
UILU-WRC-86-200 
RESEARCH REPORT 200 SECONDARY CIRCULATION IN NATURAL STREAMS 

BY MISGANAW DEMISSIE 
TA-WEI SOONG 
NANI G. BHOWMIK 
WILLIAM P. FITZPATRICK 
ILLINOIS STATE WATER SURVEY 

W. HALL C. MAXWELL 
DEPARTMENT OF CIVIL ENGINEERING 

UNIVERSITY OF ILLINOIS AT 
URBANA-CHAMPAIGN 

UNIVERSITY OF ILLINOIS 
AT URBANA-CHAMPAIGN 
WATER RESOURCES 
CENTER 

JULY 1986 

PROJECT NO. G904-02 
GRANT NUMBER INT 14-08-0001-G904 

PROJECT COMPLETION REPORT 
TO 

U.S. DEPARTMENT OF THE INTERIOR 
WASHINGTON, D.C. 20240 



WRC RESEARCH REPORT NO. 200 

SECONDARY CIRCULATION IN NATURAL STREAMS 

by 
Misganaw Demissie, Ta-Wei Soong, 

Nani G. Bhowmik, and William P. Fitzpatrick 
Surface Water Section 

Illinois State Water Survey 
Champaign, Illinois 61820 

and 
W. Hall C. Maxwell 

Department of Civil Engineering 
University of Illinois at Urbana-Champaign 

Urbana, Illinois 61801 

The research on which this report is based was financed in 
part by the U.S. Department of the Interior, as authorized 
by the Water Research and Development Act of 1984. (P.L. 
98-242). 

Project Completion Report 
Project No. G 904-02 

Grant Number Int 14-08-0001-G904 

July 1986 

University of Illinois 
Water Resources Center 
Urbana, Illinois 61801 

Contents of this publication do not necessarily reflect 
the views and policies of the U.S. Department of the 
Interior, nor does mention of trade names or commercial 
products constitute their endorsement by the U.S. 
Government. 



SECONDARY CIRCULATION IN NATURAL STREAMS 

ABSTRACT 

Secondary circulation which is sometimes referred to as secondary 
flow, secondary current or transverse current is an important phenomenon in 
natural streams and plays an important role in many natural processes in 
streams such as stream channel meander, bank erosion, bed scour, 
resuspension, and movement of sediment. Secondary circulation is that 
component of flow which is not in the main flow direction and is small as 
compared to the main flow velocity. A computerized data collection system 
for secondary circulation data acquisition in natural streams was developed 
and utilized in the field. The system includes an electromagnetic current 
meter, a micro-computer, an interface between the computer and the current 
meter, and a specially designed supporting structure. Secondary 
circulation data was collected in the Sangamon River near Mahomet, 
Illinois, utilizing the data collection system. A mathematical model for 
secondary circulation based on an existing model has been developed and 
tested against the data collected in the field. Model results generally 
reproduce similar secondary circulation patterns as observed from the field 
data but over-estimate the magnitudes of the velocities. 

Demissie, M., Soong, T.W., Bhowmik, N.G., Fitzpatrick, W.P., and Maxwell, 
W. Hall C. 

Secondary Circulation in Natural Streams Project Completion Report to the 
University of Illinois, Water Resources Center, Urbana, IL, July 1986, 89 
pp. plus appendices. 

KEYWORDS - computer; data acquisition; model; secondary circulation; 
secondary current; streams; transverse current; velocity 
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INTRODUCTION 

The main component of flow in any stream, river, or canal might be 
expected to be parallel to the channel bed in the downstream direction. 
However, because of a variety of reasons including the resistance flow due to 
stream banks, a rotational or cellular movement of flow will occur in the main 
channel. This persistent flow component that is not in the main flow 
direction has been termed secondary circulation, secondary flow, secondary 
current, or transverse current. This type of flow, which is always present in 
any open channel flow, is completely different from induced flow circulations 
in some pockets found on the side of open channels. 

The direction of secondary flow is strongly associated with the primary 
velocity distribution. Areas of high velocities near the bed or bank are 
associated with outward secondary flow, while areas of low velocities are 
associated with inward secondary flow. This phenomenon has significant 
implications with respect to bank erosion and bed scour, since areas of high 
velocities are much more susceptible to erosion and scour. 

Considerable agreement exists among researchers that secondary 
circulation is an important phenomenon in natural rivers and is partially 
responsible for the development of meander patterns, bank erosion, bed scour, 
resuspension and movement of sediment, and an increase in boundary shear and 
flow resistance (24, 26, 29, 37, 38, 39, 41, 44, 45, 47, 53, 54). For 
example, the existence of strong secondary circulation near a certain region 
close to the bank with a component of velocity directed toward the bank will 
indicate the location of potential bank erosion areas. 

Objectives 
The main objectives of this proposed research were: 
1) To determine the magnitude and nature of secondary circulation in 

natural streams by direct measurement in the field. 
2) To develop and verify a mathematical model for predicting secondary 

circulation in natural streams. 
3) To determine the effects of secondary circulation on bank erosion by 

quantifying its effects on velocity and shear stress distribution, 
and on dispersion and transport of sediment in natural streams. 
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REVIEW OF LITERATURE 

It is important to have a clear understanding of what the term secondary 
circulation means before proceeding further. When researchers talk about 
secondary flow, they are actually describing the three-dimensional nature of 
open channel flow. Ciray (18) defined the secondary velocity as follows: 

When the magnitude of the vector composed by any two 
components of the local velocity vector in a three 
dimensional flow is small compared with the magnitude of the 
third component, the latter forms the main flow whereas the 
remaining two form the secondary. 

Although this definition appears to be adequate to some extent, it lacks 
completeness. Perhaps more attention should be paid to the individual 
components of velocity than to the resultant of two vector quantities. In 
this line of thought, Chiu et al. (13) defined the secondary flow as the two 
components of flow which are in the transverse direction not coincident with 
the primary flow. Because of the presence of snags, obstructions, trees, 
etc., on the bed of a river, the velocity vector in a direction other than the 
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primary direction of the flow may be of greater magnitude than the primary 
velocity vector. Considering all these factors, Bhowmik (7) proposed the 
following definition: 

In an open channel flow, any persistent component of velocity 
which is not parallel to or tangent to the center line of the 
channel and also not parallel to and in the same general 
downstream direction of the overall bed slope should be termed 
as secondary velocity. 

Secondary current will be taken as the flow which is parallel to and 
also in the same direction as the secondary velocity. The definition stated 
above will ensure that the primary flow velocity is interpreted as the 
velocity in the downstream direction that coincides with the general direction 
of flow. 

Historical Background 
Historically, late nineteenth century hydraulic engineers, noting that 

the maximum velocity is below the water surface rather than at the water 
surface, offered the explanation that the frictional resistance at the air-
water interface is responsible for this phenomenon. However, many researchers 
working at the time did not accept this idea, and they tried and were 
successful in correctly identifying the mechanisms of secondary circulation. 
They also indicated that these mechanisms might be responsible for the lower 
flow velocity at the air-water interface. These researchers did not identify 
secondary circulation by name, but they recognized its presence in concept. 
They include Bazin and Barcy in 1865, Gerrard in 1878, Francis in 1878, Wood 
in 1879, Stearns in 1883, and Cunningham in 1882 (7, 19). 

In 1909 Gibson (30) analyzed the then-existing literature and offered 
his thoughts on why the filament of maximum velocity is below the water 
surface. He said that this phenomenon is "... due to the action of the sides 
of the channel in producing transverse currents inwards along the surface and 
outwards along the bed of the stream, thus distributing a layer of slowly 
moving water over the central part of the stream." He also indicated that the 
presence of curves in the stream's alignment can and will modify this 
phenomenon. He showed that the secondary flow velocity is about 5 percent of 
the main stream velocity. 

It is noteworthy that almost 100 years after the initial postulations 
about the effect of wall roughness on the transverse flow phenomenon that were 
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made by Wood (59), Stearns (55), Francis (25), and others, Perkins (49) showed 
that the mean streamwise vorticity in turbulent flow arises both from mean 
flow skewing and from the inhomogeneity of anisotropic wall turbulence. 

In the early twentieth century many others also worked on the transverse 
flow phenomenon. In 1917, Helstrom estimated the secondary flow velocity to 
be about 11 percent of the main stream velocity (32) . In 1930 Nikuradse 
published results showing that secondary flow exists in noncircular conduits 
(27). 

Laboratory Measurements 
Once the concept of secondary flow was recognized, researchers tried to 

measure the secondary circulation, especially in laboratory channels under 
ideal flow conditions. The simplest method is of course to use dye or 
neutrally buoyant particles to measure qualitatively the existence and the 
direction of secondary currents (3, 58). Another fairly sophisticated 
instrument used to measure secondary current in laboratory experiments is the 
hot-wire anemometer. Researchers such as Brundrett and Baines (8), Gessner 
and Jones (28), Hoagland (33), Tracy (57), and Liggett et al. (42) utilized 
hot wire anemometry systems to measure components of secondary currents. 
Launder and Ying (40) collected turbulence-induced secondary current data by 
using a DISA hot-wire probe. Muller (43) reported the results of laboratory 
experiments where a Laser Doppler Anemometer was used to measure the vertical 
and axial component of flow velocity. The presence and absence of secondary 
flow were interpolated on the basis of the increase or decrease of the 
turbulence and momentum exchange. All of Muller's experiments were conducted 
for supercritical flow ranges, i.e., the Froude number was more than unity. 
However, all these research projects were confined to laboratory 
experimentations. 

