Contract Report 176 State of Illinois Department of Registration and Education

Sediment Conditions in Backwater Lakes Along the Illinois River

by

Ming T. Lee, PhD, P.E. Associate Engineer and John B. Stall, P.E. Head, Hydrology Section #176

## Contents

|        |                                                                                                       | Page |
|--------|-------------------------------------------------------------------------------------------------------|------|
| Summar | У                                                                                                     | 2    |
| Chapte | er                                                                                                    |      |
| 1.     | Introduction                                                                                          | 5    |
| 2.     | Inventory of Land Use Along the Illinois River<br>Ploodplain                                          | 8    |
| 3.     | Sediment Yield Estimation in the Illinois<br>River Basin                                              | 19   |
| 4.     | Sediment Conditions in Lakes Meredosia and DePue.                                                     | 30   |
| 5.     | The Reconnaissance Survey of the Backwater Lakes<br>Along the Illinois River                          | 44   |
| 6.     | Discussion of Results                                                                                 | 54   |
| 7.     | Hydrologic Information of the Illinois River for<br>Sediment Condition Estimation on Backwater Lakes. | 56   |
| 8.     | References                                                                                            | 72   |

#### Summary

Based on backwater lake and land use inventory, there are about 39,000 acres or more in the Illinois river floodplain. Most of the backwater lakes are located in river reach 0 to 230 river miles. At the same time, there are about 489,000 acres of drainage and levee districts in the floodplain. Some of these areas once were parts of the backwater lakes. Due to the levee building and agricultural reclamation, the original floodplain was converted into farmlands. The competition of the land use for agriculture, wildlife hunting and feeding ground, fishing area and flood waterways has been becoming more intensive in recent years.

The sediment yield leaving the mouth of the Illinois river basin was estimated at about 12.1 million tons per year. The sediment yields from the tributaries to the Illinois river were estimated as 27.5 million tons per year. Therefore, the difference of these two sediment yields was assumed to stay in the floodplain areas. If this amount of sediment deposits in the backwater lakes and river, the thickness would be about 2.0 inches per year. If this amount of sediment spreads over the floodplain, the thickness would be 0.19 inches per year.

Lake Meredosia and Lake Depue were studied with detailed cross-section surveys. Lake Meredosia sediments come into the lake from the inlet channel. Therefore, the sediment starts to deposit in the lake once it reaches the wide open water body.

-2-

The segments of the lake near the inlet channel have higher sediment accumulation.

Lake Depue was shown to have sediment coming from the west side inlet channel at low and median flow stages. At high flow stages, the sediment could come from the east side and the island at the south side of the lake. Accordingly, the sediment accumulation is relatively uniform over all the lake.

The annual accumulation at Lake Meredosia was estimated about 0.41 inches per year. For Lake Depue, the annual accumulation is about 0.59 inches per year.

Reconnaissance surveys were made of 10 backwater lakes along the Illinois river in 1975. We selected two lakes, Swan Lake, and Sawmill Lake, for which capacity loss has been calculated. The results were combined with the Lakes Meredosia and Depue detailed surveys to show the general sediment conditions of backwater lakes along the Illinois river. Two out of the four lakes have the sediment accumulation rate at 0.33 to 0.59 inches per year. The Swan Lake has 0.18 inches per year sediment accumulation which is attributed to the high natural levee divided the river and lake.

The hydrological information for sediment condition assessment includes: (1) stage-duration curves at three pools, (2) Annual-Duration Table, (3) Annual high and low stages, range analysis, and (4) Accumulated inflow and outflow of the backwater lake. The stage duration curves indicate the downstream pool has higher fluctuation than the upstream pools.

-3-

The annual duration tables show that the river stage in low stage was controlled above the fixed level. However in high flow stage, these dams did not control the flood flow. The annual high and low stage and extreme range data indicated the river stages fluctuated ranging from 27.1 feet to 6.9 feet. The wide range of river stage variation is one of the important factors in an engineering project.

The annual accumulated rising stage times the lake surface area was assumed to be the first approximation of the annual inflow to the lake. A ratio of annual inflow and sediment deposition at Lake Meredosia was calculated as 1619 to 1 during 1938 to 1955 and 1822 to 1 during 1956 to 1975. In the future, given the annual daily river or lake stages, the first approximated lake sediment deposition can be assessed based on this ratio for different reaches of the river. The ratios of inflow and sediment deposition at other backwater lakes were not calculated in this report.

## SEDIMENT CONDITIONS IN BACKWATER LAKES ALONG THE ILLINOIS RIVER

By

Ming T. Lee and John B. Stall Illinois State Water Survey Urbana, Illinois 61801

Chapter 1 INTRODUCTION

The Illinois River was once a natural river. The main channel conveys the water and sediment at the normal flows. During the flood periods, the water-sediment mixture spreads over the flood plain. When the flood recedes, the water stays in the backwater lakes. This phenomena has been described by Starrett (1972). The sediment deposits in the backwater lakes. During the 1930's, a series of locks and dams were built. As a result, a series of nine pools was formed. The impoundments of these pools increases the water depth for navigation. However, the backwater inundated the original sloughs along the river. The velocity of water in these backwater areas is very low. The sediment load deposits at an accelerated rate. Accordingly, the recreational value of these areas has gradually deteriorated. In order to assess the current sediment condition, this research project was initiated.

The objective of this project is to obtain: (1) the amount of sediment deposited in backwater lakes, (2) the rate of sediment accumulation, and (3) the physical and chemical nature of the deposited sediment. This project was designated as a pilot study for the future management of these backwater lakes. Authorlty

This study was conducted by the State Water Survey under a Cooperative Project Agreement with the Department of Business and Economic Development utilizing funds provided to the State of Illinois by the U.S. Water Resources Council under Title III of the Water Resources Planning Act. The project was 9 months in duration, lasting from 1 April 1975 to 31 December 1975. By the completion date, the State of Illinois responsibilities under the Water Resources Planning Act had been transferred to the Division of Water Resources. So, this project completion report is being provided to the Division of Water Resources.

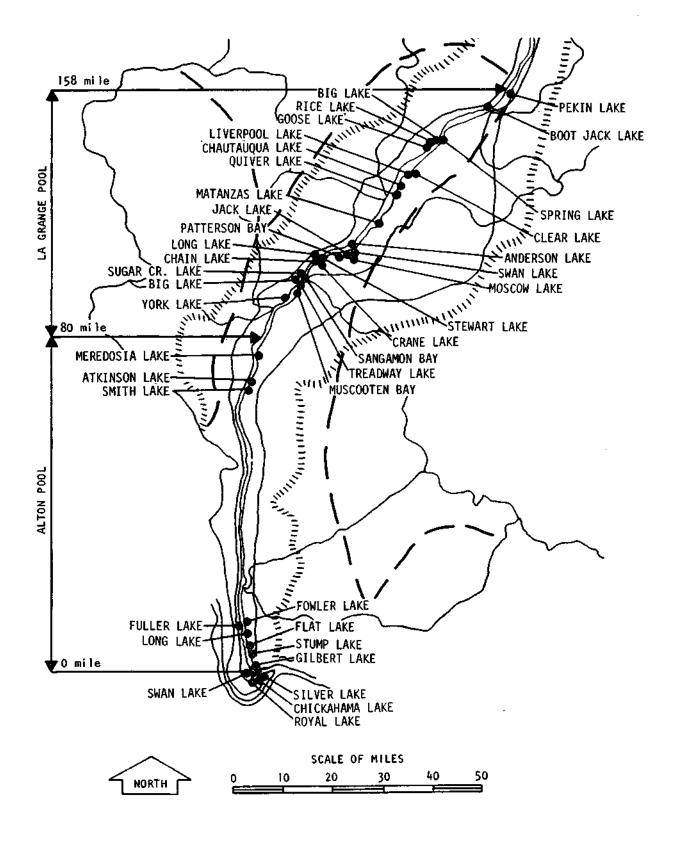
As a followup to the study reported here, there is now underway a similiar cooperative project dealing with Future of Backwater Lakes Along the Illinois River. The duration is the one year 1 January 1976 to 31 December 1976.

-6-

## Acknowledgments

This study was conducted as part of the work of the Hydrology Sections, of the Illinois State Water Survey, Dr. William C. Ackermann, Chief. The authors wish to express their appreciation to: Ralph Fisher, Division of Water Resources, who conceived and helped in the administration of this project; L.M. Pipkin, Chief of Bureau of Engineering, Division of Water Resources, who provided the 1903 Woermann Maps; Hugh Null and Jack Toll, U.S. Pish and Wildlife Service, provided boat and guide in Swan Lake and Lake Chautauqua; Dr. Neil Shimp, Richard R. Ruch, Paul B. DuMontelle and Gary Dreher of The State Geological Survey, are doing sediment sample analyses. At The State Water Survey, K.W. Kim, part-time research assistant, helped in the data analysis; John W. Brother, Jr. drafted the figures, Thomas A. Butts, provided guide in lake reconnaissance survey; Becky A. Rohl, Frances Bailey and Patti C. Welch typed the report. Berns and Clancy & Associates and Daily & Associates carried out the lake cross-sections surveys in Lakes Meredosia and DePue.

-7-


## Chapter 2

INVENTORY OF LAND USE ALONG THE ILLINOIS RIVER FLOODPLAIN

In order to assess the general water and land resources in the Illinois river flood plain, we attempted to make an inventory of the land use based on four categories: (1) backwater lake, (2) river surface area, (3) drainage and levee district, and (4) non-organized farmland and other land use (road, community, industrial sites, backwater lakes and sloughs less than 50 acres, etc.). In Figure 1 is a general location map of the Lower Illinois River. Figure 2 is the same for the Upper Illinois River.

Since the Illinois river is controlled by a series of locks and dams for the navigation purpose, nine pools were formed. Because most of the backwater lakes are located in the three downstream pools, our inventory only covers: (1) Alton pool (river mile 0 to 80), (2) LaGrange pool (river miles 80 to 157) and (3) Peoria pool (river mile 158 to 230). However, this river reach of 230 miles occupies the major areas of the Illinois river flood plain.

We used the maps of the Division of Waterways report (1969) and (1971) for measuring the backwater lakes. Since there were numerous lakes located along the flood plain, we only measured the lakes with surface area larger than 50 acres. The acreage of the lake was taken from a 1970 inventory of the Department of Business and Economic Development (1971). The name of the lakes, the location of the river mile, county, and surface areas are listed in Table 1 to 3 for each pool. The drainage and levee district acreage data was taken from the 1970 inventory. Their names, the locations of river mile, county, and acreage are also shown in the Table 1



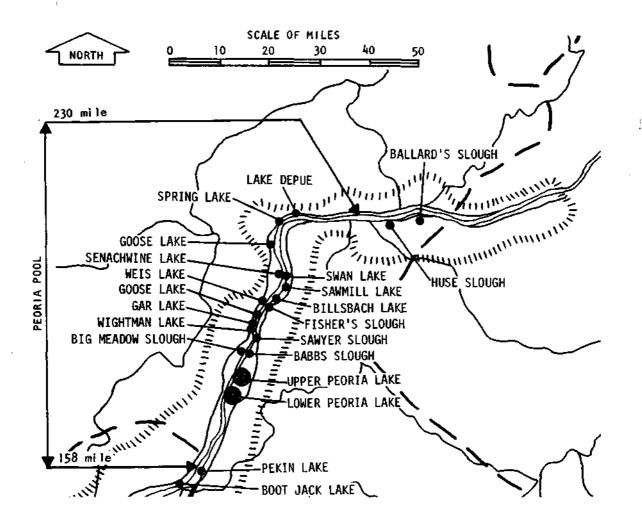



Figure 2

to 3 for each pool. The river surface areas were also estimated based on 1969 the Division of Waterways maps. The width of the river was measured at each 5-mile interval. The surface area was computed by adding the areas of the 5 mile stream reaches. The flood plain areas were estimated based on 15 minute USGS topographic maps. The delineation of the flood plain was approximated along the bluff line of the river. In some stream reaches, we needed to use subjective adjudgement. However, for most of the reach of the river the flood plain is readily definable. The measurement interval was also 5 miles for the flood plains. The total flood plain areas and river surface acreage were shown in Table 4.

The results of this inventory are summarized in Table 4. The total flood plain between the bluff lines is about 745,000 acres from river mile 0 to 230: 240,000 acres along the Alton pool, 376,000 acres along the LaGrange pool and 129,000 acres along the Peoria pool. Among these acreages, 39,000 acres or 5.2% are backwater lakes; 33,000 acres or 4.5% are river surface area; 184,000 acres or 25% are drainage and levee district and 489,000 acres or 66% are nonorganized farmland and other land use. The number of backwater lakes which were inventoried is 53; 13 of them are in Alton pool reach, 28 in LaGrange pool reach and 12 in Peoria pool reach.

