mew and Lee, 1981). pH values as acidic as 3.3 have been 

reported, ostensibly due to humic acids (Jolly and Brown, 1975; McDowall and 

Eldon, 1980; Pearce and Griffiths, 1980; Collier and Winterbourn, 1987). 

However, comprehensive chemical analyses of these acidic waters appear to be 

absent from the published scientific literature. 

Table 20 presents water chemistry data for 8 pH<5.0 streams and lakes 

sampled by Dr. John Adams of Lincoln College (Canterbury, New Zealand) and 

the author and analyzed by the Central Analytical Laboratory (CAL) of the 

Illinois State Water Survey (ISWS). Generally, total concentration of base 

mineral cations is but little more (and in one case less) than expected from 

atmospheric input of seasalt. Often, watershed output of individual cations 

is less than estimated atmospheric input of seasalt. Acidification by 

organic acids is apparently enhanced by soil and plant ion exchange that 

produces enough H+ by cation uptake to neutralize nearly all alkalinity 

produced by mineral weathering (Table 20). 

The streams sampled commonly run in channels cut 4 to 8 feet deep in 

mineral, podzol soils. The podzol soil profiles are less than 2 feet thick 

(also see Mew and Lee, 1981). Thus, it was surprising to me that these 

3-182 



Table 20. Water Chemistry Data for Some pH<5.0 Surface Waters of the Vest Coast of the South Island of New Zealand. 

SALTWATER STATE FOREST 
Tunnel Creek 4.53 14.31 29.5 25.9 41.0 139.1 5.8 129.7 <19 92.6 -63 

Unnamed Creek 
(Darby Road) 

4.31 15.25 48.9 25.4 43.5 145.2 4.1 183.3 41.7 42.1 6.8 

Hinatua R., 
South Br. 
(Metal Pit Rd.) 

4.40 16.02 39.8 26.0 36.5 117.4 7.8 110.0 <19 98.5 -58.7 

Unnamed Tarn 
(SSE of Mermaid 
Peninsula) 

4.72 12.38 19.0 35.1 43.9 141.7 9.7 163.6 <19 66.8 -47.8 

IANTHE STATE FOREST 
Unnamed scream 
(Rooney's Tract) 

4.84 15.22 14.4 67.7 45.5 73.3 4.2 124.1 <19 62.0 -47.6 

Pool 
(Rooney's Tract) 

4.77 15.96 16.9 60.1 47.6 139.1 19.2 149.5 35.4 98.0 -81.8 

NZMS 1 550/51 MAP 
Okuku Reservoir 4.87 7.64 13.4 39.2 35.0 123.0 4.5 155.1 35.4 24.6 -11.2 

Lake Mudgie 4.77 7.56 16.9 21.1 29.6 109.6 4.2 121.3 <19 41.4 -24.2 

Anion Deficit - M - A: M - H+ + Na+ + K+ + Ca2+ + Mg2+, and; A - Cl- + SO42-. For SO4<19 ueq/L assume SO4 - 19 ueq/L. 
NET ION EXCHANGE STRONG ACID PRODUCTION - BCINPUT - BCOUTPUT. BCINPUT - Total ionic concentration of base cations (Na+ + 
K+ + Ca2+ + Mg2+) in surface water is estimated to be equivalent to seaspray input. Seaspray input is estimated by 
assuming that all Cl- is due to seaspray and that all SO42- present in surface waters up to the SO4/Cl equivalent ratio of 
0.1026 (that of seawater) is due to atmospheric inputs of seaspray. 
BCoutput - watershed output of base cations, which is defined as the total ionic concentration of base cations in surface 
waters. Values of BCINPUT - BCOUTPUT> 0 are assumed to represent soil and plant ion exchange production of strong acid, 
principally HC1. 
Values of BCINPUT - BCOUTPUT< 0 are assumed to represent net watershed production of BC-SO42-, BC-RCOO", and BC-HCO3-, i.e., 
in other words, production of basic sulfates, humates, and alkalinity exceeds watershed conversion of seasalts to strong 
mineral acidity. This definition of NET ION EXCHANGE STRONG ACID PRODUCTION assumes that watershed retention of marine 
SO4 converts input of BC-SO4marine to BC-HC03-. By this definition, because of watershed retention of marine SO4, there 
can be net watershed retention of base cations without net ion exchange production of strong acidity. 

SAMPLE PH DOC H Ca Mg Na K Cl SO4 
ANION 
DEFICIT 

NET ION EXCHANGE 
STRONG ACID PRODUCTION 



waters were highly acidic because of their intimate contact with weatherable 

mineral bases. However, water chemical analysis shows that these waters are 

poor in base mineral cations (Table 20). Apparently, acid cation exchange by 

the luxuriant growth of mosses and forest vegetation neutralizes most to all 

of the alkalinity produced by mineral weathering, thereby, enabling H+ from 

organic acids to lower water pH rather than be consumed by alkalinity (Table 

20). 

This survey of acidic New Zealand surface waters is too limited to provide 

a quantitative estimate of proportion of acidic surface waters in this region 

of forested podzol soils. Nevertheless, my experience suggests that highly 

acidic surface waters are the rule rather than the exception on the forested, 

podzol soil landscapes of the west coast of the South Island of New Zealand. 

It is my experience that going "blind" (without previous survey 

information) into "sensitive" regions of the Northeast in the hopes of 

finding highly acidic surface waters is very frustrating. But, in New 

Zealand, we found highly acidic surface waters to be so common that shortly 

after our survey began, I no longer trusted the pH meter, the buffers, and 

its calibration because we could not find any waters that registered above pH 

5.0. Therefore, we drove out to an area with considerable erosion, and found 

a river running through a deep ravine that must be receiving mostly deep and 

aged groundwater. The river's pH measured -7. Faith restored, Dr. Adams and 

I continued about the survey. Field pH values were later found to be within 

±0.1 of ISWS laboratory pH values. 

Highly acidic surface waters are so common in the surveyed area of New 

Zealand that not only were many "blindly" found on the first day, but the 

entire trip's allotment of sample containers were used up on that first day. 
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After that point the survey continued, but only measurements of pH were 

taken. Accordingly, I believe that the majority of surface waters derived 

from drainage of the forested, podzol soil landscapes of the west coast of 

the South island of New Zealand are pH<5.0. 

In conclusion, there appears to be exceptionally high percentages of 

highly acidic surface waters in recently-glaciated "sensitive" (mantled by 

highly acidic podzol soils and associated peats) watersheds in Australia and 

New Zealand not receiving man-made acidic deposition. That these naturally 

highly acidic surface waters are relatively common in "sensitive" watersheds, 

combined with the nature of their acidity strongly support the alternative 

hypotheses of acidification and results of paleolimnological investigations: 

most currently acidic surface waters were always acidic; acidification by 

acidic deposition is superimposed upon natural processes of acidification 

,and; the principal effect of acidic deposition on such surface waters has 

been the qualitative shift in the nature of acidity rather than acidification 

per se, as necessarily expounded by acidification theory. 
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3.9.2 Non-Glaciated "Sensitive" Watersheds 

NAPAP has not limited its surface water surveys to just recently-glaciated 

"sensitive" watersheds. Highly acidic lakes and streams have been found in 

non-glaciated "sensitive" watersheds of the eastern United States (NAPAP, 

1984; 1987; Linthurst et al., 1986; Malanckuk and Turner, 1987). 

However, review of the scientific literature shows that highly acidic 

surface waters also occur in non-glaciated "sensitive" watersheds not 

receiving acidic deposition. For example, Rosengyist (1980) presented data 

showing that highly acidic (pH<5.0) clear and colored surface waters exist in 

the Amazon Basin in association with highly acidic soils. Furthermore, 

Rosengyist (1980) cited that, nearly two centuries ago, Alexander von Humbolt 

described these waters as being nearly lifeless and having a sparse fauna and 

flora which is now recognized as being diagnostic of highly acidic waters. 