Field Measurements 
While various researchers have measured secondary circulation in 

laboratory experiments, field instrumentations and measurements are rare. 
Only a very limited number of attempts have been made to measure secondary 
circulation in the field. 

Kanwisher and Lawson (36) have described an electromagnetic flow sensor 
for measuring flow in natural open channels, which can be modified to measure 
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both the main stream and lateral flow velocities. This electromagnetic flow 
sensor has the potential of being used in the field to measure secondary flow 
velocities. 

One of the most serious and comprehensive attempts that was made by any 
group of researchers to measure secondary currents in gravel bed rivers was 
that made by Bathurst et al. (4, 5). Their measurements were made at four 
bends on the River Severn in Wales, United Kingdom. Direct measurements of 
secondary velocities were made with an electromagnetic flow meter that had the 
capability of measuring two mutually perpendicular components of velocity 
simultaneously. The measuring head was 2 inches (50 mm) in diameter, and the 
instrument was accurate to within 0.33 fps (10 mm/s). All the measurements 
were confined to bends. The instrument worked out fairly well. The primary 
velocity data were collected with an Ott C-31 current meter. Isovels were 
developed, and their shapes were compared with the shape and pattern of 
secondary cells that could be sketched on the basis of the shape of the 
primary isovels. The data indicated that the peak values of shear stress were 
associated with the core of the maximum velocity. 

Thome et al. (56) conducted other detailed bend-flow hydraulics 
measurements on the Fall River, Rocky Mountain National Park, Wyoming. 
Primary and lateral velocity components were measured using a Marsh-McBirney 
Model 511 two-component electromagnetic current meter. The current meter 
simultaneously measures two mutually perpendicular velocity components with an 
accuracy of 0.01 ft/sec (3 mm/s). Much more accurate data were recorded, and 
secondary cells were often found to exist at outer and inner banks. The 
device used by Thorne et al. could not record the orientation of the sensor 
probe, which remained a difficulty in the data reduction. Demissie et al. 
(20, 21) developed a measuring system in which the current meter is supported 
by a self-standing system and data are transmitted to a computer on the stream 
bank for processing and storage. The flow velocity components are measured by 
a Marsh-McBirney current meter, Model 527, which can also measure the bearing 
of the sensor from the magnetic north in a clockwise direction. 

Indirect Techniques 
Field data collected by Bathurst et al. (4, 5) indicated that it is 

possible to draw secondary flow cells on the basis of the primary velocity 
isovels. Such an attempt was made by Bhowmik (7) for the field data collected 
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from the Kaskaskia River in Illinois. Fig. 1 shows the isovels at a section 
where the secondary flow cells were sketched. Data shown are from the same 
cross section but for two flow conditions: low and high flows. If it is 
assumed that the isovels are a set of flexible membranes held in place by 
fluids in between them, then a bulging or deformity in their shape indicates 
the presence of some force acting normal to the face of the membranes. Thus, 
if the membranes bulge inward, it indicates the presence of a force from the 
outside to the inside and vice versa. The approximate locations of the 
secondary cells in Fig. 1 were drawn on the basis of this technique. Data 
from any other isovels can similarly be used to draw the patterns of secondary 
cells. Brundrett and Baines (8) and Liggett et al. (42) expressed some doubt 
as to the validity of sketching secondary flow cells on the basis of primary 
velocity isovels. Their conclusions were based on laboratory experiments. 
However, even though it is not a precise technique, it provides a good 
qualitative picture of secondary circulation in natural channels. 

Recently Ikeda (35) indicated a technique of sketching the patterns of 
secondary current cells in sand bed laboratory channels on the basis of the 
nature and existence of bed undulations or topography. In a deformable 
channel such as a sand bed channel, the bed profile in the lateral direction 
may partially reflect the magnitude and direction of the secondary current 
cells near the bed. Only qualitative information is obtained by using isovels 
or bed topography. 

Mathematical Modeling 
A few researchers have worked on the development of mathematical models 

related to secondary circulation in open channels. However, most of their 
work has been confined to cases with flow around bends. A strong secondary 
current is generated in a bend because of the imbalance of horizontal fluid 
forces; thus it is easier to quantify this current for flow around bends than 
for straight reaches. 

Einstein and Li (23) have shown theoretically that uniform flow in 
straight channels can exist only in the case of laminar flow. For turbulent 
flow, they have shown that secondary currents will be generated and that the 
nonexistence of parallel isovels results from the presence of secondary flows, 
especially near the frictional boundary. Some other researchers who have 
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Figure 1. Isovels and secondary flow cells in a natural river (7) 
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worked on the mathematical formulation of secondary currents are Ibragimov et 
al. (34), Ananian (2), Ciray (18), Prasad (50), Tracy (57), Liggett et al. 
(42), and Odgaard (46). 

One of the most significant contributions to the mathematical modeling 
of secondary circulation was made by Chiu and his associates (10-17). Much of 
Chiu's work related to secondary circulation around channel bends. He also 
worked in the analyses of secondary currents in straight open channels, and 
has indicated that whenever the three components of shearing force are not in 
equilibrium everywhere in a channel, the presence of secondary current is 
inevitable. 

By introducing a coordinate transformation function, Chiu et al. (12) 
developed a model which appears to have considerable potential for application 
to natural open channel flow problems. A curvilinear orthogonal coordinate 
system which is constructed by computed isovels and their orthogonal 
trajectories forms the basis for the model. The model was used to compute 
secondary flows on the basis of some hydraulic data collected from the Rio 
Grande Canal (12, 13). Later, different functions for approximating isovels 
and shear stresses were used to improve the model (14-17). Comparisons of 
model results with measured data on the East Fork River (Wyoming) showed 
reasonable agreement. Field data such as cross-sectional area, discharge, 
depth, water surface profile, and primary velocity distribution patterns are 
needed to use the model. 

MATHEMATICAL MODEL 

Mathematical Derivations 
This part of the report discusses the derivation of equations used in a 

new mathematical model for calculating secondary velocity components. The 
model is based primarily on Chiu's work (10-17). Detailed derivations for 
some functions are presented here so the mathematical model can be clearly 
understood. 

In general, the model consists of the momentum and the continuity 
equations. Once the isovels for a cross section are approximated by 
mathematical functions, the momentum and the continuity equations are then 
transformed into a curvilinear coordinate system, which is based on the 
simulated isovels and their orthogonal trajectories. After the transformation 
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of these equations, one of the secondary velocity components is computed 
directly from the momentum equation, and the other component is derived by 
solving the continuity equation. Shear stresses are assumed to vary 
quadratically from the boundary line to the point of maximum velocity in the 
new coordinate system. Finally the secondary velocity components are 
transformed back to the cartesian coordinate system by following inverse 
transformation rules. 

Coordinate Transformation 
Coordinate System 

The curvilinear coordinate system consists of two components ξ and η as 
shown in Fig. 2, where a constant value of ξ is an equal velocity line 
(isovel) and η is the coordinate perpendicular to the ξ lines. Assuming that 
the primary velocity distribution follows the logarithmic rule, which is 
reasonable for most natural channels, the velocity distribution can be 
represented by: 

in which 
u = the primary velocity 
k = universal constant 
ξ = transformed coordinate 

ξo = coefficient characterizing the velocity distribution of the primary 
flow 

u* = gRSe = mean shear velocity, where 
g = gravitational acceleration 
R = hydraulic radius 
Se = energy slope 

Eq. 1 defines the primary velocity distribution in a direction vertical 
to ξ curves in the channel cross section. Since u* and k are constant at a 
given cross section, Eq. 1 states that for a given ξ all the velocities on 
this curve will have the same magnitude, i.e., a constant ξ is an isovel 
curve. The curve ξ =ξo is the line where primary velocities vanish. The 
coordinates of f and η in terms of Y and Z coordinates are given as (15): 
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Figure 2. Curvilinear coordinate system 
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βi, δi. a n d δy are parameters determined from the distribution of the 
primary velocity; i = 1 or 2 for either the left or right half of a cross 
section; ε = the distance from the water surface to the point of maximum 
velocity; Bi = the width of either the left or right half of a cross section; 
and D is the water depth (Fig. 2). The point of maximum velocity is assumed 
to be either below the water surface (as shown in Fig. 2 when ε > o), at the 
water surface (when ε = o), or above the water surface (when ε < o). 

Scaling Factors 
Eqs. 2 and 3 define a transformation relation between the new 

curvilinear coordinate system and the (Y, Z) coordinate system. The scaling 
factors are derived by referring to Fig. 3 and assuming that and are unit 
vectors in the Y and Z directions and tangent to ξ and η at point p; the 
directions of and are in the increasing direction of ξ, η; ΔSη and ΔSξ are  
the incremental distances along the positive ξ and η directions; and is the 
position vector to p from a fixed origin. 
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Figure 3. Relationship between the (Y-Z) coordinate system and the 
curvilinear coordinate system (ξ-17). 