-11-

|                   | Backwater La | ce       |                  |
|-------------------|--------------|----------|------------------|
| Name              | River Mile   | Area     | County           |
| Silver Lake       | 2-3          | 40       | Calhoun          |
| Chickahama Lake   | 2-3          | 56       | Calhoun          |
| Royal Lake        | 3-4          | 68       | Calhoun          |
| Swan Lake         | 5–9          | 2345     | Calhoun          |
| Fuller Lake       | 11-12        | 150      | Calhoun          |
| Gilbert Lake      | 5–7          | 300      | Jersey           |
| Stump Lake        | 8-11         | 541      | Jersey           |
| Flat Lake         | 9-11         | 162      | Jersey           |
| Fowler Lake       | 11-12        | 231      | Jersey           |
| Long Lake         | 10-11        | 55       | Jersey           |
| Smith Lake        | 67-68        | 125      | Scott            |
| Atkinson Lake     | 67-69        | 277      | Scott-Morgan     |
| Meredosia Lake    | 72-78        | 1692     | Morgan-Cass      |
| Total Number = 13 |              | Total Ar | ea = 6,042 Acres |

Table 1a. Surface Area of Backwater Lakes Along the Alton Pool (River mile 0 to 80)

| Drainage and Levee District                  |            |        |              |  |  |  |  |
|----------------------------------------------|------------|--------|--------------|--|--|--|--|
| Name                                         | River Mile | Area   | County       |  |  |  |  |
| Nutwood D&L*                                 | 15-24      | 10,619 | Jersey-Green |  |  |  |  |
| Eldred D&L                                   | 24-33      | 8,438  | Greene       |  |  |  |  |
| Keach D&L                                    | 33-38      | 7,892  | Greene       |  |  |  |  |
| Hartwell D&L                                 | 38-43      | 8,709  | Greene       |  |  |  |  |
| Hillview D&L                                 | 43-50      | 12,323 | Greene-Scott |  |  |  |  |
| Big Swan D&L                                 | 50-57      | 12,749 | Scott        |  |  |  |  |
| Scott County D&L                             | 57-63      | 10,245 | Scott        |  |  |  |  |
| Mauvaise Terre D&L                           | 63-67      | 4,066  | Scott        |  |  |  |  |
| Valley City D&L                              | 62-67      | 4,476  | Pike         |  |  |  |  |
| McGee Creek D&L                              | 67-75      | 10,780 | Pike-Brown   |  |  |  |  |
| Coon Run D&L                                 | 67-71      | 4,36l  | Scott-Morgan |  |  |  |  |
| Willow Creek D&L                             | 71-73      | 4,294  | Morgan       |  |  |  |  |
| Meredosia Lake D&L                           | 73-80      | 3,750  | Morgan-Cass  |  |  |  |  |
| Little Creek D&L                             | 75-80      | 1,610  | Brown        |  |  |  |  |
| Total Number = 14 Total Area = 104,312 Acres |            |        |              |  |  |  |  |

Table 1b. Land Acreage of Drainage and Levee Districts Along Alton Pool (River mile 0 to 80)

\* D&L = Drainage and Levee District.

| Backwater Lake          |            |       |                      |  |  |  |
|-------------------------|------------|-------|----------------------|--|--|--|
| Name                    | River Mile | Area  | County               |  |  |  |
| York Lake               | 85-89      | 389   | Schuyler             |  |  |  |
| Sugar Creek Lake        | 95-95      | 121   | Schuyler             |  |  |  |
| Long Lake               | 99-100     | 111   | Schuyler             |  |  |  |
| Big Lake                | 93-94      | 108   | Schuyler             |  |  |  |
| Mascooten Bay           | 89-93      | 1646  | Cass                 |  |  |  |
| Treadway Lake           | 93-96      | 615   | Cass                 |  |  |  |
| Sangamon Bay            | 96-97      | 190   | Cass                 |  |  |  |
| Chain Lake              | 99-101     | 423   | Mason                |  |  |  |
| Crain Lake              | 101-103    | 756   | Mason                |  |  |  |
| Stewart (Stafford) Lake | 101-106    | 1578  | Mason                |  |  |  |
| Jack Lake               | 107-109    | 915   | Mason                |  |  |  |
| Patterson Bay           | 106-107    | 62    | Mason                |  |  |  |
| Mantanzas Lake          | 114-115    | 361   | Mason                |  |  |  |
| Quiver Lake             | 122-124    | 407   | Mason                |  |  |  |
| Chautauqua Lake         | 124-125    | 3562  | Mason                |  |  |  |
| Liverpool Lake          | 125-128    | 155   | Mason                |  |  |  |
| Clear Lake              | 130-133    | 1463  | Mason (Consolidated) |  |  |  |
| Moscow Lake             | 108-110    | 258   | Mason                |  |  |  |
| Swan Lake               | 109-111    | 284   | Mason                |  |  |  |
| Grass Lake              | 111-112    | 463   | Mason                |  |  |  |
| Bath Lake               | 111-112    | 138   | Mason                |  |  |  |
| Anderson Lake           | 107-111    | 1364  | Fulton               |  |  |  |
| Rice Lake               | 133-137    | 1383  | Fulton               |  |  |  |
| Big Lake                | 133-137    | 1148  | Fulton               |  |  |  |
| Goose Lake              | 133-137    | 640   | Fulton               |  |  |  |
| Lost Lake               | 134-135    | 50    | Fulton               |  |  |  |
| Spring Lake             | 136-140    | 1285  | Tazewell             |  |  |  |
| Pekin Lake              | 154-156    | 105   | Tazewell             |  |  |  |
| Total Number = 28       |            | Total | Area = 19,980 Acres  |  |  |  |

Table 2a. Surface Area of Backwater Lakes Along the LaGrange Pool (River mile 80 to 158)

| Name                          | River Mile                            | Area   | County        |
|-------------------------------|---------------------------------------|--------|---------------|
|                               | · · · · · · · · · · · · · · · · · · · |        | <u>-</u>      |
| Crane Creek D&L               | 84-85                                 | 5,015  | Schuyler      |
| Coal Creek D&L                | 85-92                                 | 6,396  | Schuyler      |
| Kelley Lake D&L               | 100-103                               | 985    | Schuyler      |
| Big Lake D&L                  | 103-108                               | 3,230  | Schuyler      |
| South Beardstown D&L          | 79-87                                 | 6,851  | Cass          |
| Boulevard D&L                 | 87-88                                 | 512    | Cass          |
| Lost Creek D&L                | 88-90                                 | 2,740  | Cass          |
| Hager Special Slough D&L      | 90-93                                 | 3,698  | Cass          |
| Clear Lake D&L                | 90-93                                 | 2,040  | Cass          |
| Lynchburg-Sangamon Botton D&L | 93-95                                 | 2,600  | Mason         |
| Seahorn D&L                   | 111-112                               | 1,414  | Fulton        |
| Lacey D&L                     | 112-119                               | 2,995  | Fulton        |
| Langellier D&L                | 112-119                               | 1,967  | Fulton        |
| Kerton Valley D&L             | 112-119                               | 1,628  | Fulton        |
| West Mantanzas D&L            | 112-119                               | 2,577  | Fulton        |
| Thompson Lake D&L             | 121-126                               | 5,233  | Fulton        |
| Liverpool D&L                 | 126-128                               | 3,042  | Fulton        |
| East Liverpool D&L            | 128-132                               | 2,678  | Fulton        |
| Spring Lake D&L               | 134-148                               | 11,798 | Tazewell      |
| Rocky Ford D&L                | 148-151                               | 1,468  | Tazewell      |
| East Peoria D&L               | 163-165                               | 728    | Tazewell      |
| Banner Special D&L            | 138-146                               | 4,565  | Fulton/Peoria |
| Pekin-LaMarsh D&L             | 149-155                               | 2,635  | Peoria        |

Table 2b. Land Acreage of Drainage and Levee Districts Along LaGrange Pool (River mile 80 to 158)

|                     | Backwater Lake |              |             |
|---------------------|----------------|--------------|-------------|
| Name                | River Mile     | Area         | County      |
| Big Meadow Slough   | 183-185        | 480          | Peoria      |
| Boat Jack Lake      | 148-149        | 130          | Peoria      |
| Lower Peoria Lake   | 162-166        | (2522)**     | Peoria      |
| Upper Peoria Lake   | 166-182        | (12476)**    | Peoria      |
| Wightman/Gar Lake   | 186-189        | 595          | Marshall    |
| Goose/Weis Lake     | 189-193        | 1300         | Marshall    |
| Billsbach Lake      | 193-195        | 1015         | Marshall    |
| Babbs/Sawyer Slough | 183-188        | 1875         | Marshall    |
| Sawmill Lake        | 197-199        | 630          | Putnam      |
| Senachwine Lake     | 198-203        | 3324         | Putnam      |
| Swan Lake           | 198-200        | 180          | Putnam ·    |
| Goose Lake          | 204-206        | 2360         | Putnam      |
| Spring Lake         | 210-211        | 262          | Bureau      |
| DePue Lake          | 211-214        | 524          | Bureau      |
| Total Number = 12   |                | Total Area = | = 3149 Acre |

Table 3a. Surface Area of Backwater Lakes Along the Peoria Pool (River mile 158 to 230)

\*\* This lake surface area is included in river surface area category.

| Dr               | ainage and Levee Dis | strict     |              |
|------------------|----------------------|------------|--------------|
| Name             | River Mile           | Area       | County       |
| Crow Creek D.D.  | 182-183              | 568        | Marshall     |
| Hennepin D&L     | 203-207              | 2581       | Putnam       |
| Total Number = 2 |                      | Total Area | = 3149 Acres |

Table 3b. Land Acreage of Drainage and Levee District Along Peoria Pool (River mile 158 to 230)

|                  | Backwater<br>Lake | River<br>Surface<br>Area | Drainage<br>and Levee<br>District       | Non-organized<br>Farmland and<br>Other Land Use | Total<br>Floodplain<br>Area |
|------------------|-------------------|--------------------------|-----------------------------------------|-------------------------------------------------|-----------------------------|
|                  |                   | - 0 + - 00)              | ·····                                   |                                                 |                             |
|                  | ol (River mil     |                          |                                         |                                                 |                             |
| Number           | 13                | N.A.*                    | 14                                      | N.A.                                            | N.A.                        |
| Acres            | 6,042             | 9,480                    | 104,312                                 | 120,486                                         | 240,320                     |
| Percent          | 2.5               | 3.9                      | 43.4                                    | 50.1                                            | 100.0                       |
| LaGrange         | Pool (River       | mile 80 to               | <u>158)</u>                             |                                                 |                             |
| Number           | 28                | N.A.                     | 23                                      | N.A.                                            | N.A.                        |
| Acres            | 19,980            | 6,140                    | 76,795                                  | 272,765                                         | 375,680                     |
| Percent          | 5.3               | 1.6                      | 20.4                                    | 72.6                                            | 100.0                       |
| <u>Peoria Po</u> | ool (River mi     | <u>le 156 to</u>         | <u>230)</u>                             |                                                 |                             |
| Number           | 12                | N.A.                     | 2                                       | N.A.                                            | N.A.                        |
| Acres            | 12,675            | 17,836                   | 3,149                                   | 95,748                                          | 129,408                     |
| Percent          | 9.8               | 13.8                     | 2.4                                     | 74.0                                            | 100.0                       |
| <u> </u>         |                   |                          |                                         |                                                 |                             |
| Total Riv        | ver Reach (Ri     | ver mile 0               | to 230)                                 |                                                 |                             |
| Number           | 53                | N.A.                     | 39                                      | N.A.                                            | N.A.                        |
| Acres            | 38,697            | 33,456                   | 184,256                                 | 488,999                                         | 745,408                     |
| Percent          | 5.2               | 4.5                      | 24.7                                    | 65.6                                            | 100.0                       |
|                  |                   |                          | · _ · · · · · · · · · · · · · · · · · · |                                                 |                             |

Table 4. Summary of the Illinois River Floodplain Inventory

N.A. = Not applicable.

### Chapter 3

## SEDIMENT YIELD ESTIMATION IN THE ILLINOIS RIVER BASIN

#### Introduction

The sediment sources of the Illinois river are well-known. The sediment comes from the major rivers emptying into the Illinois River. In Figure 3 is a map showing the location of these tributaries. The sediment conditions in the backwater lakes are dependent upon the sediment yield from the various parts of the Illinois river basin. In order to assess the general sediment conditions in the Illinois River, we attempt to estimate the sediment yield based on the available information.