The 1984 Cousteau documentary on the Amazon noted that natives call the 

highly acidic waters of the Amazon "rivers of hunger" because so little lives 

in them. The largest of these pH-4's rivers is the Rio Negro, which is about 

the size of the Mississippi River. 

Apparently highly acidic waters are the rule rather than the exception in 

the Rio Negro drainage basin (Klinge and Ohle, 1964; Junk, 1983), which is 

equivalent in size to a substantial portion of the United States. Such a 

distribution of highly acidic surface waters greatly exceeds that reported 

for any region receiving acidic deposition. 

Rosengyist's claim that pH less than 5.0 clearwaters naturally exist in 

the Amazon Basin is supported by evidence readily available in the scientific 

literature. A recent review of Amazon Basin water-chemistry data states, 
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"clear-water brooks of the Tertiary 'Barreiras' . . . are colorless and quite 

transparent, and have a pH from 4.5 to 4.9" (Junk, 1983, p. 273). This 

summary statement is based on over 100 stream survey observations. It is of 

further interest to note that unlike most waters which can be phosphorus 

limited, these Amazon waters contain so little SO4
2- that they can be both 

phosphorus and sulfur limited (Klinge and Ohle, 1964; Fittkau, 1964; Junk, 

1983). It appears to be extremely unlikely that these Amazon clearwater, pH 

less than 5.0 streams are acidified by man-made deposition of H2SO4. 

Nevertheless, subsequent to Rosenqvist's (1980) publication, there is a 

reported scientific consensus that clearwaters more acidic than predicted by 

carbonate chemistry (other than acid mine drainage) are necessarily the 

product of acidic deposition. Some examples of the reported consensus 

follow. 

"Lakes and streams naturally acidified . . . . are always 
distinctly tea-colored, and can readily be distinguished from the 
clear-water lakes now undergoing acidification because of man's 
activities." (National Research Council, 1981, p. 152). 

The Critical Assessment Review Papers (CARP), published by the U.S. EPA 

(1984) in regard to assessing the aquatic effects of acidic deposition 

states: 

"SUMMARY — ALTERNATIVE EXPIANATIONS FOR ACIDIFICATION. Certainly 
natural processes and land use changes can result in slightly acidic 
waters . . . . There is no evidence, however, that land use changes 
in areas not (emphasis added) receiving acidic deposition produce clear 
waters with pH's much less than 5.5 . . . . Thus natural 
acidification, or the return of a system to its natural state will not 
produce clearwater oligotrophic lakes with pH much less than 5.5" (U.S. 
EPA, 1984, p. 4-107). 

Later on the CARP document concludes: 

"It appears that regional acidification and episodic pH depressions 
(pH<5) in clearwater lakes and streams occur only in response to 
increased atmospheric deposition of strong acid." U.S. EPA, 1984, p. 
4-168). 
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Apparently, the Critical Assessment Review Papers (U.S. EPA, 1984) ignore 

data reported in the scientific literature (e.g., Klinge and Ohle, 1964; 

Fittkau, 1964; Sioli, 1975; Junk, 1983) and by Rosenqvist (1980) and do not 

consider the possibility that highly acidic humic (colored) waters may have 

been transformed to highly acidic (clear) sulfate waters by acidic deposition 

(Krug and Frink, 1983a, b). 

Subsequently, the National Surface Water Survey (NSWS) found that clear 

and colored highly acidic (pH<5.0) lakes are more common in Florida and 

southern Georgia (collectively known as the Florida region of the NSWS) than 

anywhere else in the eastern United States, including the Adirondacks 

(Kanciruk et al., 1986). Although Florida is certainly not a remote area, 

mean precipitation pH for the region is greater than 4.6 and Linthurst et al. 

(1986) report that the existence of these lakes cannot be explained entirely 

in terms of acidification by acidic deposition. Of over 1600 lakes examined 

by the NSWS in "sensitive" regions in the eastern U.S., only 75 pH<5.0 lakes 

were found (4.7%). Of these 75 lakes, 25 were found in Florida of only about 

150 lakes sampled there (16.6% of lakes surveyed are pH<5). Despite lower 

rates of acidic deposition, the proportion of highly acidic lakes per sampled 

lakes is five times greater in Florida (16.6%) than in the rest of the 

"sensitive" areas surveyed by the NSWS in the eastern U.S. (3.7%). 

NAPAP's Interim Assessment claimed that acidic deposition contributed 

significantly to acidification of lakes in the upper Midwest and the 

Northeast, but did not make such a claim for the acidic Florida lakes 

(Malanchuk and Turner, 1987). 

In the Nature review article, "Chemical Processes Governing Soil and Water 

Acidification", Reuss et al. (1987) claimed that "acidified freshwaters are 
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largely confined to areas within the pH 4.7 isoline" of North America and 

Europe. The North America pH 4.7 isoline excluded all of the NSWS's Florida 

sampling region (Kanciruk et al., 1986). Reuss et al. (1987) asserted that 

anion indicates source of acidity," 'Show me your anion and I will show you 

who you are'". Thus, they acknowledged that: 

"Natural organic acids can cause acidic (pH<5.0) surface waters in 
regions not receiving acidic deposition, for example, in bog waters in 
central Canada39, several lakes in Florida40, and rivers in the Amazon 
region41. Such waters are usually highly colored."(Reuss et al.,1987). 

But, low DOC, clearwaters more acidic than pH 5.0 (exemplified by 2-8 mg 

DOC/L Adirondack waters cited by Reuss et al. (1987)) as well as the presence 

of ionic metals (such as aluminum) are considered by Reuss et al. (1987) to 

be the result of acidic (H2SO4) deposition. As we have already seen, 

however, there are numerous pH<5.0 clearwaters in both the Amazon and 

Florida. Table 21 shows that about half (12 of 25) of pH<5.0 NSWS Florida 

lakes have DOC concentrations less than or equal to those values cited by 

Reuss et al. (1987) as being clearwaters acidified by acidic (H2SO4) 

deposition (e.g., Adirondack lakes). Furthermore, Cl-, not SO4
2-, appears to 

be the dominant inorganic anion in the highly acidic Florida surface waters 

(Table 21). Additionally, despite relatively low rates of acidic (H2SO4) 

deposition, anion excess values (an indicator of ionic metals) in some 

Florida clearwaters is appreciable with lake 3B2-085 having the highest anion 

excess of the entire NSWS data set (Kanciruk et al., 1986; Table 21). 

Despite the inaccurate portrayal of highly acidic Florida NSWS lakes (Reuss 

et al., 1987), the importance of acidic deposition for these lakes can be 

controversial. One means by which this question may be resolved is by 

examination of surface waters of similar watersheds that exist in the absence 

of acidic deposition. 
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Table 21. Some Chemical Parameters of the 25 pH<5.0, found in the 150 Lakes 
of the "Florida" Sampling Region of the NSWS. 

NSWS Lake Closed pH ANC Color/DOC SO4 Cl M A A-M 
ID No. 