The derivatives of with respect to ξ and η are derived as follows: 
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On the other hand, the derivations of with respect to ξ and η can be written 
in terms of Y and Z as: 

By using the above relations the following equations are derived: 

The differentials of and ξ with respect to Y and Z can be obtained from Eqs. 
2 and 3 directly. They are: 

The differentials of Y and Z with respect to ξ and η can be obtained from 
equations 8 to 13 as follows: 
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The scaling factors can now be derived from Eqs. 6 and 7, and Eqs. 15 to 18. 
As given by Chiu and Lin (16) the relations for hξ and hη are: 

Derivation of the Equation for the Vξ Velocity Component 
The momentum equation in the curvilinear coordinate system is derived on 

the assumption that the control volume in Fig. 4 represents a volume of water 
in the curvilinear coordinate system. 

Figure 4. A control volume in the curvilinear coordinate system 
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Since each ξ = ξj line in Fig. 4 represents an equal primary velocity 
line, there is no change of primary velocity along this ξ line, i.e., 

where uj is the primary velocity on the jth isovel. The longitudinal 
component of the momentum equation in cartesian coordinates is given as : 

in which 
x, y, z are the coordinates 
t — the time 
u = the primary velocity in x direction 
v = the velocity components in y direction 
w = the velocity component in z direction 
ρ = the water density 
p — the hydrostatic pressure 
g = gravitational acceleration 
H = distance from the channel bottom to a datum 

τix = is the shear stress on the itn face acting in the x direction in 
which i = x, y, or z. 

This equation can be written in x, Y, Z coordinates directly using the 
transformation equations given in Eqs. 4 and 5. Since the partial derivatives 
are as shown in the following equation: 

Eq. 22 will change in sign only for z < 0. 
The transformation relationship between Y, Z coordinates and ξ, η 

coordinates can be written in a general form as follows: 
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in which and are unit vectors in the ξ and η directions, respectively, 
and and are unit vectors in the Y and Z directions, respectively. 

Using Eq. 23, the transformation relationships for the velocity 
components between the two coordinate systems can be written as: 

where Vξ and Vη are velocity components in the ξ and η directions, 
respectively. Since ξ and η are orthogonal to each other as are the Y and Z 
coordinates, the following relations exist: 

These can be proved by referring to Fig. 5. 

Figure 5. Definition sketch for derivatives between Y, Z and , η 
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Therefore, 

By definition, 
angle(Z, η) + angle(η, Y) = angle(η, Y) + angle(Y, ξ) 

Thus, 
angle (Z, η) = angle(Y, ξ). 

Similarly, 

Therefore 

Now the left hand side (LHS) of the momentum equation (Eg. 21) can be 
rewritten as: 

where only one velocity component, Vξ, is retained. 
The transformation of the right hand side (RHS) of the momentum equation into 
ξ and η coordinates can also proceed as follows: 

The shear stresses in the x direction can be written as 
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Since there is no velocity change in the η direction on each ξ curve, 

Substituting this equation, as well as Eq. 23, into Eq. 27 results in the 
following equations: 

Using the chain rule for derivatives, the following relations can be derived. 

Substituting Eq. 29 into Eq. 30 gives: 

Summation of the two terms results in the following: 

From Eq. 25 and the equations derived from Fig. 5, the following relations can 
be derived: 

Substituting the above relations into Eq. 32 results in the following 
equation: 
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The RHS of the momentum equation can now be rewritten as: 

An equation to further simplify the term involving is derived as follows. 

Since , differentiating both sides by and using the same 

relationship again results in 

This equation is substituted into the transformed RHS equation above; then 

Equating the transformed LHS and RHS equations results in the following 
momentum equation. 

where the velocity component in the ξ direction is isolated from the velocity 
component in the η direction. 
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Derivation of the Equation for the Vη Velocity Component 
The continuity equation in the x, Y, Z coordinate system is 

Applying the transformation rule between the two coordinate systems on ∂v/∂Y 
and results in the following relation: 

The continuity equation in the curvilinear coordinate system is therefore: 

or 

Integrating both sides of this equation results in: 

in which 
77* = the η value on the water surface 
C = an integration constant 
The integration constant can be determined by using the boundary 

condition on the water surface. The continuity equation in the x, , η 
coordinate system can finally be written as: 

where V77* is the velocity Vη at point (ξ, η*). The velocity component in the 
77 direction is therefore computed from Eq. 34. 

Approximation of Shear Stresses 
To compute the velocity component vξ from Eq. 33, the shear stresses are 

needed. However, the shear stresses are also dependent on the velocity 
components. Therefore an additional equation is needed to solve the shear 
stresses and velocities. The additional equation is provided from the 
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distribution of shear stress in the new coordinate system. Chiu and Hsiung 
(14) assumed that the shear stress varies quadratically in the ξ direction as 
follows: 

in which αo, a1, and α2 are coefficients and ξmax(η) is the maximum value on 
an η curve. The coefficients α α1, and α2 are determined from boundary 
conditions. As developed by Chiu, these are: 

a) ε < 0 (the point of maximum velocity is below the water surface) 

in which 
ξo'= ξ curve that approximates the channel boundary and 

where 

(77) = 1 for η curves that intersect with the stream banks or bed 
For η curves that intersect with the water surface, it can be reasonably 
assumed that = o if the wind effects are ignored; then 

where is the value of this η curve at the water surface. 

in which 
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and the overbar means the average value over the wetted perimeter, which is 
computed as 

and W.P. = total length of wetted perimeter. 

b) ε = o (the point of maximum velocity is on the water surface). For this 
case, Eqs. 36, 37, and 40 can still be used. 

c) ε > o (the point of maximum velocity is above the water surface). In this 
case the maximum value of ξ(η) at the water surface is 

ξmax(η) = o( ) 

and Eqs. 36, 37, and 40 are still valid. 

Computer Model 
The mathematical equations for computing the secondary velocities were 

presented in the preceding section. The equations, which were established in 
cartesian (x, y, z) coordinates, were first translated into the cross-section-
wise (x, Y, Z) coordinates, and were then transformed into the curvilinear 
(x, ξ,  ) coordinates. Several parameters were used in these translation and 
transformation processes. The functions of these parameters were to relate 
the channel geometry and primary velocity distribution pattern to the 
governing equations. 

After the equations in the curvilinear coordinate system are 
established, the computations are carried out in a grid system constructed on 
the (ξ,  ) coordinates. The secondary velocities in the (x, y, z) coordinate 
system are obtained by using inverse transformations. 

The overall computational procedures are hence separated into two 
phases. Phase I determines the best fitted coefficients ξi, βi, δk, y, ξo' , 
and ξo for approximating the primary velocity distribution and the channel 
geometry. Phase II uses these parameters to construct a computational grid 
system and carries out the computations for secondary circulation. In order 
to make a clear presentation of the model, two flow charts, shown in Figs. 6 
and 7, are used to illustrate the computational procedures. 
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Figure 6. Flow chart of phase I analysis 
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Figure 7. Flow chart of phase II analysis 
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Phase I Analysis 
The Phase I analysis performs the following functions: 1) analyzes field 

data and determines parameters; 2) derives parameters for Phase II 
computations. 

The channel cross section and isovels of the measured primary velocities 
are plotted first. Then determinations are made of the mean elevation of the 
channel bottom, H; the hydraulic radius, R; and the distance from the water 
surface to the point of maximum velocity, ε (Fig. 8). The axis which passes 
through the point of maximum velocity divides the channel cross section into 
two computational halves, as defined by subscripts i = 1 or 2 previously. The 
water surface width of each half, Bi, and the water depth D are then 
determined. Before proceeding to the steps described in Fig. 6, additional 
data need to be determined. These include (yb, zb)i. and the corresponding 
slopes Si for each bank. This information is needed for the following 
computations. 

Figure. 8. Definition sketch for field parameters 
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On the assumption that the ξ ' curve approximates the channel geometry, 
this curve should pass through (yb, zb). At such a point, the slope of the 
ξo' curve (i.e. boundary) is 

Equation 43 can be rewritten as 

On the other hand, the ξo' curve can also be described, by using Eq. 2, as 

or as 

This β value is the same β value described by Eq. 44. Moreover, the 
boundary condition at the origin gives the ξo' value as 

which is derived from Eq. 45 by setting yb = zb = o. Equating Eqs. 44 and 46 
gives an equation which contains two unknowns: δi and y. By assuming a y 

value, i and βi values can be computed. Therefore an iterative procedure to 
determine the i and βi values is used to generate the closest computed 
velocity distribution to the measured primary velocities in a given channel. 

Since the boundary curve ξo' and all the other ξ curves have to fit a 
logarithmic velocity distribution as described in Eq. 1, the following 
iterative steps depicted in Fig. 6 are used to determine the coefficients 
needed for Phase II. 