## Methodology

The Illinois River Basin was divided into 9 sub-basins as shown in Table 5 and Figure 3. The drainage areas of the subbasin were taken from published data of the U.S. Geological Survey, Kent Ogata (1975). We used the sediment yield results published by the Upper Mississippi River Comprehensive Basin Study (1970) to estimate the annual sediment yield. This chart related average sediment yield per square mile with drainage area based on Lake Resources Area and is reproduced here in Figure The Land Resources Area delineations were shown in Figure 5. 4. Table 5 gives the areas of each Land Resources Area (LRA) for each sub-basin. Because the bluff areas along the Illinois river uses different curve in Figure 4 it is necessary to measure the total bluff area in each sub-basin. Some areas of the river basins are in the floodplain. We consider the floodplain

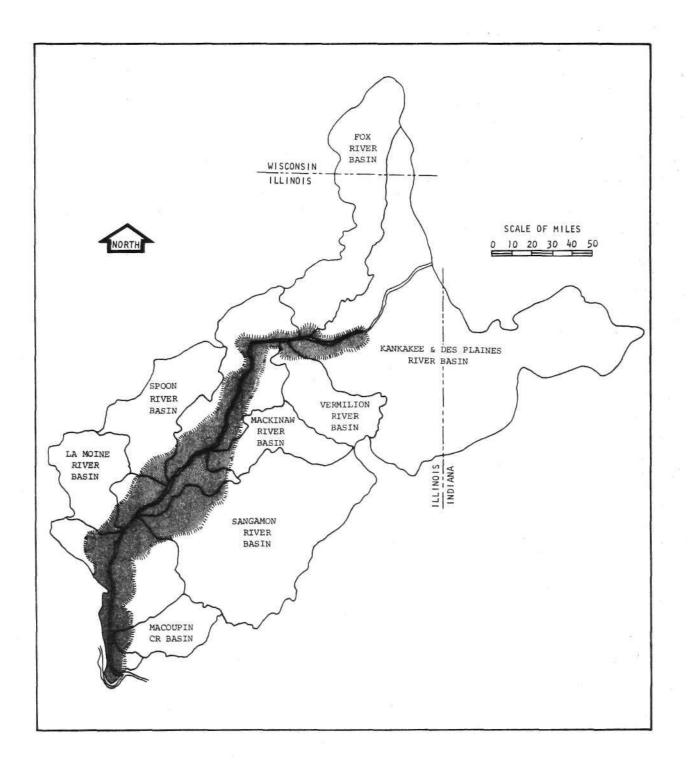
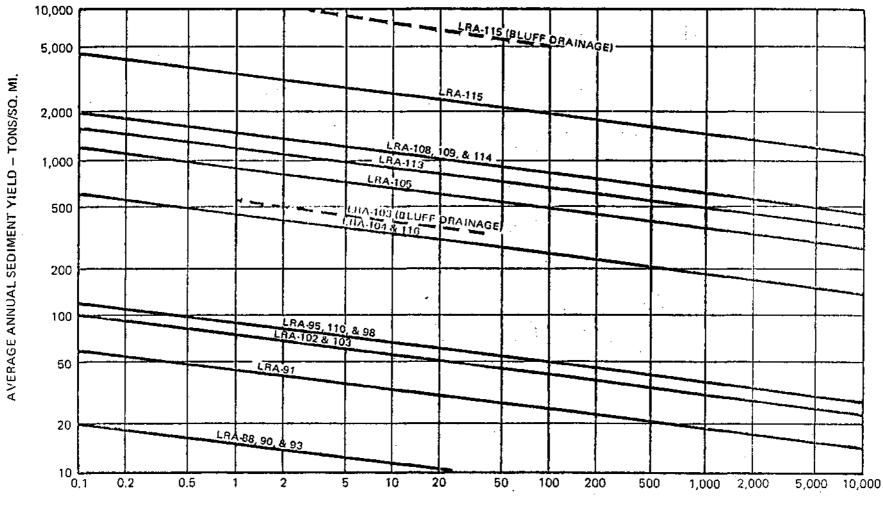




Figure 3



.

.

DRAINAGE AREA -SQ. MI.

Figure 4

-21-

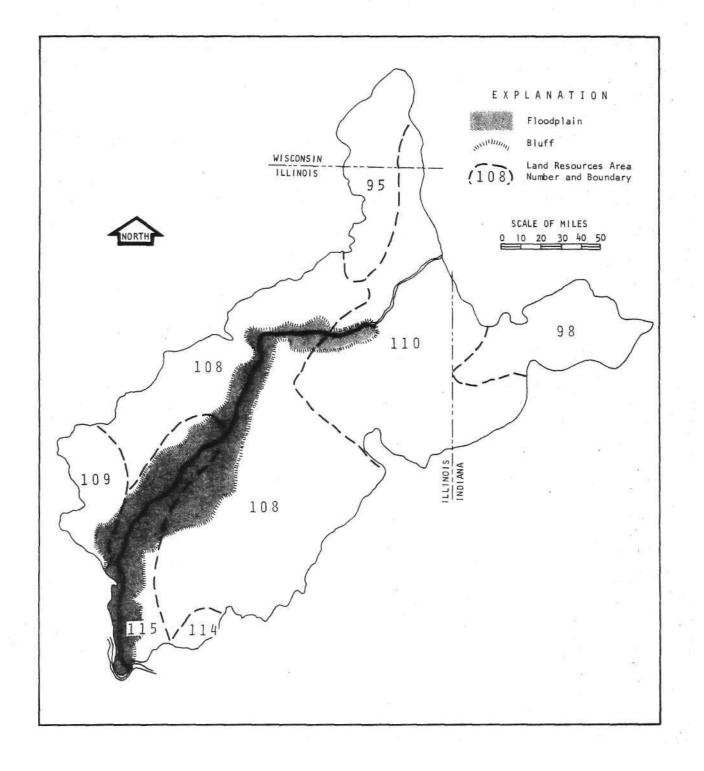



Figure 5

|     | Basin<br>Name                                          | Bluff<br>Area<br>(sq. mi.)  | Floodplain<br>Area<br>(so. mi.) | Upland<br>Area<br>(sq. mi.)     | Total<br>Drainage<br>Area<br>(sq. mi.) |
|-----|--------------------------------------------------------|-----------------------------|---------------------------------|---------------------------------|----------------------------------------|
| (1) | Illinois River<br>Upstream of<br>Marseilles            |                             |                                 |                                 |                                        |
|     | LRA 95-98-110                                          |                             |                                 | 8,259<br>(100%)                 | 8,259<br>(100%)                        |
| (2) | Fox River<br>LRA 108                                   | 76.8<br>(2.9%)              | 14.4<br>(0.5%)                  | 2,567<br>(96.9%)                | 2,658<br>(100%)                        |
| (3) | Vermilion Rive<br>LRA 110                              | r 60.8<br>(4.6%)            | 6.4<br>(0.5%)                   | 1,264<br>(95.0%)                | 1,331<br>(100%)                        |
| (4) | Mackinaw River<br>LRA 108                              | 112<br>(9.8%)               | 43.2<br>(3.8%)                  | 981<br>(86.4%)                  | 1,136<br>(100%)                        |
| (5) | Spoon River<br>LRA 108<br>115 Bluff                    | <br>120                     | <br>24                          | 1,711<br>                       | 1,855                                  |
| (6) | Sangamon River<br>LRA 108<br>115 Bluff                 | (6.5%)<br><br>131<br>(2.4%) | (1.3%)<br><br>178<br>(2.2%)     | (92.0%)<br>5,109<br>            | (100%)<br>5,418                        |
| (7) | LaMoine River<br>LRA 109<br>LRA 115 Bluff              | (2.4%)<br><br>64<br>(4.7%)  | (3.3%)<br><br>19.2<br>(1.4%)    | (94.2%)<br>1,267<br><br>(93.8%) | (100%)<br>1,350<br>(100%)              |
| (8) | MaCoupin River<br>LRA 109<br>LRA 115 Bluff             |                             | (1.4%)<br><br>32.0<br>(3.3%)    | 839                             | 961                                    |
| (9) | Direct Drain Ar<br>LRA 108<br>LRA 115<br>LRA 115 Bluff | rea<br>                     | (3.3%)<br><br>848<br>           | (87.3%)<br>1,641<br>1,000       | 5,938                                  |
|     |                                                        | (41.2%)<br>3,105<br>(10.7%) | (14.3%)<br>1,165                | (44.5%)<br>24,637<br>(85.2%)    | (100%)<br>28,906<br>(100%)             |

Table 5. Measurement of Bluff, Floodplain and Upland Areas of the Illinois River Basin in Various Land Resource Areas (LRA's) as an area where, sediment is deposited, The sediment yield in the floodplain area is considered minimum. Table 5 also shows the areas of the bluff zone, floodplain, and upland area in each sub-basin. It needs to be described here that the direct drainage area to the Illinois River is defined as the collection of all the watersheds which are not large enough to be considered as subbasins. Generally, these watersheds are in the bluff areas.

## Results and Discussions

Table 6 shows the results of sediment yield estimation. The annual sediment yields from the bluff area and upland area were calculated in terms of tons per square mile, tons per acre and total tons from each sub-basin. Because the direct drain area is a collection of all the small watersheds along the Illinois River, the total drainage area given does not reflect a real physical basin. Therefore, we assume the typical direct drainage area is 50 square miles.

The results in Table 6 indicate that the bluff has an average sediment yield of about 5500 tons per square mile or 8.7 tons per acre. The upland areas contribute about 418 tons per square mile or 0.65 tons per acre. As far as the per unit area sediment yield is concerned, the bluff area is about 12 times larger than that of upland area. However, because the upland area is about 8 times larger in drainage area than that of bluff area, the comparative total sediment yields are about 10.3 million tons from bluff areas and 17.2 million tons from upland areas. The average annual sediment yield entering the Illinois river basin is

-24-

Table 6. Estimation of Sediment Yield in the Illinois River Basin

|                             |                   | Bluff A |            | -    | Upland |            |                   | Total | Basin      |
|-----------------------------|-------------------|---------|------------|------|--------|------------|-------------------|-------|------------|
|                             | T/Mi <sup>2</sup> | T/Ac    | T T/       | /Mi² | T/Ac   | ТІ         | '/Mi <sup>2</sup> | T/AC  | Т          |
| (1) Illinois River Upstream |                   |         |            |      |        |            |                   |       |            |
| of Marseilles               | —                 | —       | —          | 31.5 | 0.05   | 260,159    | 31.5              | 0.05  | 260,159    |
| (2) Fox River               | —                 | —       | —          | 580  | 0.91   | 1,533,288  | 580               | 0.91  | 1,533,288  |
| (3) Vermilion River         | —                 | _       | —          | 38.5 | 0.06   | 50,997     | 38.5              | 0.06  | 50,997     |
| (4) Mackinaw River          | 5,000             | 7.8     | 560,000    | 658  | 1.03   | 645,366    | 1061              | 1.66  | 1,205,366  |
| (5) Spoon River             | 5,000             | 7.8     | 600,000    | 605  | 0.95   | 1,035,155  | 881               | 1.38  | 1,635,155  |
| (6) Sangamon River          | 5,000             | 7.8     | 656,000    | 500  | 0.78   | 2,554,500  | 593               | 0.93  | 3,210,500  |
| (7) LaMoine River           | 5,625             | 8.8     | 360,000    | 616  | 0.96   | 780,349    | 845               | 1.32  | 1,140,319  |
| (8) Macoupin Creek          |                   |         |            |      |        |            |                   |       |            |
| LRA 108                     | 5,000             | 7.8     | 452,000    | 700  | 1.09   | 377,020    |                   |       |            |
| 115                         |                   |         |            | 1800 | 2.81   | 540,000    | 1412              | 2.23  | 1,369,020  |
| (9) Direct Drain Area       |                   |         |            |      |        |            |                   |       |            |
| LRA 115                     | 5,961             | 9.3     | 14,602,065 | 1550 | 2.42   | 1,550,000  |                   |       |            |
| 108                         |                   |         |            | 600  | 0.94   | 984,300    | 2886              | 4.50  | 17,136,365 |
| (10) Sum of Sub-Basins      | 5,549             | 8.67    | 17,230,000 | 418  | 0.65   | 10,309,000 | 953               | 1.49  | 27,541,994 |

1.49 tons per acre or 953 tons per square mile. The total sum of the sediment yields from all the sub-basins is about 27.5 million tons. These results are also shown in Table 7 which is a summarysheet.

A comparison of the sediment yield from the sub-basins in Table 6 indicates that five sub-basins have sediment yields higher than 1 ton per acre. The direct drainage area sub-basin has the highest sediment yield per unit area which is 4.5 tons per acre. Then follows Macoupin Creek sub-basin which has a sediment yield of 2.23 tons per acre. Both of these sub-basins have a high percent of their acreage (41.2% and 9.4%) in the bluff area. The Mackinaw river, Spoon river and Lamoine river sub-basins have sediment yields of 1.66, 1.38 and 1.32 tons per acre respectively. The Illinois river basin upstream of Marseilles, and the Vermilion river basin contribute very insignificant sediment yields. The Pox and Sangamon river basins contribute little; being less than 1 ton per acre.

It is worthwhile to note here that the sum of the sediment yields from all sub-basins is different from the sediment yield at the mouth of the Illinois river basin. The difference is the sediment deposited in the backwater lakes and river beds. In order to assess the portion of sediment deposited in the floodplain, we assume the Illinois river basin is represented by Land Resources Area 108. The sediment yield graph in Figure 4 was then used to estimate sediment yield for the entire basin.