3B1-027 4.81 -23.1 20/ 0.94 82.2 112.3 195.4 197.1 1.7 
3B1-036 4.78 -28.4 5/ 1.35 76.4 145.0 239.6 225.0 -14.6 
3B1-057 4.34 -58.7 225/20.18 25.4 137.1 274.0 167.3 -106.7 
3B1-067 4.54 -37.3 300/36.91 67.7 349.8 674.1 436.1 -238.0 
3B1-073 4.57 -36.7 25/ 5.39 197.2 274.2 469.4 473.4 4.0 
3B1-077 4.66 -32.5 5/ 0.38 125.8 187.0 314.0 315.6 1.6 
3B1-090 4.41 -51.4 25/ 1.14 111.0 149.5 248.2 262.5 14.3 
3B1-105 4.45 -46.1 5/ 0.29 193.4 155.2 345.2 350.1 4.9 
3B1-106 4.72 -30.6 10/ 0.39 204.9 154.6 337.2 361.2 24.0 
3B1-140 4.87 -23.8 5/ 1.60 52.7 53.0 111.2 108.8 -2.4 
3B2-001 4.06 -116.9 200/35.10 3.1 161.6 291.6 166.1 -125.5 
3B2-003 4.33 -62.7 150/25.90 7.8 155.4 271.5 165.1 -106.4 
3B2-005 4.01 -127.2 200/34.02 3.0 172.9 315.4 177.0 -138.4 
3B2-006 4.05 -122.1 225/38.44 4.7 177.8 304.0 177.8 -126.2 
3B2-010 4.08 -113.4 200/40.56 6.2 196.6 375.4 204.4 -171.0 
3B2-011 3.96 -148.8 200/38.44 12.8 225.7 391.4 240.1 -151.3 
3B2-027 4.76 -23.3 50/ 3.99 226.9 332.9 568.4 565.9 -2.5 
3B2-085 4.42 -46.1 5/ 0.96 191.8 227.7 324.8 421.0 96.2 
3B2-087 3.81 -209.1 300/48.22 10.5 140.8 315.2 152.5 -162.7 
3B2-093 3.86 -178.9 225/43.02 4.1 202.3 366.0 207.7 -158.3 
3B2-100 4.04 -133.1 200/35.68 6.9 179.7 331.8 187.9 -143.9 
3B2-103 4.18 -87.0 175/31.08 3.8 147.5 276.8 152.5 -124.3 
3B3-002 4.64 -28.9 100/11.34 27.5 96.8 178.7 126.2 -52.5 
3B3-133 4.76 -26.2 5/ 3.93 32.1 53.9 103.2 87.7 -15.5 
3B3-176 4.84 -23.9 20/ 4.05 31.4 76.2 128.6 110.2 -18.4 

Data from Kanciruk et al., 1986. 
Units are ueq/L except for: pH; color (Platinum-cobalt units, PCU), and ; dissolved 
organic carbon (DOC = mg/L). 
A = SO42-+ HCO3-+ Cl-+ NO3-+ F-
M = H+ + Ca2+ + Mg2+ + Na+ + K+ + NH4+. 
A-M equals anion excess . 
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Podzolized soils and peats analogous to those predominating the Atlantic 

Coastal Plain of the eastern United States (Marbut, 1935; Joffe, 1949; 

Holzhey et al., 1975) also predominate the sandy coastal plain of eastern 

Australia (Bayley, 1964; Thompson, 1981; 1983; Thompson and Moore, 1984; 

Reeve et al., 1985). 

Australia has three lake districts: Tasmania, the western volcanic plains 

of Victoria, and the coastal plain, particularly Frazier Island (Bayley et  

al., 1975). The Victoria lake district does not represent "sensitive" 

watersheds because of base-rich, volcanic landscape. 

Frazier Island appears to be a reasonable control to compare with Florida 

NSWS surface waters because of their similarity in soils and climate. 

Frazier Island is reported to be the largest sand island in the world, 160 

km2, 61.8 mi2 (Bayley et al., 1975), and is located in Queensland. Surface 

waters, soils and geology of Frazier Island are essentially a continuum of 

the coastal plain from which it is but narrowly separated (Thompson, 1981; 

1983; Thompson and Moore, 1984; Reeve et al., 1985). It is located within 

several miles of Cooloola National Park-Noosa River Area. Frazier Island and 

the Cooloola-Noosa Area are subtropical and moist, lying 25° to 26° south 

latitude as compared to -30° north latitude for northern Florida. 

There is a general correlation between soil acidity and surface water 

acidity of the Australian coastal plain. Soils of the western coastal plain 

that abut the Pacific Ocean tend to be youngest, most disturbed and least 

acidic. Soils of the eastern drainages tend to be less disturbed, more 

mature and the most acidic (Thompson, 1981; 1983; Thompson and Moore, 1984; 

Reeve et al., 1985). Little and Roberts (1983) report that chemical analyses 

for 77 stream waters show that the mean pH of streams draining the eastern 
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portion of Frazier Island have a mean pH of 5.0 and the streams draining the 

western portion have a mean pH of 5.5. Similar relationships between soil 

development, disturbance, and acidity of surface waters also have been 

consistently reported for other areas of the Australian coastal plain 

(Jennings, 1957; Bayley, 1964; Bayley et al., 1975; Timms, 1982; Reeve et  

al., 1985). 

Little and Roberts (1983) developed an input/output budget which shows 

that less K and Ca is exported from Frazier Island watersheds than is being 

deposited in precipitation. They also report that more Na is being exported 

and that the precipitation input/stream output of Mg is about equal. 

However, incomplete chemical analysis, namely no determination of SO4
2- by 

either Little and Roberts (1983) or Bayley (1964; Table 22) does not enable 

development of estimated net ion exchange strong acid production. 

Nevertheless, cation/Cl- ratios indicate that concentrations of various 

cations are often less than estimated seaspray input (Table 22), which 

support the data of Little and Roberts (1983) and suggest strong acid 

production by natural ion exchange processes. 

Frazier Island has 30 main lakes that are named, and numerous (generally 

smaller) lakes that are not (Bayley et al., 1975). Little and Roberts (1983) 

report that the mean pH of 11 main lakes that they have analyzed is pH = 4.9. 

Two studies (Bayley, 1964; Bayley et al., 1975) report a variety of chemical 

and physical factors for 19 of the 30 major lakes (plus one minor, unnamed 

lake and two streams) of Frazier Island, including pH (Table 22). The 

largest lake, Lake Boemingen, has a surface area of 1 mi2 (which by itself is 

1.6% of the total area of Frazier Island) and a pH of 4.7 (Table 22). 

Overall, 79% of the main lakes of Frazier Island are pH<5.0 and 84% are 
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Table 22. Some Physical and Chemical Data for Lakes in Frazier Island, Australia. 

LAKE pH pH DOC OPTICAL TRANSPARENCY 
1963 1972 (mg/L) DENSITY (FT) 

Na K M Ca Cl 

Basin Lake 
Jennings Lake 
Lake Blrrabeen 
Unnamed Lake 
Lake Benaroon 
Lake Boemlngen 
Red Lagoon 
Lake Garry 
Yankee Jack Lake 
Lake McKenzle 
Bun Bun Creek 
Boomerang Lake S. 
Boomerang Lake N. 
Black Lagoon 
Woongoolbver Creek 
Lake Wabby 
Lake Coomboo 
Lake Bowarrady 
White Lake 
Hidden lake 
Deepwater Lake 
AB Lake 

5.0 
4.7 
5.0 
4.2 
5.0 
4.7 
4.3 
5.3 
6.0 
5.0 
4.1 
4.6 
4.8 
4.4 
5.0 
6.0 

5.00 
4.35 
4.80 
4.00 
4.65 

4.00 

5.90 
4.35 
4.65 
5.00 
4.25 
5.85 
4.50 

1.5 
13.0 
1.8 

30.6 
3.6 

16.3 
39.0 
14.6 
6.7 
0.9 
38.6 
10.0 
10.0 
30.3 
0.5 
1.5 

0.000 
0.155 
0.050 
0.41 
0.026 
0.195 
0.56 
0.085 
0.023 
0.000 
0.57 
0.118 
0.100 
0.31 
0.000 
0.000 