(1) assume trial y values 
(2) calculate i from Eq. 44 and Eq. 46 
(3) compute β
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(4) compute ξ values at every data point where u is measured 
(5) perform linear regression on u/u* and In ξ 
(6) determine k and   from intercept and slopes of step (5) 
(7) repeat step (1) to step (6) 
The  value obtained in step 6 is the line which defines zero velocity, 

while the ' line is the line which approximates the boundary. The best 
fitted coefficients are those coefficients which generate a primary velocity 
distribution that has the least standard deviation in comparison with the 
measured velocities. 

ε
δ β

The Phase II analysis involves solving the equations discussed in the 
last section for field variables. The parameters, determined from field data 
in Phase I, relate these equations to local hydraulic conditions. The 
characteristics of these equations require building the computations on a grid 
system, similar to that of a finite difference method. Using the ξ and η 
curves to form the grid, field data parameters are calculated at the grid 
nodal points. Also many variables (e.g., hξ and hη) require the corresponding 
Y, Z coordinate values in their calculations. Consequently the Y, Z 
coordinates at each grid point have to be retrieved. 

Grid System Construction 
The grid system is constructed by drawing ξ curves and η curves with 

predetermined Δξ and Δη intervals, between the maximum ξ and η values and the 
minimum ξ and η values. These maximum and minimum ξ and η values can be 
derived from Eqs. 2 and 3 once the parameters which depend on field data are 
determined through Phase I analysis, but the Δξ and Δη values have to be 
determined by trial and error. The Δξ and Δη values, once determined, are 
used in the numerical evaluation of the velocity components Δξ and Vη, and 
significantly affect the accuracy and cost of computations. From Eq. 34 it 
can be seen that a smaller Δη value will give greater accuracy in the 
numerical integration. On the other hand, a larger Δη value will result in a 
shorter computation time. It is therefore desirable to have the Δη value as 
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The measured hydraulics parameters, i.e., D, Bi, ε, H, R, and the 
derived parameters δi, βi, k, ξo, ξo'i and τ*, are then transmitted to Phase 
II for velocity and shear stress computations. 
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large as possible and to keep the computational error within an allowable 
range. 

The Δη values, however, depend on Δξ (Eq. 34) values. The Δξ value 
becomes available in the numerical evaluation of derivatives with respect to 
ξ. Finer Δξ values are needed near the channel boundary areas, since the 
primary velocity gradient is the highest at this location. The derivatives 
with respect to ξ, when evaluated by a numerical method, produce error. This 
error is the sum of two errors, truncation and rounding off. The round-off 
error is negligible on a large machine such as the CDC-6400 that carries 
numbers to 5 digits beyond the decimal point; therefore the Δξ value is 
selected to minimize the truncation error. The computation of Δhξ/hηξ (in Eq. 
33) is used for checking this Δξ selection. Two examples of a grid system 
generated using the procedures above are illustrated in Fig. 9. 

Solving for (Y,Z) Given (ξ, η ) 
The values of ξ and η can be computed directly from given Y, Z 

coordinates by using Eqs. 2 and 3. However, obtaining the values of Y and Z 
for given ξ and η coordinates requires solution of the two nonlinear 
equations. The "modified Regula Falsi" iteration method (51) is used to solve 
these non-linear equations. Since the variations of ξ and η curves are 
different in various regions, the following four algorithms are used to solve 
the equations: 

(1) Solve Y for fixed Z from ξ curve 
(2) Solve Z for fixed Y from ξ curve 
(3) Solve Y for fixed Z from η curve 
(4) Solve Z for fixed Y from η curve 

The algorithms are illustrated in Fig. 10. With these four algorithms, one 
can solve for Y (or Z) for an assumed value of Z (or Y) on a selected curve of 
ξ or 77. The choice of the ξ (or 77) curve for solutions depends on the tangent 
values at two consecutive points on that curve. If the tangent values are 
very close to each other on one curve, then the other curve is selected. The 
algorithm converges quickly after the first (Y, Z) coordinate point is found, 
which then becomes the initial trial value for the next (Y, Z) point. 
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Figure 9. Grid systems for computational model 
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Figure 10. Algorithms for solving Y or Z from ξ and 77 
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Computation for Vξ  
The Vξ component is computed from Eq. 33 on every grid point. In 

general, the normal stress term ∂τXX/∂x is small and is included in the 
hydrostatic pressure variation term. If the flow is steady and uniform, then 

where S is the slope of the channel bottom. Since the primary velocity is 
assumed to have a logarithmic distribution, and the shear stress a quadratic 
distribution, the velocity and shear stress derivatives can be written as: 

and 

The derivative of hη with respect to ξ can be computed in Y and Z coordinates 
by using this relationship: 

Therefore 

With these terms known and ∂u ∂x determined from field measurement, the Vξ 
component at each node is computed in a straightforward manner. 

Computation for Vη 
Eq. 34 can be rewritten as: 

(52) 

The following steps are needed to solve Eq. 52. 
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(1) Determine the boundary value Vη* 

(2) By using Leibnitz's rule, transform Eq. 52 as follows: 

(3) The numerical integration for each integral on the right-hand side is 
evaluated as: 

where r is the reference parameter ranging from -1 to +1, 

M is the Gaussian point, and Wm is the weight coefficient. 

(4) The derivative of with respect to ξ is calculated by: 

which is the central difference approximation. 
The whole computation is carried out on an ξ curve, and the values of on 
neighboring ξ curves are also required. 

A complete listing of the computer program for the model is provided in 
Appendix A. 
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FIELD DATA COLLECTION 

The field data collection component of the project consists of 
development of the instrumentation needed to measure secondary circulation in 
natural channels, and the actual data collection. A computerized field data 
collection system was developed for the project and used successfully in the 
field. In addition to the acquisition of secondary circulation data, other 
measurements and sampling for flow discharges, suspended sediment 
concentrations, bed loads, and bed material were performed during the field 
data collection periods. This section of the report describes the instruments 
used to collect the data and the data collection procedures, and presents a 
summary of the data collected. 

Field Data Collection Site 
Three sets of field data were collected for the project. Data were 

collected in May and June 1984 and in August 1985. All the data were 
collected in the Sangamon River near Mahomet (near the junction of Sections 
19, 20, 29, and 30, Township 20N., Range 7E.; river mile 180.6 above the 
Illinois River; and about 3.8 miles downstream of the Highway 47 bridge, 
Mahomet, IL). The Sangamon River near Mahomet, among other sites considered, 
was found to be the best site in terms of water depth requirements and site 
accessibility. The location of the study site is shown in Fig. 11. The 
stream channel at the study site is nearly a straight reach for about 500 
feet, and then follows a gradual bend. At the upstream end of the site there 
is a bridge. The bridge piers did not obstruct the flow during the field 
trips; thus there were no eddies from the bridge piers. This was felt to be 
an important consideration in all secondary circulation measurements. 

The channel width at this reach is almost constant (approximately 75 
feet) and the cross section geometry is almost trapezoidal, which is an ideal 
case for the application of the mathematical model. Water depth at the study 
site varied from 2 to 4 feet, which made the data collection program 
relatively easy. The site is easily accessible by car, which facilitated the 
transport of equipment to the study site. 

33 



Figure 11. Location of study site 
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Instrumentation 
Three-Dimensional Flow Measurement Setup 

The instrumentation for measuring secondary circulation includes a 
Marsh-McBirney (Model 527) electromagnetic current meter, a Commodore (Model 
8032) micro-computer with tape drive, an interface between the current meter 
and the computer, and a rigid support system for the current meter (Fig. 12). 
The support system includes a yoke which allows the current meter to be 
rotated 90 degrees so that both the lateral and vertical components of the 
secondary velocities may be measured. 

Using the setup shown in Fig. 12, a continuous velocity reading from the 
current meter can be digitized and transmitted to the computer. Either the 
time history or an average and standard deviation of the velocity for a given 
period can be calculated and stored on cassette tapes. 

Marsh-McBirney 527 Electromagnetic Current Meter 
The Marsh-McBirney 527 Electromagnetic Water Current Meter consists of a 

transducer probe with a geomagnetic compass, a cable, and a signal processor. 
The probe is a 4-inch-diameter sphere on a 1-inch-diameter rod. The current 
meter measures the flow of water in a plane normal to the longitudinal axis of 
the probe. The current meter operates on the Faraday Principle of 
Electromagnetic Induction, which, simply stated, says: "a conductor moving in 
a magnetic field (generated from within the probe) produces a voltage that is 
proportional to its velocity." The electrodes placed on the wall of the probe 
detect the voltages caused by water flowing past the probe in a plane normal 
to the probe's axes. The flow sensing volume around the probe is a sphere 12 
inches in diameter (3 probe diameters). 

The two components of velocity together with the compass reading can be 
directly monitored on the three panel meters on the signal processor. The 
panel meter has three selectable full-scale ranges of ±2, ±5, and ±10 ft/sec. 
The outputs are within 2% of full scale over the velocity range of the 
instrument, and the compass accuracy is ±10° at tilt angles of up to 25°. 
Also provided on the signal processor is a voltage output jack, which makes 
the velocity and the compass readings available to external data logging 
equipment; i.e., computers or any other data logging devices. 
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Figure 12. Field instrumentation setup 
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Interface and Computer 
Since the Marsh-McBirney electromagnetic current meter output is in an 

analog signal, and it is almost impossible to visually average the velocity 
readings from the panel meters, it was decided to construct a data logger 
system based on a micro-computer. The initial step is to build an interface 
between the current meter and the computer. An interface which can receive 
the current meter output at selected frequencies and average the values for 
specified time periods was built at the Illinois State Water Survey Electronic 
Shop. The interface transfers the voltage outputs to the computer as digital 
signals. 