-26-

| Table 7. Summary of Annua<br>The Illinois Riv    |                                          | t Yield Estimation,                         |
|--------------------------------------------------|------------------------------------------|---------------------------------------------|
| Items                                            | Quantity                                 | Units                                       |
| Basin                                            |                                          |                                             |
| Total Area                                       | 28,906<br>18,499,840                     | square miles<br>acres                       |
| Ploodplain Area                                  | 1,165<br>745,600                         | square miles<br>acres                       |
| Bluff Area                                       | 3,105<br>1,987,200                       | square miles<br>acres                       |
| Upland Area                                      | 24,637<br>15,767,680                     | square miles<br>acres                       |
| Annual Sediment Yield                            |                                          |                                             |
| Bluff Area                                       | 5,549<br>8.67                            | tons per square mi<br>tons per acre<br>tons |
| Upland Area                                      | 17,230,000<br>418<br>0.654               | tons per square mi<br>tons per acre<br>tons |
| The Sum of Sub-Basins                            | 10,309,000<br>993<br>1.55                | tons per square mi<br>tons per acre<br>tons |
| Total Basin                                      | 27,539,000<br>420<br>0.656<br>12,140,520 | tons per square mi<br>tons per acre<br>tons |
| Annual Sediment Deposition<br>in Floodplain Area |                                          |                                             |
| Total Sediment Weight                            | 15,398,480                               | tons                                        |
| Total Volume*                                    | 11,845                                   | acre-feet                                   |
| Thickness in                                     |                                          |                                             |
| Backwater Lakes<br>(38,697 acres)                | 3.67                                     | inches per year                             |
| Backwater Lakes and Riv<br>(72,153 acres)        | er<br>1.97                               | inches per year                             |
|                                                  | エ・シノ                                     | THOMAS POT JOUT                             |

\* Assuming the dry volume weight of sediment 1300 tons per acre-foot or 60 lb. per cubic foot.

The whole basin has a sediment yield of 0.65 tons per acre or 420 tons per square mile. The total sediment yield leaving the Illinois River basin at its mouth, at Grafton is 12.1 million tons as shown in Table 7. Therefore, about 15.4 million tons of sediment can be categorized as the sediment deposited in the Illinois River floodplain. If a volume weight of 60 lb. per cubic feet or 1300 tons per acre-foot is used, this annual sediment deposition is 11,845 acre-feet.

In order to estimate the thickness of deposition, we need to know the location of the sediment deposition. The exact location of the sediment deposited is not known at present time. Three hypotheses conditions were used. First, we considered that all the sediment deposited in the backwater lakes. According to the lake inventory in Table 4, backwater lakes occupy a total area of 38,697 acres. Therefore, the sediment would deposit to a thickness of about 3.67 inches per year. The second hypothesis is that the sediment deposits in the backwater lakes and in the river bed. Both these cover 72,153 acres in the Illinois river floodplain as given in Table 4. Under this hypotheses we find that sediment deposits to a thickness calculated as 1.97 inches per year. The third hypothesis is that the sediment spreads over all the floodplain. Under such a hypothesis the annual sediment deposition ends up about 0.19 inches per year as shown in Table 7.

Considering these three hypothetical conditions, it seems that the first and second conditions are under estimating the deposition area. The third condition is over estimating the deposition area. Therefore, an average annual sediment deposition

-28-

rate for the entire Illinois River floodplain of 1.97 inches per year is over estimated and 0.19 inches per year is under estimated. According to the actual sediment survey results at Lake Meredosia given later in Table 9, the annual deposition in this lake is about 0.41 inches per year. Therefore we conclude that the deposition rate might fall in the range of 0.2 to 2.0 inches per year for the entire floodplain. This will be discussed further in later sections of this report.

## Chapter 4

# SEDIMENT CONDITIONS IN LAKES MEREDOSIA AND DEPUE Lake Meredosla

Lake Meredosia is one of the numerous backwater lakes along the Illinois River. This lake stretches along the Illinois River from river mile 72 to 78 in Morgan and Cass Counties at the upper end of the Alton pool, see Figure 1. During the normal and low river stages, the Illinois River main stream conveys the water and sediment load. At the flood stage, the water spreads over the floodplain and backs into the backwater lakes. After the flood recedes, the sediment deposits in these backwater lakes. Since the completion of Alton lock and dam in 1940, this impoundment further raised the water level in the river and reduced the flow velocity. Therefore, the sediment deposition increased in the backwater lakes. Accordingly, the recreation features of fishing and hunting are gradually deteriorating in this lake. In order to assess the 1975 sediment conditions, a study was initiated and funded by the Division of Water Resources.

The sediment study included a sediment survey, and the comparison of the results with earlier surveys. Nine cross-sections were measured in our 1975 field survey as shown in Figure 6. These cross-sections were compared with the 1903 U.S. Corps of Engineers survey and the 1956 Division of Waterways maps. Figure 7 illustrates a typical example of the sediment deposition in different years. The lake capacities of the 1903, 1956 and 1975 conditions were calculated based on Eakin's Range formula in 9 segments; the segments are shown on the map in Figure 6 and the results are given in Table 8. The capacity losses were computed in acre-feet and percentage in terms of 1903 volume.

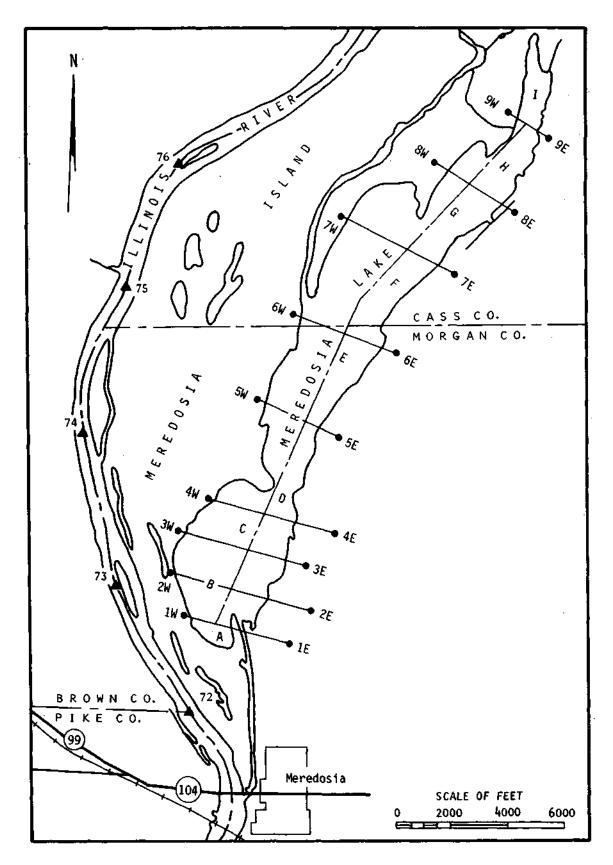



Figure 6

| Table 8. | Distribution | of | Storage | Loss | in | Lake | Meredosia |
|----------|--------------|----|---------|------|----|------|-----------|
|----------|--------------|----|---------|------|----|------|-----------|

|         |         |        |         |          |         | Ca      | apacity | Loss    |      |
|---------|---------|--------|---------|----------|---------|---------|---------|---------|------|
| Segment | Locat   | ion S  | Storage | Capacity | (ac-ft) | 1903-56 | 5       | 1903-75 |      |
| Number  | Statio  | on     | 1903    | 1956     | 1975    | ac-ft   | %       | ac-ft   | %    |
|         | From    | То     |         |          |         |         |         |         |      |
| А       | Channel | 61+00  | 357.4   | 31.4     | 15.0    | 326     | 91.2    | 342     | 95.8 |
| В       | 61+00   | 85+94  | 967.9   | 472.9    | 228.1   | 495     | 51.1    | 740     | 76.4 |
| С       | 85+94   | 99+32  | 637.9   | 386.8    | 248.6   | 251     | 39.4    | 389     | 61.0 |
| D       | 99+32   | 146+14 | 1510.8  | 966.9    | 916.2   | 543     | 36.0    | 594     | 39.4 |
| Ε       | 146+14  | 182+53 | 1261.7  | 886.9    | 799.0   | 375     | 29.7    | 462     | 36.7 |
| Р       | 182+53  | 218+89 | 1469.9  | 1130.4   | 1001.2  | 339     | 23.1    | 469     | 31.9 |
| G       | 218+89  | 258+05 | 1085.8  | 792.5    | 669.8   | 293     | 27.0    | 416     | 38.3 |
| Н       | 258+05  | 276+29 | 333.5   | 261.6    | 206.3   | 72      | 21.6    | 127     | 38.1 |
| I       | 276+29  | End    | 166.2   | 133.8    | 122.6   | 32      | 19.5    | 44      | 26.2 |
| Lake    |         |        |         |          |         |         |         |         |      |
| Volume  | (ac-    | ft)    | 7791.0  | 5063.3   | 4206.9  | 2728    | 35.%    | 3584    | 46.  |
| Area    | (acr    | es)    | 1467.5  | 1418.0   | 1375.0  | 49      | 3.4%    | 92      | 6.3  |

The results were summarized in Table 9.

The significant findings of this study are:

(1) Lake Meredosia lost 3584 acre-feet within 72 years or46 percent of the capacity in terms of the 1903 volume.

(2) The average annual accumulation is 49.8 acre-feet or0.64 percent per year based on the 1903 volume.

(3) The average rate of lake bed rise is about 0.41 inches per year. Based on the 1975 capacity, the expected life of the lake is about 90 years.

(4) The capacity loss is the highest near the inlet channel as shown in Table 8 at segment A which lost 95.8%. On the other hand, the lowest capacity loss is the segment I located near the upper end of the lake. The rate of lake capacity loss decreases with the distance the segments are away from the inlet channel. These data indicate that most of the sediment loss was carried in by the stream flows. This influx causes a northward inflow pattern and causes the formation of a pair of islands or natural levees adjacent to the inlet channel as shown in segment B of the lake in Figure 6.

In addition to the sediment survey, the water and sediment dissolved oxygen demands among other water quality parameters were measured by the personnelof the Water Quality Section of the State Water Survey, Sediment samples at each cross-section were taken. The samples are being analyzed by the State Geological Survey.

-33-

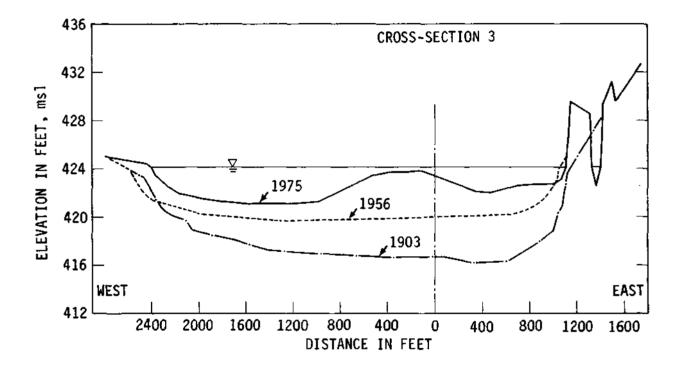



Figure 7

Table 9. Summary of Sediment Data on Lake Meredosia Meredosia, Illinois

|                                       | Quantity |                    |  |  |  |  |  |  |
|---------------------------------------|----------|--------------------|--|--|--|--|--|--|
| Sedimentation                         |          |                    |  |  |  |  |  |  |
| 1903-1956 (53 yrs)                    | 2728     | acre-feet          |  |  |  |  |  |  |
| 1956-1975 (19 yrs)                    | 856      | acre-feet          |  |  |  |  |  |  |
| 1903-1975 (72 yrs)                    | 3584     | acre-feet          |  |  |  |  |  |  |
| Average Annual Accumulation           |          |                    |  |  |  |  |  |  |
| 1903-1956                             | 51.5     | acre-feet per year |  |  |  |  |  |  |
| 1956-1975                             | 45.1     | acre-feet per year |  |  |  |  |  |  |
| 1903-1975                             | 49.8     | acre-feet per year |  |  |  |  |  |  |
| Depletion of Storage                  |          |                    |  |  |  |  |  |  |
| Loss of Original Capacity             |          |                    |  |  |  |  |  |  |
| 1903-1956                             | 35       | percent            |  |  |  |  |  |  |
| 1956-1975                             | 11       | percent            |  |  |  |  |  |  |
| 1903-1975                             | 46       | percent            |  |  |  |  |  |  |
| Annual Rate of Loss of                |          |                    |  |  |  |  |  |  |
| Original Capacity                     | 0.66     |                    |  |  |  |  |  |  |
| 1903-1956                             | 0.66     | percent per year   |  |  |  |  |  |  |
| 1956-1975                             | 0.58     | percent per year   |  |  |  |  |  |  |
| 1903–1975                             | 0.64     | percent per year   |  |  |  |  |  |  |
| Annual Rate of Rise of<br>Lake Bottom |          |                    |  |  |  |  |  |  |
| 1903–1956                             | 0.42     | inches per year    |  |  |  |  |  |  |
| 1956-1975                             | 0.37     | inches per year    |  |  |  |  |  |  |
| 1903-1975                             | 0.41     | inches per year    |  |  |  |  |  |  |
| Average depth (1975)                  | 3.06     | ft                 |  |  |  |  |  |  |
|                                       |          |                    |  |  |  |  |  |  |
| Expected Life                         | 90       | years              |  |  |  |  |  |  |

Note: Lake surface elevation is assumed as 424 msl which is about the median value of the lake stage based on 40 years river stage data at Meredosia.