27 
5 

>23 
1 
12 

1 

4 
6 

17 
2 
9 

6 
18 
9 

340 
410 
461 
434 
430 
513 
487 
400 
561 
526 
370 
430 
430 
360 
752 
1143 

13 
10 
15 
8 
13 
13 
13 
10 
20 
15 
8 

15 
15 
20 
23 
31 

83 
74 

110 
80 
90 
110 
90 
74 
110 
110 
58 
74 
82 
74 

160 
230 

15 
20 
20 
15 
20 
20 
25 
20 
25 
20 
10 
30 
25 
25 
35 
35 

409 
426 
502 
480 
502 
564 
499 
409 
578 
536 
353 
451 
468 
372 
778 
1221 

Data from Bayley (1964) and Bavlev et al. (1975). 
mg/L DOC (dissolved organic carbon) - mg/L 02 consumed by permanganate oxidation. Permanganate oxidation is about 40% 
efficient in oxidation of DOC (Hutchinson, 1957, pp.879-880; Gjessing, 1976, pp.44), therefore, (02/C) X (0.4) - (32/12) 
X (0.4) _ 1. Therefore, 1 rag 02 is consumed by permanganate oxidation per mg of DOC. 
Optical density determined at a wavelength of 385 mu. An optical density of 0.000 is that of the distilled water blank 
used by Bayley (1964). Accordingly, a number of acidic, low DOC Frazier Island lakes have the transparency and color of 
pure water, i.e., they are absolutely colorless. 
Transparency - secchi disk transparency. 



pH<5.5 (Table 22). The existence of the few pH>5.5 lakes appears to be 

related to disturbance (Bayley, 1964; Bayley et al., 1975), as is also 

indicated by the relationships between landscape and surface-water chemistry 

at the nearby Cooloola-Noosa Area (Reeve et al., 1985). 

Reported concentrations of DOC for acidic waters of Frazier Island range 

from 0.5 mg/L to 39 mg/L (Table 22). Overall, for main lakes with both 

reported values of DOC and pH, 23% of the pH<5.0 lakes have concentrations of 

DOC that are less than 2 mg/L and 31% have concentrations of DOC low enough 

to be considered clearwaters by the criteria set forth by Reuss et al. (1987; 

Table 22). Highly acidic clearwaters appear to relatively common on Frazier 

Island, ranging from 18% to 25% of all main lakes based on the data in Table 

22. 

Water chemical analysis of lakes and streams of the Cooloola-Noosa Area 

(Table 23) are very similar to that of Frazier Island (Table 22). Highly 

acidic surface waters appear to be the rule rather than the exception. 

Reported concentrations of DOC for pH<5.0 Cooloola-Noosa waters range from 

0.7 to 34 mg/L (Table 23). Organic acids appear to play the major role in 

surface water acidity. However, there is a sizeable minority of acidic 

clearwaters apparently acidified by strong mineral acid (HC1) with little or 

no anion deficit (or even anion excess) and low concentrations of DOC (Table 

23). Ion exchange processes appear to play an important complementary role 

in acidification of even highly colored, organic-rich surface waters by the 

often near-complete removal of watershed-produced alkalinity through strong 

acid titration, thus, enabling organic acids to acidify water rather than 

titrate alkalinity. Often, concentrations of individual cations are less 

than estimated from inputs of seaspray alone (Table 23). If it were not for 
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Table 23. Water Chemistry Data For Cooloola-Noosa Surface Waters. 

SITE n PH 
Color DOC 
(PCU) (mg/L) Ca Mg Na K CI 

Non-Marine ANION 
SO4 SO4 DEFICIT 

Net 
H+ 

LAKES AND PONDS 
Lake Freshwater 
W41 
W42 
Lake Coolamera 
W44 
Brackish Lagoon 
Broutha Waterhole 
Lake Poona 
Lake Como 
SELECTED STREAMS 
Frankis Gulch 
* 
Searys Creek 
* 
Bubbling Springs 
** 
W4 
* 
Paleosol Creek 
* 

5 6.1 7 
1 4.2 185 
2 5.0 9 
5 5.0 71 
2 4.4 178 
1 5.0 131 
3 4.2 256 

4.6 54 
5.1 6 

9 5.2 4 
1 5.24 --
9 5.0 21 
1 4.84 --
9 4.9

4.89 --
9 4.5 77 
1 4.42 --
3 3.8 215 
1 3.98 --

1.60 

6.25 

0.73 

13.05 

34.34 

30 
60 
40 
20 
30 
30 
40 
10 
170 

23 
21 
16 
15 
135 
93 
18 
15 
20 
16 

170 
80 
140 
90 
80 
70 

180 
90 

400 

117 
122 
89 
100 
680 
470 
90 
106 
90 
92 

750 25 880 100 10 -1 -5 
370 10 460 <20 -27 103 -60 
540 30 680 80 30 -3 0 
420 9 490 <20 -30 46 -29 
330 15 380 20 -19 137 -55 
340 15 350 <20 -16 99 -85 
840 27 970 190 90 84 -17 
370 14 420 30 -13 61 -34 

1420 60 1830 300 112 32 -32 

541. 17 630 63 -2 7 -5 
548 17 674 60 -9 -30 26 
393 10 458 54 7 6 - 4 
413 10 485 48 -2 8 -5 
3150 87 3760 373 -13 -77 81 
1774 38 2310 177 -60 -107 112 
395 9 477 11 -38 58 -24 
430 10 488 <19 -31 89 -54 
410 <10 440 10 -35 238 -80 
430 5 480 29 -20 139 -34 

Data from Reeve et al. (1983). All units are Meq/L unless otherwise stated. 
* - samples analyzed at the Central Analytical Laboratory of the Illinois State Water Survey. Original data. 
** - Bubbling Springs was not located. Therefore, a nearby, spring-fed clearwater stream was sampled. 
Non-marine SO4 - surface water SO4 - SO4marine. SO4marine is estimated by the SO4/C1 equivalent ratio of seawater, 0.1026. 
Negative values for SO4marine indicate that net watershed retention of SO. exceeds watershed plus estimated marine input. 
M - H+ + NH4+ + Na+ + K+ + Ca2+ + Mg2+ except for * data which is M - H+ + Na+ + K+ + Ca2+ + Mg2+. 
A - cl- so42- + NO3-. 
Anion Deficit - M - A. Negative values are anion excesses. Detection limit values were arbitrarily used for values 
less than detection limit. 
H+ - NET ION EXCHANGE STRONG ACID PRODUCTION - BCINPUT - BCOUTPUT. Values of BCINPUT - BCOUTPUT> 0 are assumed to 
represent soil and plant ion exchange production of strong acid, principally HC1. Values of BCINPUT - BCOUTPUT<0 are 
assumed to represent net watershed production of BC-SO42-, BC-RCOO", and BC-HC03-, i.e., in other words, production of 
basic sulfates, humates, and alkalinity exceeds watershed conversion of seasalts to strong mineral acidity. This 
definition of NET ION EXCHANGE STRONG ACID PRODUCTION assumes that watershed retention of marine SO4 converts input of 
BC-SO4marine to BC-HCO3-. By this definition, because of watershed retention of marine SO4, there can be net watershed 
retention of base cations without net ion exchange production of strong acidity. 
BCINPUT - Total ionic concentration of base cations (Na+ + K+ + Ca2+ + Mg2+ in surface water is estimated to be 
equivalent to seaspray input assuming that all Cl- is due to seaspray and that all SO42- present in surface waters up to 
the SO4/C1 equivalent ratio of 0.1026 (that of seawater) is due atmospheric inputs of seaspray. 
BCOUTPUT - watershed output of base cations, defined as the total ionic concentration of base cations in surface waters. 