The computer used for this system is a Commodore micro-computer (Model 
8032) with a cassette tape drive. A computer program was developed to control 
the sampling procedure; to calculate the means, standard deviations of the 
velocity components, and the angle; and to store the data on cassette tapes. 
Additional information such as on site descriptions, coordinates and rotation 
of the current meter, time, and the gain selected for amplification of the 
signal is entered into the computer before sampling is initiated. The data 
stored on the tapes include the descriptive information and the actual data. 

Once in the office, the data stored in the tapes is transmitted from the 
micro-computer to a main-frame computer (CYBER) by using a communication 
program and a modem. Further analysis of the data is carried out on the CYBER 
computer. 

Support System for the Current Meter 
The support system for the current meter was an important consideration 

in the development of the data acquisition system. The current meter has to 
be placed at a known depth in the stream, and the orientation of the current 
meter has to remain the same during the sampling period to obtain consistent 
data. To achieve these objectives, a rigid support system which could be 
moved from place to place had to be built. This was accomplished by modifying 
an aluminum stepladder and building a supporting platform, pole, and yoke as 
shown in Fig. 12. The yoke was designed to allow a 90° rotation of the 
current meter so that secondary currents both in the transverse and vertical 
directions could be measured. The yoke is supported by a pole which can be 
raised or lowered at regular intervals to change the depth of the measuring 
point. The pole is supported by the platform, which is attached to the 
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ladder. Additional bracings were used to reduce the vibration of the current 
meter generated by the stream current. A complete cross-sectional velocity 
distribution is measured by moving the whole support system along the channel 
width, lowering and raising the pole, and rotating the current meter. 

Rotating Bucket Current Meter 
This instrument, a standard Price-type meter, has a rotor with six cone-

shaped cups mounted on a vertical stainless steel shaft. The meter has been 
calibrated by the manufacturer to a standard rating table where the number of 
rotations of the rotor over a specified time corresponds to a specific 
velocity. 

The current meter is attached to a 30-lb weight to keep it from drifting 
in the current and is suspended into the stream from a bridge deck with a 
cable/winch/crane assembly. This meter was used to measure flow velocity in 
the Sangamon River at the bridge site shown in Fig. 11. These velocity data 
were used to determine the discharge at the test reach. 

Suspended Sediment Samplers 
Two types of suspended sediment samplers were used for this 

investigation: the US DH-59 and DH-48, which are standard samplers designed 
for the United States Geological Survey. These samplers are designed to 
accumulate a water-sediment sample from a stream vertical at such a rate that 
the velocity in the nozzle at the point of intake is as close as possible to 
the stream velocity. These types of samplers, properly used, will withdraw a 
sample of the sediment water mixture that represents an average of the 
sediment concentration through a stream vertical weighted for velocity so that 
proper sediment load calculations can be made. 

Both samplers use standard 1-pint glass milk bottles to collect the 
sediment-water samples. The DH-59 sampler was designed to be suspended by a 
hand-held rope or a cable/winch/crane assembly. This sampler was used to 
determine sediment concentrations of the stream at the bridge site (Fig. 11). 
The DH-48 sampler was used to sample for sediment concentration at sites away 
from the bridge. It was designed to be suspended from a wading rod and 
lowered into the stream by hand. 
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Bed Load Sampler 
A Helley-Smith bed load sampler was used to measure the component of the 

total sediment load that moves in close proximity to the streambed. This 
sampler was designed for sampling coarse material where the diameter of the 
bed load material is above 0.25 mm. The sampler was designed to be lowered to 
the streambed, left in contact with the bed for a certain period of time, and 
then retrieved from the water. Samples are retained by a mesh bag (0.25-mm 
mesh openings) open to the flow through a 3-inch-square opening. The quantity 
of material trapped by the sampler over a certain period of time indicates the 
amount of bed load moving through the 3-inch-square area, and by extrapolation 
(to the total bed width of the stream) the total quantity of bed load carried 
by the stream can be calculated. 

Sonar Stage Meter 
An electronic sonar distance meter was used to measure the stage or 

height of the stream. Readings were made throughout the data collection 
period in order to assess the changes over time in stage. The sonar meter is 
placed at a known datum on the bridge and transmits the sonar signal downward 
to the stream water surface. The water surface reflects the signal back to 
the meter and the distance is calculated on the basis of the lag time between 
transmission and return. The meter is calibrated for the effect of air 
temperature on the speed of sound. The instrument used was an Exact 
Technologies Corporation Dimensional Measurement Computer. It has a 
resolution of 1 inch over a range of up to 50 feet. 

Data Collection Procedures 
Secondary Circulation 

Secondary circulation data were collected from cross section to cross 
section within the study reach. Measurements are taken at several depths for 
each vertical. Normally ten or more verticals per cross section were selected 
for data collection. Generally data collection at one cross section lasted 
one full day. 

The data collection procedure for secondary circulation is as follows: 
First the support platform and pole are moved into the stream and firmly set 
at the data collection site. Then the yoke with the current meter is securely 
attached to the pole on the platform. The cable from the current meter is 
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then connected to the signal processor, which is located on the stream bank. 
The output from the signal processor is first transferred to the interface and 
then to the computer by cables between the devices. After all the connections 
between the devices are completed, power is turned on to activate the system. 
The computer program which controls the data collection and storage is then 
loaded into the computer and run. The computer prompts with header lines for 
inputting general information such as location, date, and time. It then asks 
for coordinates and gain (or amplification) being used. Once the above 
procedures are completed,.sampling is initiated and terminated by pressing 
designated keys on the computer keyboard. Finally, the data are displayed on 
the screen for inspection and then transferred to cassette tapes for further 
analysis. 

Data Reduction 
All the cross sections where measurements were taken were aligned to be 

normal to the stream banks. However, this selection does not guarantee that 
the cross sections are normal to the main flow direction. Furthermore, it is 
very difficult to keep the orientation of the current meter consistent for all 
measurements. Thus the measured values of secondary flows might not represent 
the true values. The measured velocities were adjusted to reflect the true 
longitudinal and secondary currents by using the orientation of the current 
meter with respect to the magnetic north, which is measured simultaneously 
with the velocities, and by using one of the following two criteria: 1) The 
discharges measured by the two current meters, the electromagnetic and the 
rotating bucket mechanical current meter, should be equal; and 2) the 
continuity of secondary flows must be satisfied between downstream and 
upstream cross sections. 

The method employed to check the continuity of secondary discharge is 
that proposed by Dietrich and Smith (22), and also used by Thorne et al. (56). 
In this method, the net secondary discharge is determined by integrating the 
secondary velocity over the depth. The continuity of discharge requires that 
the net secondary discharge at a cross section be equal to that of the section 
immediately upstream or downstream. If the two differ, the section is 
reoriented to change the secondary velocities until an agreement is reached. 
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The measured velocity components Vx and Vy, shown in Fig. 13, are first 
converted to resultant velocities from which the downstream and cross-stream 
velocities are computed. 

The magnitude of the resultant velocity =  
The angle of the resultant velocity with respect to magnetic north (0) 

is determined as: 

The angle of the main downstream velocity with respect to the magnetic north 
is given by: 

in which 
Vy , Vx = measured velocity 

= bearing of sensor with respect to magnetic north 
= bearing of left bank with respect to magnetic north 
= bearing of resultant flow with respect to magnetic north 

The downstream and cross stream components of the velocity are then given by: 

downstream velocity = (resultant) (cos ) 
cross stream velocity = (resultant) (sin ) (60) 

Sampling Period 
Two major factors are considered before selecting the sampling period: 

1) the sampling period should be long enough that the velocity fluctuations 
will average out and a true mean velocity will be obtained; and 2) the 
sampling duration should be short enough that the measurements for at least 
one cross section can be completed within a day. 

Theoretically the true mean velocity is the average of the velocity 
measurements for an infinite time period. In practice, however, a period of 
averaging time is determined which gives a mean velocity very close to the 
long-time average with specified tolerance limits. 

One method of estimating the averaging period is to determine the mean 
velocities for several averaging periods and then select the averaging period 
which gives a mean within a specified range from the true mean. This will 
require taking long period samples for each of the sampling periods. However, 
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Figure 13. Orientation of measured velocities with respect to the main 
flow direction 
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an equivalent result is obtained from one long period sample as follows. A 
set of sampling periods τi, i = 1,2,3 ...M are first selected. Then the 
sample is subdivided into blocks of Ni samples for each τi. The mean, ū, and 
the standard error, Sm , which is the standard deviation in the mean, for each 
averaging period are then computed by the following equations (48) 

where = time average velocity for the period of τi 

Ni = the number of averages with an average period of τi 

Tm = the sampling period of the whole sample 
ū = the long-term average or the true mean 
u = velocity at time t 

To generalize the standard error for variable magnitudes of velocity, it is 
convenient to non-dimensionalize the standard error by the mean velocity. The 
normalized error, Smi, is therefore given by: 

Two sets of velocity measurements are shown in Fig. 14 to illustrate how 
the sampling periods were selected. The first measurement was taken near the 
center of the channel (42 feet from the left bank) and 1.25 feet from the 
water surface, while the second sample was taken close to the stream bank (26 
feet from the left bank) and 1 foot from the water surface. 