### Lake DePue

Lake DePue is a backwater lake located on the north bank of the Illinois River just upstream from the "great bend" at Hennepin which about river mile 213 in Bureau County, see Figure 2. Lake DePue is at the upper end of the Peoria pool which stretches from river mile 157 to 230. Before World War II, Lake DePue was a highly popular boating lake, especially attractive to boat racing and sailing regattas. The former lake depth was about 18 to 20 feet according to local residents. However, considerable sediment has been deposited in this lake by flood flows of the Illinois River and probably by tributary inflow from agricultural lands to the north. This has reduced the size of the navigable part of the lake. The mouth of the lake is connected to the Illinois River by a channel, except at low river stages.

The City of DePue has proposed to restore Lake DePue as nearly as possible to its original depth. In order to develop management plans, a thorough sediment survey was needed, and was carried out in 1975.

### Objectives

The objectives of this study were

- to take cross-sections of the sediment deposited in Lake DePue,
- (2) to develop the comparative cross-sections based on the1903 Woermann maps,

-36-

- (3) to calculate the sediment deposition rate based on the 1903 and 1975 surveys,
- (4) to study the variation in river stage, and
- (5) to analyze the sediment samples for chemical and physical properties.

#### The 1975 Survey

The sediment survey was initiated by Illinois State Water Survey in summer of 1975. The job consisted of measuring 8 crosssections on Lake DePue. The horizontal and vertical control was establised for the locations of the cross-sections. The entire survey was carried out by Daily and Associates, Peoria, Illinois. Two sediment samples were taken for volume weight, and particle size analysis. One sediment core was taken for chemical analysis.

### Cross-Sections Survey of 1903

In 1903, detailed cross-sections of the Illinois River and the Des Plaines River were mapped by Mr. W.J. Woermann (1903). This set of maps covers the river from Grafton to Lockport with 58 sheets at a scale of 1 inch to 600 feet. There were about 37 sections on Lake DePue. The elevation of the maps was based on Memphis datum which is 6.630 feet lower than mean sea level, 1929-5th general adjusted as described by McKibbin and Schmidt (1954).

-37-

# Comparison of the 1903 and 1975 Surveys

Based on the cross-sections of the 1903 and 1975 surveys, 8 cross-sections were developed. Figure 8 shows the location of the cross-sections in Lake DePue. Figure 9 shows water depths in 1903 and 1975 respectively for two typical cross-sections. Based on this survey we computed the volume of the lake in 1903 and 1975. The reference lake surface elevation is 441 msl which is about the normal lake level. We utilized the Eakin's method (3) to calculate the lake volume. The lake was divided into 9 segments as shown in Figure 9. Table 10 gives (1) the segments, (2) storage capacity in 1903 and 1975, (3) the lake capacity loss in acre-feet and percent of 1903 volume. The total capacity of the lake and its surface area are also given in the same table.

# Results and Discussion

The results indicate that about 72.6% of the 1903 lake capacity has been filled up with sediment. The upstream or eastern segments H and I are almost completely lost to sediment. The other segments capacities have been reduced in relatively uniform manner. This is quite different from Lake Meredosia. Two possible reasons can be traced. First, the east end of Lake DePue receives inflows from the Illinois River during high river stages. Second, the natural levee along the south side of Lake DePue island is only about elevation 446 msl which is only 5 feet above the normal lake level. Therefore, the lake would receive the Illinois river water directly overtopping the natural levee more frequently than at Lake

-38-

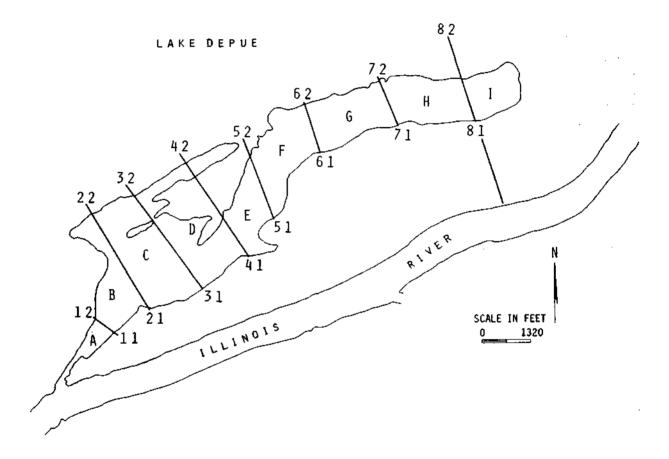



Figure 8

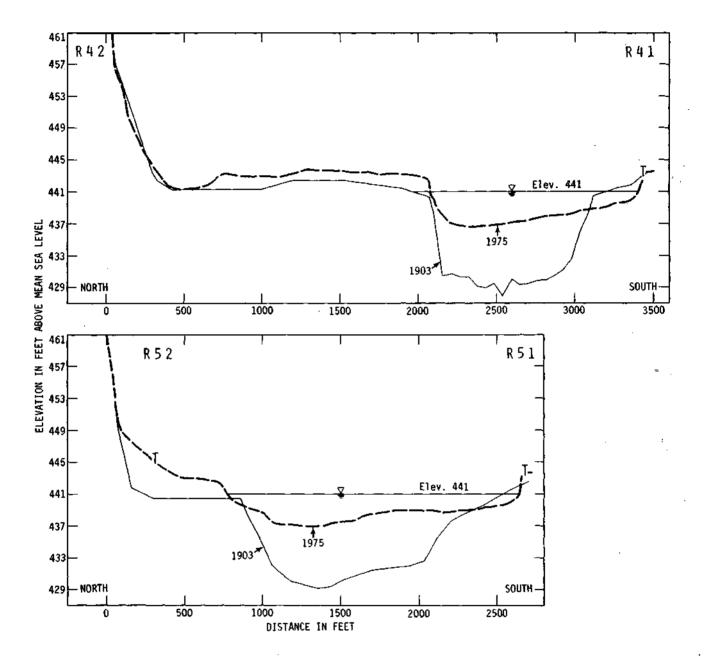



Figure 9

| Segment<br>Number | Locat<br>Stat | tion<br>tion | Sto:<br>Capacity | rage<br>(ac-ft) | Capacit | Loss  |
|-------------------|---------------|--------------|------------------|-----------------|---------|-------|
|                   | From          | То           | 1903             | 1975            | ac-ft   | %     |
| A                 | Channel       | 12-11        | 77.3             | 14.3            | 63.0    | 81.5  |
| В                 | 12-11         | 22-21        | 181.7            | 53.5            | 131.2   | 71.0  |
| C                 | 22-21         | 32-31        | 330.6            | 126.3           | 204.3   | 61.8  |
| D                 | 32-31         | 42-41        | 413.8            | 152.3           | 261.5   | 63.2  |
| Е                 | 42-41         | 52-51        | 295.9            | 124.2           | 171.7   | 58.0  |
| F                 | 52-51         | 62-61        | 461.2            | 174.4           | 286.8   | 62.2  |
| G                 | 62-61         | 72-71        | 507.7            | 108.2           | 399.5   | 78.7  |
| H                 | 72-71         | 82-81        | 363.1            | 24.4            | 338.7   | 93.3  |
| I.                | 82-81         | END          | 202.4            | 0.0             | 202.4   | 100.0 |
| Lake Volume       | (ac-ft)       |              | 2836.7           | 777.6           | 2059.1  | 72.6% |
| Lake Area         | (acres)       |              | 578.4            | 479.1           | 99.3    | 17.2% |

Table 10. Distribution of Storage Loss in Lake DePue

Meredosia. Consequently, the sediment is rather uniformly deposited in Lake DePue.

Table 11 summarizes the total sediment data. The significant findings are:

- (1) From 1903 to 1975, the capacity of Lake DePue was reduced from 2837 ac-ft to 778 ac-ft, or 72.6% capacity loss. In terms of annual deposition rate, the lake lost 28.6 ac-ft or 1.01% per year.
- (2) The change of lake volume mostly is due to the rising of the lake bed. It was estimated that the annual rate of the rise is 0.59 inches per year. The expected time for the lake to fill with sediment to normal lake level is about 33 years.

Table 11. Summary of Sediment Data on Lake DePue

|                                                                | Quantity     |                      |
|----------------------------------------------------------------|--------------|----------------------|
| Sedimentation<br>1903-1975 (72 yrs)                            | 2059         | acre-feet            |
| Average Annual Accumulation<br>1903-1975                       | 28.6         | acre-feet            |
| Depletion of Storage<br>Loss of Original Capacity<br>1903-1975 | 72.6         | percent              |
| Annual Rate of Loss of<br>Original Capacity<br>1903-1975       | 1.01         | percent per year     |
| Annual Rate of Rise of<br>Lake Bottom<br>1903-1975             | 0.59         | inches per year      |
| Average Depth (1975)                                           | 1.62         | feet                 |
| Expected Years to Fill Up to 441. msl.                         | 33           | years                |
| Volume Weight<br>(dry weight)<br>Upper End<br>Lower End        | 42.1<br>44.1 | lb/cu ft<br>lb/cu ft |

Note: Lake surface elevation is assumed as 441 MSL which is about the median value of the lake stage based on 40 years river stage data at Hennepin.

### Chapter 5

# RECONNAISSANCE SURVEYS OP SELECTED BACKWATER LAKES

# Introduction

The backwater lakes inventory shown in Tables 1 to 4 lists 53 backwater lakes along the river. The purpose of this project is to make a general investigation of the current sediment conditions in these backwater lakes. We selected Lake Meredosia and Lake DePue for detailed studies. This was due to the fact that these two lakes were requested by the State and local people for developing a plan to manage the lakes. In addition of these two studies, we also selected 11 backwater lakes for reconnaissance survey. The results of the 1975 reconnaissance surveys of 3 lakes have been compared with earlier surveys. All these results are reported in this section.

### Reconnaissance Survey

The 11 lakes selected for reconnaissance survey are shown in Table 12. Most of these lakes are considered as big lakes. For 2 lakes results were compared with the earlier surveys and results are presented as follows.

### Swan Lake

This lake is located at river mile from 5 to 9 in Calhoun and Jersey counties, see Figure 10. The U.S. Fish and Wildlife manages this lake as part of the Mark Twain National Wildlife Refuge. The lake surface area is 1853 acres. Few creeks drain to the lake. The Metz Creek Is the one with the largest drainage

|     |                         |                                        |       | Surface           |                      |
|-----|-------------------------|----------------------------------------|-------|-------------------|----------------------|
|     |                         |                                        | River | Area              |                      |
|     | Lake Name               | Map No.                                | mile  | (acres)           | County and Near Town |
| 1.  | Swan Lake <sup>*4</sup> | 2,3 <sup>*1</sup>                      | 5     | 1853              | Calhoun, Crafton     |
| 2.  | Meredosia <sup>*5</sup> | 26, 27, 28                             | 71    | 1691              | Morgan, Meredosia    |
| 3.  | Muscooton Bay           | 32, 33                                 | 89    | 377               | Cass, Browning       |
| 4.  | Anderson Lake           | 43, 45, 46                             | 110   | 1363              | Pulton, Marbletown   |
| 5.  | Mantanzas               | 47, 48                                 | 115   | 361               | Mason, Havana        |
| 6.  | Chautauqua              | 50, 51, 52                             | 125   | 3562              | Mason, Havana        |
| 7.  | Pekin                   | 63, 64                                 | 155   | 133               | Tazewell, Pekin      |
| 8.  | Peoria Lake             | 67, 68, 69, 70                         |       |                   |                      |
|     | (upper and lower)       | 71, 72, 74                             | 165   | 6000*3            | Peoria, Peoria       |
| 9.  | Babbs Slough            | 75, 76, 77                             | 185   | 1875              | Marshall, Lacon      |
| 10. | $Sawmill^{*4}$          | 80, 81                                 | 197   | 630               | Putnam, Henry        |
| 11. | DePue <sup>*5</sup>     | 87, 89                                 | 210   | 524               | Bureau, DePue        |
| 12. | Huse Slough             | $183, 185^{*2}$                        | 221   | 200 <sup>*3</sup> | Bureau, DePue        |
| 13. | Ballard                 | <u>123.</u> , <u>124</u> <sup>*2</sup> | 248   | 200*3             | LaSalle, Marseilles  |