5 
1 

1 



the very high rates of sulfate reduction (which are assumed in Table 23 to 

represent alkalinity production and, thereby, conversion of marine salts to 

bicarbonate solutions) it appears that net ion exchange production of strong 

acid would tend to more resemble the higher levels seen in southwestern 

Tasmania (Table 19). The higher rates of sulfate reduction for the coastal 

plain may reflect higher inputs of marine sulfate and/or natural differences 

due to terrain and hydrology (flatter and mostly seepage lakes) and climate 

(warmer) relative to western Tasmania. 

Biological studies of Frazier Island waters, and other Australian coastal 

plain waters, show that their naturally acidic surface waters are much less 

hospitable to life than pH>5.5 waters of the coastal plain. These acidic 

waters have a relatively sparse fauna and flora typical of acid-stressed 

aquatic ecosystems (Bayley, 1964; Timms, 1982). Accordingly, acid-stressed 

aquatic ecosystems are not uniquely attributable to acidic deposition. 

Acid-stress in aquatic ecosystems is related to both H+ and aluminum, both 

of which act to disrupt ion and gas regulation of aquatic organisms (Braekke, 

1976; Neville, 1985; Peterson and Martin-Robichaud, 1986; Gagen and Sharpe, 

1987; Muniz et al., 1987). Concentration of H+ has already been determined. 

Therefore, the chemistry of the other acid-stress agent, aluminum, was 

determined by Mark Peden of the Illinois State Water Survey for two pH<5.0 

Cooloola-Noosa waters: Bubbling Springs, a pH 4.89 Clearwater, DOC = 0.73 

mg/L, and Seary's Creek, a pH 4.84 colored water, DOC = 6.25 mg/L (Table 23). 

The fractionation and determination of aluminum species procedure and 

definitions currently used in Phase II of the NSWS (U.S. EPA, 1987) were 

used. 

Essentially all of the dissolved aluminum (78 of the 80 ug/L) in the 
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naturally acidic clearwater is TOXIC ALUMINUM, inorganic monomeric aluminum 

which is believed to manifest acute toxic responses in fish (U.S. EPA, 1987). 

Even though pH values were essentially identical for both waters (pH 4.84 and 

4.89), the acidic colored water had much more total aluminum in solution, 307 

ug/L. However, the acidic colored water has nearly as much TOXIC ALUMINUM, 

55 ug/L, as the acidic Clearwater, 78 ug/L. Both colored and clear, highly 

acidic waters have very similar concentrations of H+ and TOXIC ALUMINUM. 

Accordingly, both waters are expected to similarly toxic to aquatic 

ecosystems in respect to acid-stress. 

In conclusion, these Australian water chemistry data support the data of 

Reeve and Fergus (1983) that podzol soils can naturally create highly acidic, 

clearwaters containing ionic aluminum. It appears that both aquatic stress 

agents, H+ and ionic aluminum, are natural products of watersheds and are 

responsible for the common occurrence of acid-stressed aquatic ecosystems in 

areas of coastal Australia that do not receive acidic H2SO4 deposition. 

Australian water chemistry and biology data do not support acidification 

theory. However, these data support the alternative hypotheses of 

acidification that acidification by acid rain is superimposed upon natural 

processes of acidification. These Australian data support the data of (Dahl, 

1927; Rosenqvist, 1978; 1980; Jones et al., 1983; Retzsch et al., 1983; Krug 

et al., 1985; Lefohn and Klock, 1985; Rush et al., 1985) that highly acidic, 

toxic waters can be the natural result of watershed acidification processes. 

Waters with pH>5.5 appear to be the exception rather than the rule on the 

Australian coastal plain. Non-acidic surface waters on the Australian 

coastal plain appear to be related to watershed disturbance. To the best of 

my knowledge, the percentages of highly acidic clear and colored on the 
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Australian coastal plain exceed any reported for "sensitive" watersheds in 

regions receiving acidic deposition. 

Overall, data for the Amazon and the Australia coastal plain show that 

non-glaciated "sensitive" watersheds not receiving acidic deposition have 

proportions of highly acidic clear and colored surface waters equal to and 

exceeding that reported for "sensitive" watersheds receiving acidic 

deposition. Such naturally acidic surface waters have little living in them 

and are characterized by a sparse fauna and flora typical of acid-stressed 

aquatic ecosystems. Therefore, acid-stressed aquatic ecosystems are not 

uniquely attributable to acidic deposition. These data strongly suggest that 

reports of recent severe and widespread acidification of surface waters are 

more perceptual than real. 
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CHAPTER 4 

CONCLUSIONS 

There is widespread belief that acidic deposition has caused lakes and 

streams in eastern North America to became acidic and lose their fish 

populations. In response to public and political concern, research on 

aquatic effects was initiated and supported by a number of public and private 

sponsors. 

In the United States, the National Acid Precipitation Assessment Program 

(NAPAP) coordinates the Federal Government's efforts to improve the 

understanding of the causes and effects of acidic deposition, including an 

assessment of the role of acidic deposition in surface-water acidification. 

As Congress continues to deliberate on the issues of acidic deposition, and 

as NAPAP moves towards the delivery of its Final Assessment in 1990, it is 

important that decision-makers receive scientifically-sound information. Due 

consideration must be given to the many complex watershed processes that 

influence the chemistry of surface waters. Such information must be credible 

and arrived at through comprehensive and critical evaluation. 

This report documents and assesses the evolution and status of the 

scientific hypotheses that have helped to guide the research of surface-water 

acidification. One of these hypotheses - most waters more acidic than 

predicted on the basis of carbonate chemistry are the result of "acid rain"-

has been elevated to the status of theory by its widespread acceptance. 

Despite the long-held belief that the aquatic effects of acidic deposition 

is the best understood effects area, this area remains very controversial. 
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While the public's perception that acidification of surface waters is 

associated with acidic deposition resulting from anthropogenic emissions of 

sulfur dioxide and nitrogen dioxide, it is possible that natural biological 

and chemical processes within watersheds may actually be responsible for much 

of the acidity. 

Most reports of recent widespread acidification of surface waters are not 

based upon direct observation. These reports are the necessary conclusion of 

the fundamental premise of the accepted theory: most waters currently more 

acidic than predicted on the basis of carbonate chemistry have been recently 

acidified by H2SO4 deposition. It is believed that, in the absence of acidic 

deposition, water chemistry of "sensitive" watersheds is geologically 

controlled - natural water chemistry of sensitive watersheds is the product 

of carbonic acid (H2CO3) weathering of mineral bases (e.g., Ca 2 +), which 

produces alkalinity (HCO3-). 

Alternative hypotheses of acidification predict that most currently acidic 

surface waters were acidic prior to acidic deposition. This is because the 

water chemistry of most currently acidic lakes and streams is not 

geologically controlled, nor was it geologically controlled by weathering of 

mineral bases prior to acidic deposition. Currently acidic surface waters 

receive disproportionately large amounts of their water from highly acidic, 

organic-rich soils and peats and/or acidophilic ecosystems that mantle 

"sensitive" watersheds. Such near-surface runoff is not geologically 

controlled by weathering of mineral bases. Its chemistry is significantly 

influenced by organic acids and biologically-produced acids. The alternative 

hypotheses of acidification predict that acidic deposition/watershed 

interactions for such landscape elements includes the interaction of acid-
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with-acid rather than just the interaction of acid-with-mineral-bases. The 

alternative hypotheses of acidification also predict that the principal 

effect of acidic deposition on acidic surface waters has been the qualitative 

shift in the nature of acidity found in today's lakes and streams (e.g., 

from organic acids to sulfuric acid). It is expected that the interaction of 

"acid rain" with organic acids can be quite different from the interaction of 

"acid rain" with mineral bases as described by the accepted acidification 

theory. 

Paleolimnology offers an independent means by which to test acidification 

theory and the alternative hypotheses of acidification. Paleolimnology can 

provide a direct answer to the question - in the pre-industrial era, were 

currently acidic (pH<5.5) lakes HCO3- solutions of mineral bases having pH 

values greater than 5.5, as predicted by the acidification theory, or were 

most currently acidic lakes naturally acidic (pH,5.5) prior to acidic 

deposition, as predicted by the alternative hypotheses of acidification? 