The total sampling time, Tm, for both samples was 5 minutes. The 
sampling periods, τi, were 14, 27, 50, 99, and 150 seconds. The relationship 
between the sampling period and the normalized standard error for both samples 
is shown in Fig. 15. As shown in the figure the normalized standard error 
near the bank is greater than at the center of the channel. This is probably 
because of greater secondary currents and turbulence intensity near the banks 
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Figure 14a. Velocity fluctuations at a point (distance -42 ft, depth = 
1.25 ft), cross section 9, August 9, 1985 
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Figure 14b. Velocity fluctuations at a point (distance - 26 ft, depth = 
1.00 ft), cross section 7, August 7, 1985 
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Figure 15. Relationship between sampling period and the normalized 
standard error for two sets of velocity measurements 
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than at the center of the channel. However, the normalized error for both 
samples decreases with increasing sampling period. The error decreases 
sharply for sampling periods more than 60 seconds and gradually thereafter. 
It was decided to use 60 seconds as the sampling period for an efficient and 
reliable data collection procedure. 

Stream Discharge Measurement 
The discharges of the Sangamon River at the study site were measured 

several times during each field trip. Two types of instrumentation were used 
to measure discharge of the Sangamon River: 1) the electromagnetic two-
dimensional current meter, and 2) the rotating bucket mechanical current 
meter. The electromagnetic meter was employed primarily to measure secondary 
circulation. However, since the meter also measures the flow in the 
downstream direction, the data generated were used to compute the stream 
discharge. The rotating bucket mechanical meter was used to measure stream 
velocity and to compute stream discharge for a comparative analysis between 
results of the two methods. 

The stream discharge measurement techniques used for the rotating bucket 
current meter were those recommended by the United States Geological Survey 
(9) and the American Society for Testing and Materials, Standard Practice for 
Open-Channel Flow Measurement of Water by Velocity-Area Method, Designation: 
D 3858-79 (1). Stream discharges are determined by subdividing a cross 
section of the stream into partial sections; the average velocity of the flow 
at each partial section is measured and multiplied by the flow area of the 
partial section. The sum of the individual partial section discharges equals 
the total stream discharge. 

Discharge measurements performed at the bridge site used the rotating 
bucket current meter. The stream cross section under the bridge was divided 
into 7 partial sections, each approximately 10 feet wide. The velocity meter, 
suspended by a cable/winch/crane assembly, was lowered into the stream at the 
midpoint of each partial section. A depth gage built into the winch read the 
total depth of the stream at the midpoint of the partial section. This depth 
was recorded and later used to calculate the flow area of the partial section. 
Velocity measurements were then made at the vertical in the midpoint of the 
partial section. The meter was positioned below the water surface at 0.2 and 
0.8 of the total depth (for total depths greater than 2.0 ft) or at 0.6 of the 

47 



total depth (for total depths less than 2.0 ft). The velocity of the stream 
at the measured points was recorded and used to calculate the average velocity 
of the partial section. Stream discharges were then calculated by multiplying 
the mean velocity for each partial section by the respective cross-sectional 
area. Total discharge for the section was obtained by summing all the 
individual partial discharges. 

Suspended Sediment Concentrations and Particle Size Sampling 
Sediment sampling was performed using the US DH-59 and US DH-48 samplers 

as described in "Instrumentation." The sediment sampling was performed to 
determine the concentration of suspended sediment and the total sediment load 
in the stream. The methods used were developed by the USGS (31) and are 
proposed practices of the American Society for Testing and Materials Committee 
D-19 (water) and Subcommittee D-19.07 (sediment) (1). 

The sampling methodology employed the equal width increment method where 
the stream cross section is divided into three or four partial sections and 
the midpoint of each partial section is sampled. At each midpoint a clean 
sample bottle is inserted into the sampler and the sampler is carefully 
lowered from the stream surface to the bottom and raised back to the surface 
at a constant rate of 1 foot per second. The sample bottle is then capped, 
identified, and noted in the field book. This procedure is repeated at each 
partial section midpoint until the entire width is sampled. The purpose of 
using equal width increment and depth integrated techniques is to quantify the 
total amount of sediment carried in suspension by a stream where the 
concentration of sediment varies across the width and depth. 

Suspended sediment concentration sampling was performed at the study 
site on most of the days of data collection. The sample bottles were 
identified and labeled in the field and then brought into the office for 
logging and preparation for delivery to the Inter-Survey Geotechnical 
Laboratory for analysis. 

Suspended sediment particle size analysis was performed on three samples 
obtained by dip sampling. Dip sampling was used instead of the methods 
outlined above for suspended sediment concentration because of the low 
concentration of suspended sediment, which made it necessary to collect a 
large quantity of samples for the laboratory analysis. 
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Bed Load Measurement 
The coarse fraction of the sediment load (>0.25 mm) moving in contact 

with or within 3 inches of the streambed was sampled using a Helley-Smith bed 
load sampler. This sampler was lowered to the streambed at the thalweg and 
left there for a period of five minutes. The sampler allows the streamflow 
near the bed to pass through the intake opening and into a fine mesh. The 
sample in the mesh bag at the time of retrieval was then examined for quantity 
and types of sediment (inorganic, wood, leaves, etc.). Field observations of 
the sample were then entered into the field notebook. Only one bed load 
measurement was collected as part of this investigation because of low flow 
conditions during sampling periods, at which time no appreciable bed load 
movement was observed. 

Bed Material Sampling 
The streambed sediment was sampled in order to characterize the stream 

bed and to determine the distribution of sediment particle sizes that are 
available for transport as bed load and suspended load. The streambed was 
sampled across its width 100 ft downstream of the bridge sampling site. Three 
discrete samples were obtained from the bed at three locations: the midpoint, 
and the left and right quarter points. The bed samples were obtained using a 
shallow bucket 10 inches across and 3 inches deep. The bucket was lowered 
through the water column by hand and then tilted so that one edge could cut a 
sample from the top inch of the streambed. The bucket and sample were brought 
to the water surface carefully to avoid agitating or dispersing the material. 
The excess water was drained away from the sample and the sample was placed 
into whirl-pack sampling bags. The samples averaged approximately 500 grams 
each. All sample bags were labeled to identify date, time, and sampling 
location. The samples were then brought into the office for logging and 
preparation and delivered to the Inter-Survey Geotechnical Laboratory for 
analysis. 

Stage Measurement 
The relative change in the stream surface elevation was monitored daily 

at the bridge site using a sonar distance meter. At a minimum, readings were 
made at the beginning and end of the work day. The sonar readings were 
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adjusted to reflect possible temperature effects on the speed of sound. 
Relevant data were recorded in the field notebook for later analysis. 

Summary of Field Data Collected 
A summary of all the field data collected for the project is presented 

in this section. A complete list of all the data is included in Appendix B. 
All the cross sections where data were collected are shown in Fig. 16. Table 
1 shows the dates when the data were collected at each cross section. 

Secondary Circulation 
The velocity measurements used to construct secondary circulation were 

first processed separately to illustrate the distribution of each component in 
a cross section. Fig. 17 shows the distribution of the longitudinal, 
transverse, and vertical components of the velocity at cross section 7. It 
should be noted that different scales are used for the three components shown 
in the figure, so that the distributions of the lateral and vertical 
components, which are much smaller than the longitudinal component, can be 
shown effectively. The distribution of the longitudinal component (Fig. 17a) 
indicates that the higher velocities are located close to the center of the 
channel and the lower velocities are near the banks, as should be the case. 

Table 1. Dates of Field Data Collection 

Date Cross section number where 
Month/day/year data were collected 

06/27/84 7 
06/28/84 6 
06/29/84 5 
07/09/84 3 
07/10/84 4 
07/12/84 2 
07/13/84 1 
08/05/85 5 
08/06/85 6 
08/07/85 7 
08/08/85 8 
08/09/85 9 
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Figure 16. Location of cross sections at the study site 
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Figure 17. Distribution of measured longitudinal, transverse and vertical 
components of velocity at cross section 7, June 27, 1984 
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The distribution of the transverse component shown in Fig. 17b is, however, 
highly variable in magnitude and direction. The vertical components for this 
particular cross section (Fig. 17c) show some variation in magnitude but not 
as much as the lateral components. Fig. 17 is just an example to illustrate 
the type of data collected and how they were analyzed. Similar plots for all 
the data collected in the field are given in Appendix B. 

The longitudinal velocity was further processed to generate isovels as 
shown in Fig. 18. Since the model used for this project utilizes the isovels 
as the basis for coordinate transformation, it was felt important to generate 
the isovels for measured data so that they could be compared with the model. 
Isovel plots for all the measurements are also shown in Appendix B. 