Note: \*1 Map Numbers from the <u>Report for Recreational</u> <u>Development on the Illinois River</u> Backwater Area, Division of Waterways 1969

- <sup>\*</sup>2 Map Numbers from Map Atlas of Upper Illinois River, Division of Waterways, 1971
- \*3 surface water area estimated
- <sup>\*</sup>4 reconnaissance survey made
- <sup>\*</sup>5 detailed survey made

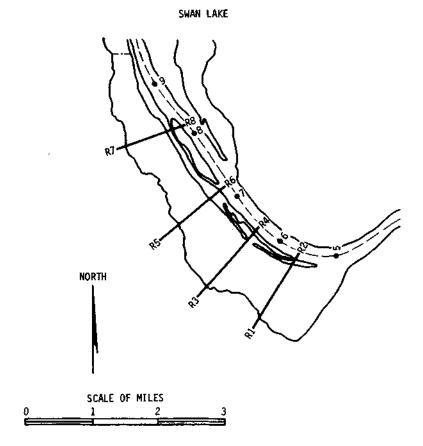
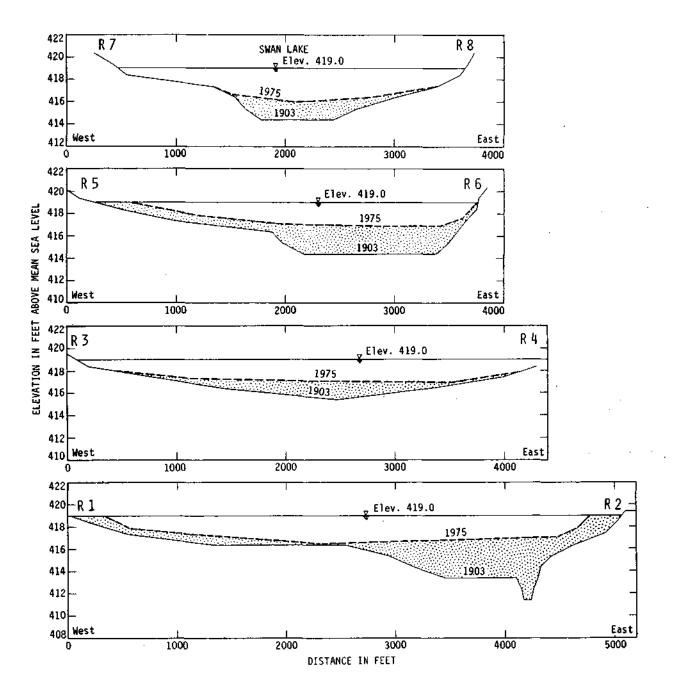
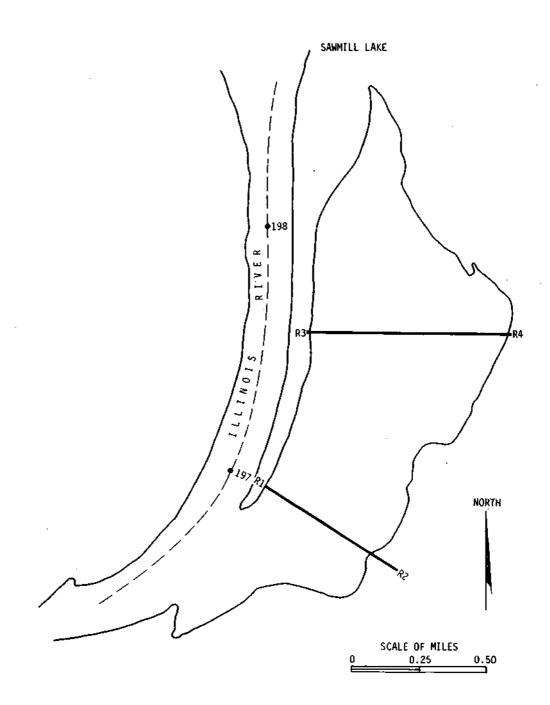




Figure 10



area. Except for one creek near R3-R4 cross-section, shown in Figure 10 no apparent deltas have formed at the mouths of the creeks.


According to information from Mr. Hugh Null, Manager of the Swan Lake National Fish and Wildlife Service, and Mr. Jerry Gumings, biologist of the Mark Twain Water Fowl Refuge, the luxuriant aquatic vegetation in the lake disappeared completely after 1971. The biological, chemical and physical reasons are unknown to date. It was speculated that sediment may have something to do with it.

Four cross-sections, located as shown in Figure 10, were developed as base-line information according to the 1903 Woermann Maps. In order to match these cross-sections, three depth soundings were performed at these locations in 1975. The results of this survey are shown on the cross-sections in Figure 11. The capacity loss was calculated based on the Eakin's Range Formula as shown in Table 13.

The results indicate that the inlet segment had the highest capacity loss of 51.3% or 392 ac-ft since 1903. The other segments range from 27.2% to 47.3%. The total capacity loss is 2033 ac-ft or 42.2% since 1903. The lake surface area changed only 10%. In terms of annual deposition rate, Swan Lake lost about 28.2 acrefeet per year. The lake bed has risen about 0.18 inches per year over the life of the lake.

### Sawmill Lake

This lake is located at the river mile from 197 to 198 in Putnam County, see Figure 12. The Clear Creek drains to the



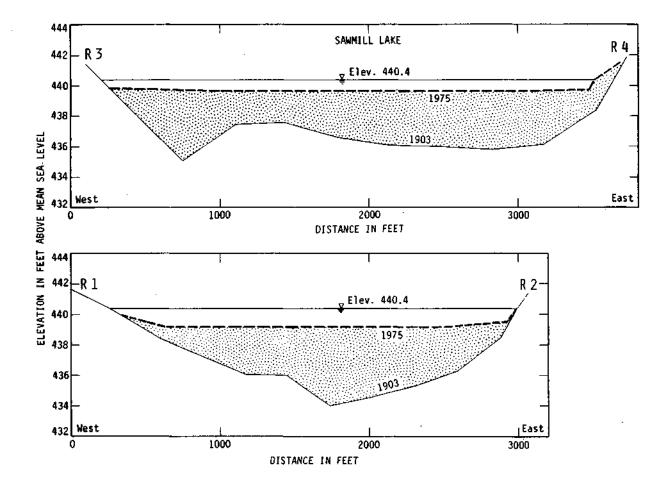



Figure 13

| Segment<br><u>Number</u> | Location<br><u>Station</u><br>From To | Storage<br>Capacity<br><u>1903 1975</u><br>(ac-ft) | <u>Capacity I</u><br>(ac-ft) | Loss<br>(%) |
|--------------------------|---------------------------------------|----------------------------------------------------|------------------------------|-------------|
| 1                        | Inlet R1-2                            | 764 372                                            | 392 5                        | 1.3         |
| 2                        | R1-2 R3-4                             | 1139 718                                           | 421 3                        | 6.9         |
| 3                        | R3-4 R5-6                             | 1071 621                                           | 450 4                        | 2.0         |
| 4                        | R5-6 R7-8                             | 1339 706                                           | 633 4                        | 7.3         |
| 5                        | R7-8 End                              | 503 366                                            | 137 2                        | 7.2         |
| Lake<br>Volume           | (ac-ft)                               | 4816 2783                                          | 2033 4                       | 2.2         |
| Area                     | (acres)                               | 2060 1853                                          | 207 1                        | .0.0        |

Table 13. Distribution of Lake Capacity Loss in Swan Lake

northern end of the lake. The drainage area is relatively small. The surface area was estimated as 608 acres.

Two cross-sections were developed based on the reconnaissance survey which included three sounding points on each cross-section. The northern end of the lake was too shallow for access during the survey. The 1903 baseline information was used to illustrate the change of the cross-sections as shown on the map Figure 11 and on the cross-sections in Figure 13. The lake capacity was calculated as shown in Table 14.

This lake lost about 1792 acre-feet or 82% since 1903. However, the surface area has been reduced only from 798 acres to 608 acres or 24% during the same time period. The sediment deposited rather uniform throughout the lake.

| Segment<br>Number | Loca<br>Stat:    |                                             | Stor<br>Capa<br>1903 |     | Capacity Loss   |     |  |  |  |  |
|-------------------|------------------|---------------------------------------------|----------------------|-----|-----------------|-----|--|--|--|--|
|                   | <sup>h</sup> roi | Ψo                                          | (ac-                 | ſt) | (ac-ft <b>)</b> | (%) |  |  |  |  |
| l                 | Inlet            | B1-2                                        | 338                  | 70  | 268             | 79  |  |  |  |  |
| 2                 | r1-2             | $\underline{\Gamma} \bigcirc - \frac{1}{2}$ | 1195                 | 216 | 979             | 82  |  |  |  |  |
| 3                 | R3-4             | Erd                                         | 577                  | òй  | 483             | 84  |  |  |  |  |
| Lake<br>Volume    | (ac-ft)          |                                             | 2310                 | 301 | 1729            | 82  |  |  |  |  |
| Area              | (acres)          |                                             | 798                  | 603 | 190             | 24  |  |  |  |  |

Table 14. Distribution of Lake Capacity Loss in Savmill Lake

# Chapter 6 DISCUSSION OP RESULTS

The sedimentation results of two detailed surveys and two reconnaissance surveys are in Table 15. This table shows: (1) the time period between two surveys, (2) the surface elevation used as reference, (3) lake surface area, (4) lake capacity, (5) loss of lake capacity, (6) annual capacity loss rate, and (7) annual deposition thickness.

The significant findings are:

- (1) The annual rate of lake capacity loss is highest in Sawmill lake, 1.13% per year. Swan lake and Lake Meredosia have the annual capacity losses of 0.59% and 0.65%.
- (2) In terms of the annual deposition thickness, the Sawmill lake leads with 0.47 inches per year. The other lakes range from 0.18 to 0.43 inches per year.
- (3) According to the sediment yield estimation in Chapter 3, the range of sediment deposition thickness is 2.0 to 0.2 inches per year. The measured results for four lakes show the lake beds rising at a rate of about 0.18 to 0.43 inches per year. This generally seems to be in line with the range of the estimates based on sediment yield.

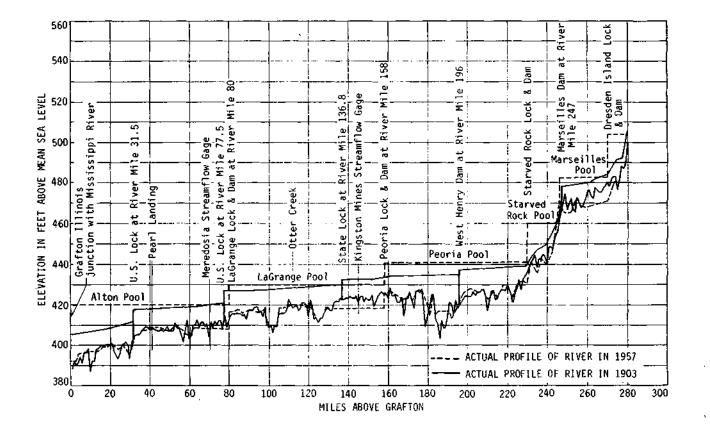
|     | Items                                 | Units            | Swan<br><u>Lake</u>            | Lake<br><u>Meredosia</u>         | Sawmill<br><u>Lake</u>                             | Lake<br><u>DePue</u>              |
|-----|---------------------------------------|------------------|--------------------------------|----------------------------------|----------------------------------------------------|-----------------------------------|
| (1) | Age of Lake<br>1903-1975              | Year             | 72                             | 72                               | 72                                                 | 72                                |
| (2) | Mater Elevation,<br>Pool, Biver Miles | ft(msl)          | hJò                            | 421                              | <u>440.4</u>                                       | 4 H L                             |
| (3) | Water Surface<br>Area<br>1903<br>1975 | Acres<br>Acres   | Alton<br>(5-9)<br>2060<br>1853 | Alton<br>(72-76)<br>1468<br>1375 | Геогіа<br>(19 <b>7-</b> 19 <b>9)</b><br>798<br>С08 | Peoria<br>(202-203)<br>578<br>479 |
| (4) | Lake C <b>apacity</b><br>1903<br>1975 | ac-ft<br>ac-ft   | 4816<br>2783                   | 7791<br>4207                     | 2110<br>381                                        | 2837<br>778                       |
| (5) | Less of Lake .<br>Capacity            | ac-ft<br>percent | 2033<br>42.2                   | 3584<br>16.0                     | 1729<br>81.5                                       | 2059<br>72.6                      |
| (Ē) | Annual Capacity<br>Loss Rate          | ac-ft<br>percent | 28.2<br>0.59                   | -                                | 24.0<br>1.13                                       | 28.6<br>1.01                      |
| (7) | Annual Peposition<br>Thickness        | inches           | 0.18                           | B 0.43                           | 0.47                                               | 0.59                              |

Table 15. Summary of Sediment Survey on Four Lakes

.