Published paleolimnological investigations for 29 currently acidic 

(pH<5.5) surface waters in southern Norway and "sensitive" areas of the 

northeastern United States are reviewed - two areas for which numerous 

studies have claimed widespread and profound recent acidification of surface 

waters. Two of these 29 acidic lakes are also the focus of especially 

intensive, long-term acidification research which has been used to support 

acidification theory - Lake Langtjern in southern Norway, and Woods Lake in 

the Adirondack Mountains of New York. 

Acidification theory and reports of recent widespread acidification for 

the Northeast and southern Norway are not well supported by paleolimnological 

studies. Paleolimnology indicates that approximately 90% of currently acidic 
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(pH<5.5) surface waters examined in both regions were naturally acidic 

(pH<5.5) in the pre-industrial era. A National Academy of Science review 

concluded that the number of lakes with a pre-1800 diatom-inferred pH value 

less than 5.5 shows that acidic lakes were relatively common in the 

Adirondack Mountains and New England prior to the Industrial Revolution, as 

has also been shown by a review of paleolimnology for southern Norway. 

Woods Lake and Lake Langtjern appear representative of the disagreement 

between paleolimnology and the accepted acidification theory. It has been 

concluded from application of acidification theory to current water chemistry 

that both lakes are highly acidic as the result of "acid rain". 

Nevertheless, paleolimnolgy shows that Lake Langtern (pH-4.7) has been acidic 

for at least the last 800 years. Over the last 800 years, Lake Langtjern was 

reported to be most acidic, pH-4.3, around 1200 A.D. Similarly, Woods Lake 

(pH-5) had a pre-industrial pH of -5. 

The effects of land-use change and other types of watershed disturbance on 

acidification of surface waters is reported for many of the lakes examined, 

including Woods Lake, and other Adirondack, New England, and Norwegian 

lakes. It has been reported that it is difficult to find lakes that do not 

show the effects of watershed disturbance. Acidification of surface waters 

by acidic deposition appears to be superimposed upon natural processes of 

acidification and watershed disturbance. 

Lakes that appear to have been bicarbonate waters which could have became 

acidified by acidic deposition appear to be the exception rather than the 

rule. Even for these lakes, change is not as great as expected: apparently 

due to both an acidic-deposition-induced shift from a more organic-rich water 

to a more organic-poor water, and; increased leaching of mineral bases (F-
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factor). Paleolimnology suggests that F is actually much larger than values 

enpirically-derived from contemporary water chemistry data. Thus, less 

acidic deposition appears to be reaching "sensitive" surface waters than is 

commonly believed (i.e., more SO4
2- is entering the receiving water as basic 

sulfate (e.g., CaSO4) than is commonly believed). 

In conclusion, paleolimnology indicates that the principal influence of 

acidic deposition on currently acidic (pH<5.5) Norwegian and Northeast lakes 

appears not to be a marked acidification but rather a qualitative shift in 

the nature of acidity from organic acid water to sulfuric acid water. 

Paleolimnology indicates that many currently acidic lakes were more organic 

rich in the pre-industrial era - although at least one currently acidic lake 

was an highly acidic Clearwater highly acidified by strong acidity naturally 

produced by plant ion exchange. 

Paleolimnological studies suggest that the principal detrimental aquatic 

effect of acidic deposition for currently acidic surface waters may be the 

loss of humic substances in naturally-acidic surface waters and a concomitant 

increase in the proportion of ionic aluminum. 

In conclusion, paleolimnology studies for the Northeast and southern 

Norway do not support the basic premise of acidification theory and two of 

its implicit theoretical assumptions: 

1.) - current concentrations of organic acids represent pre-
industrial concentrations, and; 

2.) - current watershed conditions represent pre-industrial 
conditions (i.e., no land-use change or other types of 
watershed disturbance and change have occurred). 

"Sensitive" watersheds containing "acidified" surface waters tend to 

receive disproportionate amounts of near-surface runoff from highly acidic, 

organic-rich podzol soils and associated peats and acidophilic ecosystems. 
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There are a number of locations in the world where such "sensitive", 

recently-glaciated and non-glaciated watersheds occur in the absence of man-

made acidic deposition. Such watersheds can be used as controls to compare 

with "impacted" "sensitive" watersheds to independently test of the 

fundamental premises of accepted theory and the alternative hypotheses of 

acidification (and results of paleolimnology): 

1.) - Acidification theory - most currently acidic surface 
waters are acidic because of acidic deposition. 

2.) - Alternative hypotheses of acidification (and results of 
paleolimnology) - acidification of surface waters by acidic 
deposition is superimposed upon natural processes of 
acidification. Most currently acidic surface waters were 
acidic in pre-industrial times. The principal effect of 
acidic deposition on currently acidic surface waters has been 
a qualitative shift in the nature of acidity. 

The highly acidic, humic-rich landscapes typical of many "sensitive" 

watersheds in eastern North America and northern Europe are the result of the 

soil-forming process known as podzolization. The development of highly 

acidic, organic-rich podzol soils and associated peaty soils is most favored 

by moist, cool and temperate climates of the type encountered in 

recently-glaciated terrains such as southeast Canada, the Adirondack 

Mountains, New England, parts of the upper Midwest, southern Scandinavia, and 

maritime portions of northern mainland Europe. The intensity of the podzol 

soil-forming process diminishes as climate becomes progressively colder (to 

the north), drier (to the west in North America and east and south in 

Europe), and warmer to the south in both Europe and North America. Acidic 

deposition gradients also tend to decrease toward the cold Arctic as well as 

dry areas apparently because climate also influences human activity and 

industrial distribution (relatively little in the subarctic) and well as 

atmospheric processes (little precipitation and much alkaline dust in the 
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drier areas). Thus, soil and atmospheric acidity gradients are correlated 

because both are fundamentally linked to climate in eastern North America and 

northern Europe. Unfortunately, such correlations have been reported as 

showing that "acid rain" is the cause of highly acidic soils and waters. 

Highly acidic podzolized soils and associated peats, representative of 

recently-glaciated "sensitive" watersheds of eastern North America and 

southern Scandinavia exist in the southern hemisphere in the absence of man-

made acidic deposition. This report examines such pristine, "sensitive" 

control watersheds and surface waters of recently-glaciated, moist and cool-

to-temperate climate regions of Australia and New Zealand. 

Acidic deposition has also been credited with acidification of surface 

waters in "sensitive" non-glaciated regions with highly acidic soils. 

Podzolization also occurs on some non-glaciated terrains. Quartz sands and 

comparatively stable land surfaces enable podzolization to be pronounced in 

moist warm, and even moist tropical climates. An example of this are the 

podzolized soils and associated highly acidic peats of the Atlantic Coastal 

Plain of the eastern United States, which extend into the moist subtropical 

climate of Florida. Podzol soils and associated highly acidic peats are also 

widespread in the Amazon Basin and are developed from sandy deposits derived 

from granites and gneisses (base-poor, silica-rich rocks). Podzolized soils 

and peats analogous to those of the Atlantic Coastal Plain predominate on the 

sandy coastal deposits of Pacific Coastal Plain of eastern Australia, going 

from relatively moist and temperate Tasmania through the moist subtropical 

and tropical climates of Queensland. This report examines such pristine, 

"sensitive", non-glaciated control watersheds and surface waters of the 

Pacific Coastal Plain of eastern Australian and the Amazon. 
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The first set of pristine, "sensitive" control watersheds for recently-

glaciated terrain is located in Tasmania. There are corresponding 

west-to-east climatic, soil, and vegetational gradients across Tasmania. 