The transverse and vertical components of the velocity were combined to 
generate the secondary current vectors as shown in Fig. 19. For this 
particular case, the measured values indicate primarily upward and lateral 
movements of the secondary currents. The downward currents were either missed 
in the measuring process or are located close to the banks. As with the 
previous plots, the rest of the secondary current plots are included in 
Appendix B. 

Stream Discharge 
The discharge of the Sangamon River at the study site was measured at 

the bridge cross section using the rotating bucket current meter for the 
purposes of monitoring the changes in the daily streamflows. Stream 
discharges were also calculated on the basis of the secondary current 
measurements at the different cross sections. Table 2 presents a summary of 
the discharge measurements, as determined by both the rotating bucket and 
electromagnetic current meters. As shown in the table there are some 
differences in the stream discharges calculated from the two sets of 
measurements. Considering that the discharges were not measured at the same 
cross sections, and considering the errors in stream flow measurements, the 
agreement between the two sets of measurements was satisfactory for most 
cases. 
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Figure 18. Isovels of the longitudinal velocity at cross section 7, 
June 27, 1984 
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Figure 19. Measured secondary current vectors at cross section 7, 
June 27, 1984 
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Table 2. Water Discharge and Sediment Load Measurements During Data 
Collection Period 

Date 
Water discharge (cfs) 

Rotating bucket Electromagnetic 

139 

Suspended 
Concentration 

(ppm) 

sediment 
Load 

(tons/day) 

6/27/84 139 
6/28/84 -- 140 205 77 
6/29/84 -- 119 -- --
7/09/84 71 48 -- --
7/10/84 65 58 114 20 
7/12/84 36 -- -- --
8/05/85 126 75 85 29 
8/06/85 100 115 94 25 
8/07/85 73 66 48 10 
8/08/85 -- 115 -- --
8/09/85 80 59 52 11 
8/14/85 70 -- 103 20 

The highest and lowest discharges measured in the 1984 data collection 
period were 140 cfs on June 28, and 36 cfs on July 12, respectively. For the 
1985 data the highest discharge was 126 cfs on August 5 and the lowest was 59 
cfs on August 9. The discharges measured during the field data collection 
periods are all below the mean streamflow and generally fall in the range of 
flows exceeded from 40 to 70 percent of the time as indicated in the flow 
duration curve shown in Fig. 20. The flow duration curve was developed from 
historical streamflow records of the Sangamon River gaging station at Mahomet, 
which is 4 miles upstream of the study site. Data collection was not 
conducted during higher flows because of logistic requirements of deep water 
measurements, which require using a boat to move the instrumentation from 
station to station. For water depths less than 4 feet the instrumentation is 
moved from station to station by wading in the stream channel and physically 
carrying the platform. 

56 

-- -- --



Figure 20. Flow duration curve for the Sangamon River at Mahomet, Illinois 
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Suspended Sediment Concentration 
A total of 48 suspended sediment concentration measurements were made 

during the data collection field trips. Several of the measurements were 
detailed cross-sectional measurements, while some were representative samples 
for calculating sediment load. The concentration measurements were averaged 
for the whole cross section and the suspended sediment loads were calculated 
from the average concentrations. These results are shown in Table 2. The 
suspended sediment concentrations during the 1984 data collection periods are 
generally higher than those in 1985. This is probably the influence of a 
major flood event in 1984 which preceded the data collection period. The 
suspended sediment load in the Sangamon River during the data collection 
period ranged from a low of 10 tons per day on August 7, 1985, to a high of 77 
tons per day on June 28, 1984 (Table 2). 

One detailed suspended sediment concentration measurement was performed 
on August 8, 1985, to investigate the distribution of sediment in the stream 
channel. A total of 21 point samples were collected at seven verticals. 
Fig. 21 shows the point concentration values and the equal concentration lines 
generated from the data. As can be seen in the figure, the suspended sediment 
concentration is higher towards the channel bottom and there are some regions 
of higher concentration which might be associated with secondary currents. 
However, there is no significant variation of concentration at that particular 
time of data collection, and more intensive data collection similar to that 
done here will be needed at different flows to conclusively associate 
concentration distribution with secondary currents. 

Bed Load 
Only one bed load measurement was made at the study site. This 

measurement, which was made on August 6, 1985, yielded a bed load sample of 
4.5 grams for a sampling period of five minutes. The sample consisted of 
inorganic fine gravel and coarse sand. The bed load flow area was estimated 
to be the central 50 feet of the stream channel, which had a total width of 69 
feet. Bed load was calculated by multiplying the sampler intake width by the 
bed load flow area width and then extending the rate per unit time to a 24-
hour period to determine total load per day. The bed load was estimated to be 
0.3 tons per day. In comparison, the suspended load was 25 tons per day. 
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Figure 21. Distribution of suspended sediment concentration in parts per 
million, cross section 8, August 8, 1985 
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Therefore the bed load represents approximately 1.2 percent of the total 
sediment load (bed and suspended) on August 6, 1985, at this location. 

Bed Material Characteristics 
The Sangamon River's bed is composed primarily of sand and some gravel. 

Sand and gravel bars are common in the river. Riffles in the river are 
composed of gravels up to 3 inches in diameter and coarse sand. Pools in the 
river occur between the riffles and are underlaid by sand and silt. 

Table 3 summarizes the laboratory and statistical analyses of bed 
material samples obtained at the study site in 1984 and 1985. In 1984 two 
composite samples obtained by mixing four discrete samples taken at equal 
distances across the stream were collected at cross sections 2 and 4. In 1985 
three separate samples were collected at cross section 8, one at mid-channel 
and one each at the one-fourth point of the stream width from the stream bank. 
In table 3 the individual sample results of the 1985 samples are averaged in 
order to provide a composite average for comparison with the 1984 samples. 
Sand predominates in the composite samples, and gravel makes up the bulk of 
the remaining sample with less than 5 percent silt and clay. All the 
composite samples are descriptively classified as "gravelly sand with silt." 

The bed material varies in composition with respect to particle size 
distribution across the width and length of the river. The individual samples 
obtained on August 14, 1985, show a trend of increasing average particle size 
from the west to the east as shown in table 3. The longitudinal variation of 
particle sizes can also be seen in table 3 by comparing the composite samples 
obtained at the two cross sections in 1984. The gravel concentration was 
higher at cross section 2 than at cross section 4, and the sand concentrations 
were lower at cross section 2 than at cross section 4 (Fig. 16). The data 
provided here are intended to provide a general description of the channel bed 
material characteristics at the study site for use in comparing and contrast
ing different study sites. This was not a detailed channel morphologic 
investigation. 

Stage 
The stage (height) of the river was measured during the 1985 data 

collection period to assess changes over time in the stage and water 
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Standard Silt 
Date** Location Mean Median deviation %Gravel %Sand and clav Description 
7/10/84 x-s #2* 1.41 1.02 .25 36.83 58.44 4.73 gravelly sand 
7/12/84 x-s #4* .86 .73 .41 16.95 81.19 1.86 gravelly sand 
8/14/85 west 1/4 .50 .51 .53 2.99 93.40 3.61 silty sand 
8/14/85 midpoint .86 .68 .33 26.15 69.17 4.68 gravelly sand 
8/14/85 east 1/4 2.06 2.85 .21 58.30 37.38 4.32 sandy gravel 
8/14/85 composit 1.17 .31 .29 29.15 66.65 4.20 gravelly sand 

Table 3. Characteristics of streambed material samples at the study site. 

* x-s = cross section 
west and east 1/4 refer to a point one-fourth of the stream width from the stream bank 

**A11 1985 samples obtained from a cross section 100' downstream of the bridge site. 

All 1984 samples were composited prior to laboratory analysis from 4 discrete samples obtained at equal 
distances across the stream width. 



discharge. Figure 22 summarizes the stage measurements over the period August 
5-14, 1985. The highest stage was recorded on August 5 and 8. The lowest 
stage occured on August 14. The general trend was a gradual decrease in the 
stage from August 5 to 7 and from August 8 to 14, with some rise in between 
from the 7th to the 8th. The change in the stage is similar to that exhibited 
by the discharge in table 2. 

MODEL RESULTS 

The mathematical model discussed earlier was used to generate secondary 
velocities corresponding to seven different measurements in the Sangamon 
River. In this section the results of the model are discussed and compared to 
the measured values. The comparisons between the computed and measured values 
are shown in two sets of figures for each cross section. In the first figure, 
computed and measured secondary velocity vectors generated from the lateral 
and vertical components are compared. In the second figure, the primary 
velocity isovels approximated by the model are compared to the actual isovels 
developed using the measured values. A table is also presented that 
summarizes the magnitudes of the computed and measured velocities for all the 
cases considered. Finally, a section on shear stress distribution is 
presented. 

Comparison of Computed and Measured Velocities 
The comparisons for cross section 6 as measured on June 28, 1984, are 

shown in Figs. 23 and 24. Fig. 23a shows the secondary velocity vectors 
generated by the model, while Fig. 23b shows the vectors from the measured 
velocities. It should be mentioned here that the vectors for the measured 
velocities were obtained by interpolating the vertical components around the 
points where transverse velocities were measured. This was necessary because 
it was not possible to measure the vertical and transverse components at the 
same point simultaneously. 