#### Chapter 7

# HYDROLOGIC INFORMATION ON THE ILLINOIS RIVER FOR SEDIMENT CONDITION ESTIMATION ON BACKWATER LAKES


In order to understand sediment movement and deposition, we need to understand the basic mode of sediment transport. Vanoni (1975) has an authoritative new book on the subject. It is known that the stream runoff is the major transport agent of the sediment load. A thorough hydrologic study of the Illinois River is not a major objective of this project. However, development of the following hydrologic information was considered vital to the sediment study:

- State-Duration Curves for three pools of long time record,
- (2) Table of Duration of Daily Flows,
- (3) Accumulated Inflow and Outflow of the backwater lake,

(4) Annual high and low stages, range analysis. The methodology used in the data analysis is described in the following section. A few potential applications of this information are illustrated.

### Stage-Duration Curves

In Figure 14 is given a profile of the Illinois River showing the various pool levels. The stages of the reach of the Illinois River which we studied can be depicted by three pool levels. Because the Illinois River is so flat, the river stage in the same pool does not vary significantly. We selected three stage stations



to present the pool levels: Meredosia station (river mile 70) presents the Alton pool; Liverpool station (river mile 127) presents the LaGrange pool; Hennepin station (river mile 208) presents Peoria pool. The daily stage data of these stations are observed by U. S. Corps of Engineers. The three stations selected for study here are shown in Table 16. The normal pool levels of the Illinois river are shown in Figure 14.

Based on these daily stage readings, we sorted the data into duration tables. Stage-duration curves were developed at three stations as shown in Figure 15. The median stages (50% recurrence probability) are 424.5 feet at Meredosia (Alton pool, 434.1 feet at Liverpool (LaGrange pool), and 442.0 feet at Hennepin (Peoria pool).

Table 17 shows the river stages of different recurrence probabilities for the three pools. In order to assess the pool fluctuations, we calculated the stage differences from the median values as shown in Table 17. The results indicated that at 1% recurrence probability, the Peoria pool has deviated 10.0 feet from median, the LaGrange pool 11.9 feet, and Alton pool 15.3 feet. This indicates that the downstream pool has a higher fluctuation than the upstream pools. The possible reason is that the three pools have relatively similar storage capacity. The downstream pools have larger drainage areas. Therefore, stream runoff into the downstream pools is relatively higher than that of upstream pools. Accordingly, the stage fluctuation of downstream pool is higher than that of the upstream pools.

-58-

Table 16. Daily Stage Stations on Illinois River Selected for Use

| Fool Name<br>(River Nile) | Ctrear Care<br>(Tiver Mile) | Data Duration |
|---------------------------|-----------------------------|---------------|
| Alton (0-80)              | Veredosia (70)              | 1938 - 1974   |
| LaGrange (80-153)         | Livernocl (127)             | 1930 - 1974   |
| Peoria (158-230)          | Formeoin (20:)              | 1932 - 197h   |

|             |       | oria Pool<br>Hennepin)     |       | range Pool<br>iverpool)    | Alton Pool<br>(Meredosia) |                           |  |  |  |  |
|-------------|-------|----------------------------|-------|----------------------------|---------------------------|---------------------------|--|--|--|--|
| Probability | Stage | Difference<br>from fledian | Stare | -Difference<br>from Median | Stage                     | Difference<br>from Median |  |  |  |  |
| 99%         | 452.0 | +10.0                      | h46.0 | 1.1.9                      | 139.8                     | 15.3                      |  |  |  |  |
| 95%         | 449.0 | + 7.0                      | 442.5 | 7.4                        | 435.4                     | 10.9                      |  |  |  |  |
| 90%         | 447.0 | + 5.0                      | 440.5 | 6.4                        | 433.0                     | 8.5                       |  |  |  |  |
| 50%(median) | 442.0 | + 0.0                      | 434.1 | + 0.0                      | 424.5                     | + 0.0                     |  |  |  |  |
| 10%         | 440.1 | - 1. <u>9</u>              | 431.0 | - 3.1                      | 420.6                     | - 3.9                     |  |  |  |  |
| ·5#         | 439.9 | - 2.1                      | 430.9 | - 3.2                      | 420.4                     | - 4.1                     |  |  |  |  |
| 1%          | 439.5 | - 2.5                      | 430.5 | - 3.6                      | 419.9                     | - 4.6                     |  |  |  |  |

# Table 17. Stage Duration tables for Three Pools

.

The curves in Figure 15 also show how many days of a year the stream stage will be above a fixed stage. For the backwater lakes these curves show how often the backwater lakes reach a particular stage. This is a basic tool to estimate the total inflow-outflow budgets of these lakes. Based on this water budget, the associated sediment load might be described and assessed.

### Annual Duration Table

The duration curve of a station is a long time average record. There are no indications of annual variations. In order to indicate the annual variation, the observed daily data were sorted based on yearly sequences. The Tables 18 and 20 indicated that frequency distribution of the river stages. Due to navigation use, the low stages are kept above the minimum levels. This minimum level at Alton pool is 419 feet msl; LaGrange pool is 429 feet msl; and Peoria pool Is 440 feet. Before the Peoria dam was built in 1939, the data indicated the river stage was below 440 feet for prolonged periods. On the other hand, the high stages cannot be effectively controlled by these three dams. This can be seen from the great fluctuation of the high river stage.

# Annual Maximum Stage, Minimum Stage and Extreme Range

Besides the duration tables presented above, the annual high and low stages are important, Table 21 shows the annual high stage, low stage and extreme range at the Meredosia station since 1938.

-61-

Mable 18. Duration Table of Daily Lake Stere at Merodosin (Alton Fool)

| Year                                                         | 418              | <b>\$1</b> 9          | 420                          | 421                        | 422                        | 423                        | 424                          | ¢25                        | <b>Lake</b><br>426              | <b>Lev</b><br>427          | <b>el</b> ,<br>428                    | feet<br>429                            | <b>abo</b><br>∦ge          | ve M<br>131                | ISL .<br>432              | 433                      | 43#                     | 435                     | 436                    | 1137                                    | #36                    | 439                 | ուն ն                 | 441 4              | 112                   | 443                | 444              | 445                        | 446                             | 447              |
|--------------------------------------------------------------|------------------|-----------------------|------------------------------|----------------------------|----------------------------|----------------------------|------------------------------|----------------------------|---------------------------------|----------------------------|---------------------------------------|----------------------------------------|----------------------------|----------------------------|---------------------------|--------------------------|-------------------------|-------------------------|------------------------|-----------------------------------------|------------------------|---------------------|-----------------------|--------------------|-----------------------|--------------------|------------------|----------------------------|---------------------------------|------------------|
| 1938<br>1939                                                 | 0<br>5           | 0<br>16               | 1<br>116                     | 12<br>37                   | 57<br>15                   | 41<br>23                   | 33<br>24                     | 19<br>10                   | 20<br>25                        | 10<br>15                   | 17<br>11                              | 79<br>15                               | 37<br>14                   | 4<br>7                     | 5                         | 5<br>C                   | 6<br>11                 | ц<br>Ц                  | 4<br>6                 | 6<br>0                                  | - 5<br>0               | 0<br>0              | 0<br>0                | 0<br>0             | 0<br>0                | 0                  | 0<br>0           | 0                          | 0<br>0                          | 0<br>0           |
| 1940<br>1941<br>1942<br>1943<br>1944                         | 000000           | 1<br>0<br>0           | 117<br>57<br>15<br>47<br>103 | 79<br>70<br>19<br>60<br>95 | 64<br>40<br>34<br>25<br>30 | 29<br>55<br>26<br>13<br>8  | 13<br>26<br>44<br>7<br>11    | 6<br>10<br>35<br>9<br>11   | 7<br>24<br>25<br>14<br>10       | 0<br>7<br>34<br>22<br>1    | с<br>8<br>17<br>17<br>17              | 0<br>9<br>26<br>14                     | 0<br>20<br>21<br>20<br>9   | 0<br>19<br>12<br>40<br>18  | 0<br>14<br>13<br>14       | 0<br>22<br>7             | 0<br>0<br>6<br>13<br>4  | 0<br>0<br>2<br>6<br>4   | 0<br>0<br>5<br>3<br>4  | 000<br>00<br>34                         | 00133                  | 00133               | 000714                | 0<br>0<br>3<br>3   | 00042                 | 6<br>0<br>4<br>8   | 0<br>0<br>3<br>0 | 0<br>0<br>0<br>2<br>0      | 0<br>0<br>5<br>0                | 0<br>0<br>2<br>0 |
| 1945<br>1946<br>1947<br>1942<br>1949                         | 00000            | 0<br>16<br>25         | 10<br>30<br>33<br>74<br>65   | 49<br>36<br>73<br>50       | (61<br>44<br>343<br>453    | 63<br>22<br>19<br>37<br>44 | 37<br>36<br>23<br>29         | 9<br>31<br>30<br>14<br>28  | 2<br>6<br>11<br>12<br>9         | 20<br>21<br>7<br>20<br>14  | 13<br>20<br>12<br>10<br>19            | 10<br>32<br>25<br>13                   | 11<br>14<br>13<br>13       | 20<br>16<br>13<br>1<br>6   | 18<br>16<br>11<br>2       | 12<br>7<br>5<br>4<br>0   | 11<br>3<br>15<br>3<br>5 | 0<br>2<br>10<br>3<br>6  | 6<br>4<br>11<br>3<br>0 | 0<br>5<br>14<br>4<br>0                  | 0<br>0<br>14<br>5<br>0 | CONNO               | 0000                  | 0<br>0<br>0<br>0   | 00000                 | 00000              | 00000            | 0<br>0<br>0<br>0           | 0<br>0<br>0<br>0                | 0<br>0<br>0<br>0 |
| 1051<br>1055<br>1055<br>1055<br>1055<br>1055<br>1055<br>1055 | 000000           | 1<br>0<br>5<br>9<br>0 | 41<br>69<br>95<br>62         | 60<br>13<br>43<br>37<br>52 | 31<br>30<br>16<br>21<br>79 | 11<br>44<br>25<br>21<br>24 | 11<br>31<br>28<br>17         | 13<br>32<br>7<br>37<br>6   | 1<br>28<br>1<br>22<br>12        | 8<br>17<br>21<br>23        | 10<br>17<br>33<br>6<br>3 <sup>k</sup> | 11<br>15<br>70<br>15<br>21             | 256 2580                   | 27<br>11<br>8<br>-0<br>0   | 31<br>50<br>23<br>0       | 29<br>13<br>14<br>0<br>0 | 18<br>11<br>11<br>0     | 25<br>12<br>(<br>0<br>0 | 6<br>15<br>8<br>0<br>0 | 5<br>0<br>0<br>0                        | 6<br>9<br>0<br>0<br>0  | 40000               | 00000                 | 0<br>0<br>0        | 0000000               | 0<br>0<br>0<br>0   | 0000             | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0                | 0<br>0<br>0<br>0 |
| 1955<br>1955<br>1957<br>1957                                 | 00000            | 50000                 | 55<br>101<br>46<br>85<br>25  | 820328<br>74528            | 10<br>50<br>50<br>50       | 22<br>30<br>30<br>67<br>44 | $15 \\ 17 \\ 31 \\ 37 \\ 44$ | 10<br>11<br>12<br>12       | 21<br>24<br>5<br>1 <sup>b</sup> | 40<br>14<br>13<br>18<br>25 | 40<br>3<br>7<br>11<br>22              | 29<br>6<br>29<br>29<br>19              | 19<br>0<br>34<br>8<br>20   | 0<br>0<br>7<br>11<br>7     | 0<br>0<br>3<br>14<br>8    | 0<br>0<br>5<br>22<br>11  | 0<br>0<br>18<br>9<br>£  | 00406                   | 0<br>0<br>7<br>0<br>5  | 000000000000000000000000000000000000000 | 00000                  | 00000               | 00000                 | 0<br>0<br>0<br>0   | 0<br>0<br>0<br>0<br>0 | 0 0 0 0<br>0 0 0 0 | 00000            | 0<br>0<br>0<br>0<br>0<br>0 | 00000                           | 0000             |
|                                                              | 0<br>0<br>0<br>0 |                       | 39<br>25<br>79<br>111<br>111 | 230.30<br>430.00<br>213    | 16<br>37<br>17<br>60<br>35 | 22<br>29<br>19<br>19<br>21 | 20<br>30<br>12<br>10         | 40230)<br>1200             | 14<br>10<br>5<br>6<br>4         | 20<br>20<br>15<br>14       | 26<br>20<br>25<br>1                   | 22 N N N N N N N N N N N N N N N N N N | 18<br>14<br>32<br>7<br>3   | 16<br>10<br>12<br>10<br>3  | 15<br>7<br>20<br>0<br>7   | 7<br>1月<br>8<br>0<br>4   | 844<br>000              | 6<br>0<br>3<br>0<br>0   | 7<br>9<br>4<br>0<br>0  | 12<br>0<br>4<br>0                       | 40400                  | 60400               | 0<br>0<br>8<br>0<br>0 | 0<br>0<br>0<br>0   | 000000                | 00000              | 00000            | 00000                      | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 |
| 1965<br>1966<br>1967<br>1968<br>1969                         | 0<br>0<br>0<br>0 | 0<br>10<br>0<br>0     | 9<br>67<br>30<br>8<br>1      | 32<br>60<br>36<br>52<br>35 | 62<br>16<br>43<br>35<br>22 | 51<br>14<br>16<br>49<br>31 | 16<br>12<br>40<br>37<br>38   | 12<br>26<br>33<br>25<br>30 | 10<br>.9<br>17<br>17<br>21      | 323825<br>225              | 26<br>32<br>21<br>31                  | 35<br>20<br>20<br>20                   | 25<br>30<br>17<br>19<br>19 | 13<br>17<br>10<br>34<br>21 | 4<br>11<br>24<br>9<br>22  | 6<br>3<br>21<br>4<br>15  | 13<br>4<br>5<br>22      | 13<br>5<br>0<br>2<br>9  | 56<br>07<br>1          | 0<br>0<br>0<br>0<br>0                   | 00000                  | 00000               | 0<br>0<br>0<br>0<br>0 | 000000             | 00000                 | 00000              | 00000            | 0<br>0<br>0<br>0<br>0      | 000000                          | 0<br>0<br>0<br>0 |
| 1970<br>1971<br>1972<br>1973<br>1974                         | 00000            | 00000                 | 0<br>40<br>0<br>3<br>41      | 12<br>65<br>35<br>28       | 25<br>80<br>4<br>24<br>31  | 37<br>30<br>30<br>18<br>39 | 37<br>37<br>34<br>21<br>17   | 43<br>13<br>10<br>12<br>3  | 21<br>6<br>24<br>3<br>1         | 19<br>10<br>59<br>20<br>7  | 19<br>14<br>03<br>28<br>6             | 27<br>25<br>67<br>11<br>6              | 25<br>21<br>33<br>9<br>17  | 4<br>12<br>23<br>12<br>9   | 17<br>0<br>17<br>18<br>15 | 5<br>9<br>16<br>16       | 7<br>30<br>23<br>23     | 12<br>0<br>13<br>22     | 20<br>0<br>18<br>13    | 7<br>0<br>0<br>3<br>10                  | 17<br>0<br>11<br>8     | 12<br>0<br>14<br>11 | 7<br>0<br>9<br>15     | 1<br>0<br>12<br>16 | 0<br>0<br>0<br>6<br>7 | 0 ជំងាល អ          | 0000             | 000000                     | 00000                           | 000000           |
|                                                              |                  |                       |                              |                            |                            |                            |                              |                            |                                 |                            |                                       |                                        |                            | . •                        |                           |                          |                         |                         |                        |                                         |                        |                     |                       |                    |                       |                    |                  |                            |                                 |                  |