Highly acidic podzol soils and peats, and associated acidophilic vegetation 

occur in the moist and recently-glaciated terrain of the west. The 

alternative hypotheses of acidification predict that acidic surface waters 

will co-occur only with the highly acidic, organic-rich soils and peats of 

the west. Thus, a surface water acidity gradient paralleling the soil 

acidity gradient is predicted. 

Overall, 10% of 170 surveyed Tasmanian surface waters have pH values less 

than 5.0. In the glaciated, moist, and mountainous southwest, 37% of the 

sampled surface waters are pH<5.5, and 28% are pH<5.0. In the somewhat drier 

northwest, 9.5% are pH<5.0. There are no pH<5.0 surface waters reported in 

the east. The flora and fauna of highly acidic Tasmanian waters are 

diagnostic of acid-stressed aquatic ecosystems. 

All pH<5.0 Tasmanian waters surveyed are humic-rich. Highly acidic 

Tasmanian surface waters appear to be generally acidified by a mixture of 

naturally-occurring weak (humic) acids and, secondarily, by strong acids 

produced by soil/plant ion exchange. In most pH<5.0 Tasmanian watersheds, 

ion exchange processes appear to play an important complementary role in 

acidification. Ion exchange appears to often result in the near-complete or 

complete removal of watershed-produced alkalinity through strong acid 

titration. Thus, ion exchange processes enable organic acids to have the 

apparently primary role in acidification of surface waters by removing most, 

or all, alkalinity so that organic acids can impart free H+ to the water. 

The second set of pristine, "sensitive" control watersheds for recently-
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glaciated terrain is located in New Zealand. Recently-glaciated terrain 

having highly acidic podzol soils and associated peats typical of many 

"sensitive" recently-glaciated watersheds of eastern North America and 

northern Europe is the west coast of the South Island of New Zealand. The 

precipitation chemistry pH of this area is remarkably clean (i.e., 5.6-5.7), 

similar to that at Cape Grim in Tasmania. 

Highly acidic surface waters occur in considerable numbers under forests 

of the west coast in association with the highly acidic podzols developed on 

the granites and glacial tills west of the Alpine Fault of the South Island 

of New Zealand. pH values as acidic as 3.3 have been reported for these 

Westland waters, ostensibly due to humic acids. 

Analysis of Westland lakes and streams suggests that highly acidic 

(pH<5.0) surface waters may be the rule rather than the exception in these 

forested podzol soil watersheds. Like Tasmania, acidification of these 

waters by organic acids appears to be enhanced by soil and plant ion 

exchange. 

The first set of pristine "sensitive" control watersheds for non-glaciated 

terrain is located in the Amazon Basin. Highly acidic (pH<5.0) clear and 

colored surface waters exist in the Amazon Basin in association with highly 

acidic soils. Review of the scientific literature has found over 100 pH<5.0 

stream survey observations of clearwater streams of remarkable transparency. 

Natives call the highly acidic waters of the Amazon "rivers of hunger" 

because so little lives in them. The largest of these pH-4 rivers is the Rio 

Negro, which is about the size of the Mississippi River. It appears that 

highly acidic waters are the rule rather than the exception in the Rio Negro 

drainage basin, which is equivalent in size to a substantial portion of the 
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United States. 

Highly acidic surface waters also appear to be the rule rather than the 

exception for studied areas of the Pacific Coastal Plain of eastern 

Australia - the second set of, pristine "sensitive" watersheds for non-

glaciated terrain. The existence of the few pH>5.5 lakes and streams appears 

to be related to watershed disturbance which is, in turn, related to soil 

acidity. There is a general correlation between soil acidity and surface-

water acidity for the Australian Coastal Plain. Non-acidic surface waters 

tend to be in disturbed watersheds. 

Surveys show that, overall, 84% of the examined larger, main, Coastal 

Plain lakes are pH<5.5, and 79% pH<5.0. Reported concentrations of DOC for 

highly acidic waters range from 0.5 mg/L to 39 mg/L. Overall, for main lakes 

with both reported values of DOC and pH, 18% are pH<5.0 lakes having 

concentrations of DOC that are less than 2 mg/L and 25% are pH<5.0 lakes 

having concentrations of DOC low enough to be considered clearwaters by the 

criteria set forth by Reuss et al. (1987). Like Tasmania and New Zealand, 

most highly acidic surface waters appear to be acidified by a mix of weak 

organic acids and, secondarily, by strong acid (apparently HC1) produced by 

soil and plant processes (apparently from seasalt). However, there is a 

sizeable minority of acidic clearwaters acidified by strong mineral acid 

(apparently HC1) with little or no anion deficit (or even anion excess) and 

low concentrations of DOC. Anion excesses are indicative of ionic metals, 

such as ionic aluminum, that are often not included in ion balance 

calculations. 

Biological studies of Australian Coastal Plain waters, show that these 

naturally acidic surface waters are much less hospitable to life than pH>5.5 
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waters of the region. These acidic Australian waters have a relatively 

sparse fauna and flora typical of acid-stressed aquatic ecosystems. 

Accordingly, acid-stressed aquatic ecosystems are not uniquely attributable 

to acidic deposition. 

Acid-stress in aquatic ecosystems is related to both H+ and aluminum, both 

of which act to disrupt ion and gas regulation of aquatic organisms. 

Therefore, the chemistry of the other acid-stress agent, aluminum, was 

determined for some highly acidic Australian waters using the fractionation 

and aluminum speciation procedure, and definitions currently used in Phase II 

of the NSWS (U.S. EPA, 1987). Toxic aluminum was found in both colored and 

clear, pH<5.0 waters, with essentially all solution aluminum in Clearwater 

being toxic aluminum. 

In conclusion, these Australian water chemistry data support the data of 

Australian scientists (Reeve and Fergus, 1983) who have shown that podzol 

soils can naturally create highly acidic, clearwaters containing ionic 

aluminum. It appears that both aquatic stress agents, H+ and ionic aluminum, 

are natural products of watersheds and are responsible for the common 

occurrence of acid-stresses aquatic ecosystems in areas of coastal Australia 

that do not receive acidic H2SO4 deposition. 

Overall, it appears that recently-glaciated and non-glaciated "sensitive" 

control watersheds not receiving acidic deposition can have proportions of 

highly acidic clear and colored surface waters equal to, and often exceeding 

that reported for any region of "sensitive" watersheds receiving acidic 

deposition. Such naturally acidic surface waters have little living in them 

and are characterized by a sparse fauna and flora typical of acid-stressed 

aquatic ecosystems. Therefore, acid-stressed aquatic ecosystems are not 
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uniquely attributable to acidic deposition. These data strongly suggest that 

reports of recent severe and widespread acidification of surface waters are 

more perceptual than real. 

The survey of "sensitive" control watersheds and their surface waters 

supports the following predictions of the alternative hypotheses of 

acidification: 

1.) - The proportions of acidic surface waters in control "sensitive" 
watersheds and the existence of corresponding natural soil and 
water acidity gradients supports the hypothesis that acidic 
surface waters naturally co-occur with highly acidic, organic-rich 
soils and peats typical of many "sensitive" watersheds of eastern 
North America and northern Europe. Natural soil acidity gradients 
can result in natural surface water acidity gradients. 

2.) - the qualitative and quantitative nature of acidity in control 
"sensitive" watersheds supports the hypothesis (and results of 
paleolimnology) that acidification of surface waters by acidic 
deposition is superimposed upon natural processes of 
acidification and that most currently acidic surface waters were 
acidic in pre-industrial times. The principal effect of acidic 
deposition on currently acidic surface waters is a qualitative 
shift in the nature of acidity resulting in the transformation of 
waters naturally acidified principally by weak organic acids to 
waters acidified principally by strong sulfuric acid with 
relatively little change in pH. Also, acidic-deposition-induced 
increased leaching of mineral base cations (Ca2+ + Mg2+ + K+ + 
Na+) can mask the natural production of strong acid by soil and 
plant ion exchange that may co-occur with organic acidity in 
naturally-acidified waters. 