As shown in Fig. 23 the general pattern of secondary circulation 
generated by the model is similar to the measured one; however, the downward 
circulation indicated near both the right and left banks by the model (Fig. 
23a) are not present in the measured velocities (Fig. 23b). Velocity 
measurements were not taken very close to the stream banks and the channel 
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Figure 22. Variation of stream stages during field data collection 
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Figure 23. Comparison between computed and measured secondary velocities, 
cross section 6, June 28, 1984 

64 



Figure 24. Comparison between isovels derived from computed and measured 
data, cross section 6, June 28, 1984 
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bottom because of the physical limitations of the equipment setup. The lack 
of these measurements makes it difficult to make conclusive remarks on the 
comparison of the model results with the measured values for areas close to 
the bank. 

The measured secondary velocities are generally smaller than those 
generated by the model. This is true for all seven cross sections used for 
the model. The values of the primary, transverse, and vertical components of 
the velocity for all the cross sections are summarized in table 4. The 
percentages of the computed with respect to the measured transverse and 
vertical velocities are given in columns 9 and 11 in table 4. The percentages 
in both columns are all higher than 100 percent and in some cases extremely 
high. Because of the small magnitudes of the velocities, a very small error 
in velocity measurements or slight overestimation by the model results in very 
high percentages. However, further refinement of the model is needed and 
possible. Unfortunately this could not be accomplished within this project. 

Table 4 also provides the relative magnitudes of the measured transverse 
and vertical velocity components with respect to the primary velocity 
component in columns 5 and 7, respectively. The transverse components range 
from 8 to 43.7 percent of the primary velocity, while the vertical components 
range from 4.1 to 40.4 percent. These values are in most cases higher than 
those reported in the literature, but might be because of the low flow 
conditions in the Sangamon River during data collection. Additional data 
during higher flows are required to more definitely define the relative 
magnitude of secondary velocity components as compared to the primary 
velocity. 

Fig. 24 shows the primary velocity isovels generated by the model (Fig. 
24a) and those developed from the measured velocities for cross section 6 
discussed above. There is a clear similarity between these two plots; 
however, as can be seen in the figure, the isovels for the model are smooth 
curves, while the isovels from the measured velocities are irregular and show 
deformations at different places. This discrepancy was anticipated from the 
beginning since the model formulations assume smooth isovels which can be 
approximated by mathematical functions. The assumption of smooth isovels is 
the most limiting factor in secondary circulation models based on coordinate 
transformation. 
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Table 4. Mean Measured and Computed Velocities 

7 6/27/84 .599 .048 8.0 .138 23.0 -- -- -- --
6 6/28/84 .535 .118 22.1 .022 4.1 .22 186 .27 1227 
5 6/29/84 .465 .060 12.9 .137 29.5 .19 317 .15 109 
3 7/09/84 .352 .054 15.3 .115 32.7 .16 296 .12 104 
4 7/10/84 .302 .055 18.2 .122 40.4 .28 509 .38 311 
2 7/12/84 1.0009 .064 6.3 .088 8.7 -- -- --  --
1 7/13/84 .744 .172 23.1 .067 9.0 -- -- -- --
5 8/05/85 .444 .081 18.2 .072 16.2 .13 160 .16 222 
6 8/06/85 .627 .274 43.7 .211 33.6 .40 146 .51 242 
7 8/07/85 .316 .068 21.5 .101 31.9 -- -- -- --
8 8/08/85 .373 .091 24.4 .073 19.6 .30 330 .39 534 
9 8/09/85 .251 .105 41.8 .069 27.5 --      --     --      --

Measured Measured Measured Component Computed 
longitudinal transverse col (4) vertical col (6) transverse col (8) vertical col (10) 

Cross component component col (3) component col (3) component col (4) component col (6) 
Section Date (fps) (fps) (%) (fps) (%) (fps) (%) (fps) (%) 



The comparisons of the model results with the measured values for the 
remaining six measurements are shown in Figs. 25 to 36. In general, the 
preceding discussion for cross section 6 (June 28, 1984) is applicable for all 
the comparisons. Some of the comparisons indicate a better correlation 
between measured and computed velocities and some are worse than the ones 
shown for cross section 6, as summarized in Table 4. A complete listing of 
the velocities generated by the model is included in Appendix C. Additional 
work both in data collection and in refinement of the model is definitely 
needed before the model adapted for this project can be applied to flow 
conditions in natural streams. 

Shear Stress Distribution 
As discussed in the section on approximation of shear stresses, the 

shear stresses were assumed to vary quadratically in the ξ, direction according 
to Eq. 35. The coefficients for Eq. 35 are derived from boundary conditions, 
which depend on the flow conditions and the channel boundary. The shear 
stress distributions generated by the model for two sets of measurements at 
cross section 6 are shown in Figs. 37 and 38. τ/τo is the ratio of the shear 
stress at any point (τ) to that at the channel bottom (τo). The figures 
clearly show higher shear stresses around the junctions of the stream bank 
with the stream bed, which might indicate areas of higher erosion rates as 
compared to the whole channel cross section. 
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Figure 25. Comparison between computed and measured secondary velocities, 
cross section 5, June 29, 1984 
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Figure 26. Comparison of isovels derived from computed and measured data, 
cross section 5, June 29, 1984 
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Figure 27. Comparison between computed and measured secondary velocities, 
cross section 3, July 9, 1984 
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Figure 28. Comparison of isovels derived from computed and measured data, 
cross section 3, July 9, 1984 
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Figure 29. Comparison between computed and measured secondary velocities, 
cross section 4 July 10, 1984 
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Figure 30. Comparison of isovels derived from computed and measured data, 
cross section 4, July 10, 1984 
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Figure 31. Comparison between computed and measured secondary velocities, 
cross section 5, August 5, 1985 
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Figure 32. Comparison between isovels derived from computed and measured 
data, cross section 5, August 5, 1985 
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Figure 33. Comparison between computed and measured secondary velocities, 
cross section 6, August 6, 1985 
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Figure 34. Comparison of isovels derived from computed and measured data, 
cross section 6, August 6, 1985 
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Figure 35. Comparison between computed and measured secondary velocities, 
cross section 8, August 8, 1985 
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Figure 36. Comparison of isovels derived from computed and measured data, 
cross section 8, August 8, 1985 
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Figure 37. Shear stress distribution, cross section 6, June 28, 1985 
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Figure 38. Shear stress distribution, cross section 6, August 6, 1985 
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SUMMARY AND CONCLUSIONS 

Secondary circulation is an important hydraulic phenomenon in natural 
streams. However, studies in the field have been limited, and in particular 
actual measurements of secondary circulation have been very few. This is 
because of the difficulty in measuring very small velocities under natural 
conditions. The development of mathematical models has also been limited, 
primarily because of the lack of reliable field data for calibration and 
 verification. 

This project is one of the few research projects in the United States 
that has attempted to measure secondary circulation in natural streams. As a 
result of this project, a reliable field data collection technique has been 
developed. The data collection system is computerized to reduce the time 
required in field data recording and reduction. The system has been used 
successfully several times to measure secondary circulation data in the 
Sangamon River near Mahomet, Illinois. All the data collected for the project 
are included in Appendix B. The data are also analyzed and presented 
graphically to simplify comparison of data with model results. 

At the beginning of this project it was anticipated that an existing 
model would be available for calibration and verification. However, attempts 
to obtain existing models were not successful because of the early stages of 
model development by other researchers. Instead of delaying or dropping the 
task of calibration and verification of existing models, it was decided to 
develop a model based on information available in the literature. At that 
time, the model being developed by Chiu and his associates at the University 
of Pittsburgh was the best documented model available. 

A mathematical model based on Chiu's methods has been developed and was 
used to compare measured secondary velocities with computed velocities. A 
complete listing of the computer program for the model is included in Appendix 
A. The mathematical derivations and the equations used in the model are 
thoroughly discussed in the report. The model has been used to simulate field 
conditions for all the cases where field data were collected, and the results 
are included in the report. 

Comparisons of field data and model results show mixed results. In some 
cases the results are satisfactory while in others they are not. In general, 
the model is capable of generating similar secondary circulation patterns to 
those indicated by the field data. However, the magnitudes of the secondary 
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currents generated by the model are greater than those measured in the field. 
Comparison of model results with measured values was further hampered by the 
lack of data points very close to the banks, where the model indicates the 
existence of consistently downward velocity components. Because of the 
limitations of the physical setup for collecting field data, secondary 
circulation data very close to the stream banks could not be collected. 

The overall results of the research can be summarized by the following 
statements: 

1) A reliable state-of-the-art secondary circulation data collection 
system has been developed and used successfully in the field. This 
will significantly increase the productivity of future research in 
the area. 

2) A mathematical model for secondary circulation has been developed and 
compared with field measurements. The results of the comparison are 
not totally satisfactory, and further research is needed to improve 
the application of the model to flow conditions in natural streams. 
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