A Norwegian scientist, Rosenqvist, was the first to offer alternative 

hypotheses of acidification: highly acidic soils can independently result in 

highly acidic surface waters; acidification by "acid rain" is superimposed 

upon natural acidification processes, and; recovery from watershed 

disturbances results in increasing soil acidity which can result in 

increasingly more acidic near-surface runoff. Most currently acidic lakes 

and streams receive disproportionately large amounts of their water as near-

surface runoff from highly acidic, organic-rich soils and peats and 
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acidophilic ecosystems that are most influenced by disturbance (which 

results in loss of soil acidity) and recovery (which results in re-

acidification) . 

Rosenqvist's changing land-use hypothesis is not only supported by the 

previously discussed paleolimnology and Australian watershed studies, but it 

is also supported by history. Both the creation of regional acidified 

precipitation and regional changes in land use are fundamentally linked by an 

underlying unifying factor - technological and societal change known as the 

demographic transition. The demographic transition is responsible for the 

quantitative increase in fossil fuel combustion and the qualitative changes 

in the types of fuels used and the nature of emissions from them. It is also 

responsible for fundamental changes in the way society perceives and uses the 

land. Thus, the effects of "acid rain" and land-use change are fundamentally 

linked and cannot be easily separated. 

Changes in land use appear to be pervasive in areas where it is said that 

acidic deposition is responsible for surface-^water acidification. Land-use 

and forest management studies show that the most devastating effects of 

abusive land use and concomitant greatest recovery have occurred in precisely 

those landscape elements where recovery naturally results in greatest soil 

acidification. Extensive review of the literature shows that essentially all 

land in the northeastern United States has been cut and/or burned within the 

last century. For example, the area of the Northeast with the least areal 

disturbance is New York State. Originally, New York was essentially 

completely forested. By the 1920's, 99.5% of its forests were cut and/or 

burned. It is difficult to conceive that many Northeast watersheds were not 

influenced by human disturbance and land-use change and that currently 
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"undisturbed" watersheds are not, in fact, recovering from earlier 

disturbance. 

The alternative hypotheses of acidification are also supported by numerous 

laboratory and field studies reviewed in Chapter 3. 

Laboratory and field experiments show that snowmelt chemistry is 

principally controlled by soil acidity. For example, the acidity of runoff 

from pH 4.3 or 7.0 snowpack is virtually identical. Studies show that 

snowmelt pH consistently resembles soil pH and is but little influenced by 

snowpack acidity. Similar results are consistently obtained from laboratory 

and field experiments for simulated acid rainfall - runoff pH correlates to 

soil pH and is but little influenced by the pH of "rain". Thus, it follows 

that soil acidification induced by ecosystem recovery from disturbance can 

result in acidification of "sensitive" watersheds. 

Laboratory and field studies indicate that the principal effect of acidic 

deposition is a qualitative shift in the nature of acidity resulting in the 

transformation of waters naturally acidified principally by weak organic 

acids to waters acidified principally by strong sulfuric acid with relatively 

little change in pH. Also, acidic-deposition-induced increased leaching of 

mineral base cations (Ca2+ + Mg2+ + K+ + Na+) can mask the natural production 

of strong acid by soil and plant ion exchange that may co-occur with organic 

acidity in naturally-acidified waters. laboratory and field studies indicate 

that the values of F for "sensitive" watersheds are much larger than the 

commonly-accepted values empirically-derived from water survey data. 

Nevertheless, the conclusion necessitated by the fundamental premise of 

acidification theory (waters more acidic than predicted from carbonate 

chemistry are "acidified" by "acid rain") is favored over the above-described 

4-14 



results of laboratory and field studies, paleolimnology, historical fact, and 

well-known principles and facts of related biological and earth sciences. 

NAPAP is responsible for coordinating the Federal Government's efforts to 

improve the understanding of the causes and effects of acidic deposition. 

NAPAP is mandated to provide scientifically-sound information needed by the 

Congress and others in order to accurately assess the costs and benefits of 

emission controls and mitigation efforts. Establishing the role of acidic 

deposition in surface-water acidification is necessary in order to evaluate 

the benefits of emissions control. 

NAPAP has stated that its assessment of the aquatic effects of acidic 

deposition should provide useful information for policy development. NAPAP's 

assessment: 

o Must be credible, both to scientific reviewers and the users 
of the assessment information; 

o Must be comprehensive, by examining the entire range of 
plausible causes, effects and control approaches; 

o Must be critical, endorsing hypotheses that are supported by 
scientific research and rejecting unsubstantiated hypotheses. 

The information contained within the pages that follow illustrate apparent 

inconsistencies that tend to point to weaknesses in acidification theory. 

Some important factors and processes have not been adequately considered in 

NAPAP's assessment plans. 

If NAPAP is to produce a credible assessment, it will be necessary for 

NAPAP to be perform a more comprehensive and critical evaluation of the 

existing evidence than has occurred previously. It is recommended that NAPAP 

consider all relevant factors and processes that are known to contribute to 

surface-water acidity and those that can buffer against acidic deposition. 

If NAPAP is unable to quantify these factors and processes, NAPAP may 
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overestimate the possible damaging effects of acidic deposition on surface 

waters. 

Based on a review of the literature and personal research experiences, it 

is recommended that some of the factors, processes, and facts that need to be 

considered more comprehensively and critically in order to establish a sound 

scientific basis for conducting an assessment include the following: 

o The H+ content of watersheds themselves, as well as H+ from 
atmospheric deposition; 

o The importance of elements, such as hydrogen, in naturally-
occurring, non-ionic compounds that can be converted to 
acids; 

o The inclusion of erosional and depositional watershed 
processes in watershed input/output budgets; 

o The acidification of waters by the production of strong 
mineral acids by plant and soil ion exchange; 

o The climatically-driven gradients in natural soil acidity; 

o The existence of highly acidic clearwaters and soils in the 
absence of acidic deposition; 

o The existence of naturally-acidic clearwaters containing 
ionic aluminum; 

o The finding that acidic lakes were relatively common in pre-
industrial times in the northeastern United States and 
southern Norway; 

o The finding that some documented acidity-related fisheries 
problems date back to at least the early part of this 
century; 

o The acidification/buffering nature of organic acids; 

o The replacement of humic acids by strong mineral acids in 
water with little or no measurable change in pH; 

o The production of strong mineral acids from flocculated weak 
organic acids in soils and surface waters; 

o The observation that principles of acid-with-acid 
interaction, as well as those of acid-with-base must be 
accounted for in the study of "sensitive" watersheds; 
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o The production of strong acids from neutral salts; 

o The enormous acid neutralizing capacity of even granitic 
watersheds, and; 

o The natural re-acidification of watersheds as they recover 
from forest clearing and damage, or natural processes of 
disturbance. 

Evidence continues to mount that natural biological and soil processes 

play an important role in defining surface water chemistry. There is no 

question that Man may be impacting surface waters by his emissions of sulfur 

dioxide and nitrogen dioxide. However, the way in which he chooses to use 

his land can also play an important role. If effective measures to control 

acidic surface waters are to be instituted, then a better understanding of 

the interaction of acidic deposition, natural acidification/buffering, and 

land use and other watershed disturbances is required. 

It is hoped that the information contained in this report will provide 

some of the insight that is needed to better understand the uncertainties 

that are associated with the existing, accepted cause-and-effect acidic 

deposition theory. It is only through the serious consideration of some of 

the alternative hypotheses described in this report that levels of 

uncertainties can be better quantified. 
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