-62-

|                                      |                  |                       | Tabl                        | e 1                          | 9. D                        | urat                       | ion                        | Tabl                       | e of                       | Dai                        | ly G                       | age                        | Heig                       | ht a                     | t Li                     | verp                   | ool                   | (LaC                   | Grang                   | ge Po                 | ool)             |                  |                       |                       |                  |
|--------------------------------------|------------------|-----------------------|-----------------------------|------------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------------|--------------------------|------------------------|-----------------------|------------------------|-------------------------|-----------------------|------------------|------------------|-----------------------|-----------------------|------------------|
| Year                                 | 428              | 429                   | 430                         | 431                          | 432                         | 433                        | 431                        | 435                        |                            |                            |                            |                            | abo<br>440                 |                          |                          | 443                    | 444                   | 445                    | 446                     | 447                   | 448              | 449              | 450                   | 151                   | 152              |
| 1932<br>1933<br>1931                 | 0<br>0<br>0      | 0<br>0<br>0           | 0<br>0<br>0                 | 0<br>0<br>0                  | 9<br>0<br>102               | 117<br>93<br>198           | 52<br>66<br>31             | 35<br>23<br>7              | 29<br>11<br>12             | 35<br>37<br>15             | 11<br>51<br>0              | 35<br>7<br>0               | 13<br>7<br>0               | 0<br>16<br>0             | 0<br>10<br>0             | 0<br>11<br>0           | 0<br>12<br>0          | 0<br>4<br>0            | 0<br>4<br>0             | 0<br>9<br>0           | 0<br>4<br>0      | 0<br>0<br>0      | 0<br>0<br>0           | 0<br>0<br>0           | 0<br>0<br>0      |
| 1935<br>1936<br>1937<br>1938<br>1939 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 0<br>20<br>0<br>5<br>91     | 0<br>105<br>15<br>6<br>85    | 39<br>70<br>113<br>63<br>22 | 28<br>51<br>74<br>42<br>21 | 17<br>17<br>36<br>27<br>5  | 52<br>40<br>39<br>11<br>15 | 28<br>13<br>31<br>27<br>33 | 26<br>6<br>19<br>19<br>15  | 30<br>4<br>8<br>37<br>17   | 33<br>7<br>0<br>51<br>27   | 59<br>0<br>0<br>15<br>12   | 29<br>0<br>11<br>13      | 8<br>0<br>6<br>5         | 4<br>0<br>0<br>4<br>4  | 7<br>0<br>0<br>8<br>0 | 5<br>0<br>0<br>0<br>0  | 0<br>0<br>0<br>0        | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0 |
| 1910<br>1941<br>1942<br>1943<br>1944 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>1 | 121<br>19<br>21<br>12<br>67 | 136<br>81<br>35<br>69<br>153 | 19<br>12<br>31<br>31<br>19  | 35<br>57<br>58<br>10<br>9  | 7<br>32<br>57<br>12<br>16  | 7<br>21<br>33<br>14<br>0   | 6<br>21<br>24<br>17<br>11  | 2<br>7<br>11<br>21<br>4    | 0<br>14<br>21<br>24<br>6   | 0<br>22<br>11<br>37<br>19  | 0<br>15<br>18<br>20<br>20  | 0<br>4<br>18<br>19<br>9  | 0<br>0<br>9<br>11<br>5   | 0<br>0<br>3<br>5<br>7  | 0<br>0<br>9<br>3<br>3 | 0<br>0<br>4<br>3       | 0<br>0<br>3<br>3        | 0<br>0<br>3<br>3      | 0<br>0<br>3<br>8 | 0<br>0<br>2<br>0 | 0<br>0<br>0<br>3<br>0 | 0<br>0<br>0<br>4<br>0 | 0<br>0<br>5<br>0 |
| 1945<br>1946<br>1947<br>1948<br>1949 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 25<br>10<br>36<br>58<br>31  | 67<br>77<br>86<br>80<br>101  | 71<br>28<br>53<br>55<br>39  | 55<br>42<br>38<br>29<br>44 | 27<br>29<br>17<br>28<br>37 | 16<br>17<br>14<br>17<br>25 | 12<br>31<br>17<br>16<br>14 | 28<br>22<br>7<br>17<br>31  | 23<br>16<br>2<br>13<br>13  | 16<br>16<br>16<br>21<br>6  | 8<br>22<br>18<br>5<br>7    | 5<br>9<br>18<br>6<br>7   | 4<br>4<br>23<br>5<br>7   | 8<br>5<br>15<br>4<br>0 | 0<br>4<br>5<br>5<br>0 | 0<br>0<br>7<br>0       | 0<br>0<br>0<br>0        | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0 |
| 1950<br>1951<br>1952<br>1953<br>1951 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>3<br>0 | 13<br>2<br>13<br>71<br>12   | 73<br>86<br>88<br>58         | 13<br>25<br>31<br>57<br>72  | 18<br>17<br>22<br>20<br>63 | 17<br>38<br>21<br>29<br>12 | 11<br>29<br>8<br>31<br>10  | 4<br>39<br>23<br>19<br>11  | 13<br>16<br>15<br>10<br>13 | 12<br>23<br>18<br>16<br>40 | 10<br>48<br>27<br>18<br>24 | 48<br>30<br>28<br>0<br>9   | 28<br>17<br>25<br>0<br>0 | 25<br>29<br>19<br>0<br>0 | 7<br>4<br>0<br>0<br>0  | 4<br>5<br>0<br>0<br>0 | 3<br>5<br>0<br>0       | 6<br>0<br>0<br>0        | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0 |
| 1955<br>1956<br>1957<br>1958<br>1959 | 0<br>0<br>0<br>0 | 2<br>0<br>0<br>0<br>0 | 39<br>72<br>12<br>18<br>31  | 92<br>128<br>58<br>89<br>53  | 11<br>50<br>30<br>35<br>18  | 20<br>59<br>37<br>90<br>31 | 22<br>7<br>15<br>27<br>19  | 13<br>5<br>20<br>12<br>27  | 22<br>20<br>19<br>7<br>15  | 42<br>25<br>48<br>12<br>28 | 28<br>0<br>10<br>19<br>10  | 36<br>0<br>10<br>18<br>28  | 8<br>0<br>17<br>17<br>16   | 0<br>0<br>19<br>11<br>12 | 0<br>0<br>5<br>10<br>10  | 0<br>0<br>5<br>0<br>4  | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0       | 0<br>0<br>0<br>0        | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0 |
| 1960<br>1961<br>1962<br>1963<br>1961 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>1      | 29<br>23<br>25<br>108<br>98 | 88<br>16<br>115<br>83<br>151 | 32<br>72<br>29<br>77<br>52  | 29<br>53<br>21<br>19<br>22 | 12<br>39<br>15<br>8        | 2<br>19<br>12<br>11<br>4   | 11<br>30<br>7<br>5<br>4    | 30<br>28<br>23<br>6<br>9   | 13<br>31<br>29<br>4<br>7   | 31<br>9<br>30<br>11<br>7   | 25<br>4<br>23<br>0<br>0    | 5<br>5<br>0<br>0         | 6<br>9<br>0<br>0         | 12<br>0<br>4<br>0<br>0 | 4<br>0<br>5<br>0<br>0 | 7<br>0<br>4<br>0<br>0  | 0<br>0<br>7<br>0<br>0   | 0<br>0<br>2<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 |
| 1965<br>1966<br>1967<br>1968<br>1969 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 6<br>59<br>27<br>4<br>3     | 59<br>77<br>56<br>73<br>56   | 53<br>21<br>52<br>67<br>38  | 55<br>15<br>11<br>39<br>50 | 20<br>28<br>36<br>35<br>23 | 6<br>18<br>6<br>17<br>17   | 7<br>12<br>30<br>28<br>28  | 32<br>15<br>31<br>12<br>51 | 15<br>17<br>9<br>16<br>31  | 31<br>13<br>22<br>9<br>28  | 11<br>23<br>24<br>16<br>18 | 8<br>17<br>19<br>9<br>12 | 25<br>3<br>6<br>5<br>4   | 4<br>11<br>3<br>6<br>0 | 0<br>3<br>0<br>0<br>0 | 0<br>0<br>0<br>0       | 0<br>0<br>0<br>0        | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0 |
| 1970<br>1971<br>1972<br>1973<br>1971 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 1<br>10<br>0<br>14<br>35    | 15<br>117<br>4<br>33<br>39   | 38<br>74<br>19<br>33<br>54  | 46<br>30<br>38<br>20<br>20 | 49<br>30<br>25<br>9<br>21  | 22<br>7<br>6<br>14<br>3    | 23<br>7<br>17<br>10<br>2   | 17<br>16<br>15<br>15<br>2  | 35<br>13<br>86<br>9<br>10  | 15<br>15<br>57<br>12<br>12 | 18<br>16<br>44<br>24<br>18 | 9<br>0<br>21<br>41<br>28 | 17<br>0<br>4<br>17<br>27 | 27<br>0<br>21<br>11    | 15<br>0<br>23<br>10   | 7<br>0<br>0<br>7<br>11 | 3<br>0<br>0<br>15<br>20 | 4<br>0<br>5<br>5      | 4<br>0<br>5<br>1 | 0<br>0<br>7<br>3 | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0 |
| *1975                                | 0                | 0                     | 20                          | 19                           | 19                          | 7                          | 17                         | 9                          | 4                          | 8                          | 40                         | 43                         | 40                         | 27                       | 14                       | 4                      | 0                     | 0                      | 0                       | 0                     | 0                | 0                | 0                     | 0                     | 0                |
|                                      | *                | inco                  | omple                       | ete                          | reco                        | rd                         |                            |                            |                            |                            |                            |                            |                            |                          |                          |                        |                       |                        |                         |                       |                  |                  |                       |                       |                  |

Table 19. Duration Table of Daily Gage Height at Liverpool (LaGrange Pool)

-63-

| Year         | 436    | 127    | 438    | 420    | 440      | 441        | 442        | 112      |          |          |          |          |          | ve M    |         | 4 - 1  | 152    | 452    | 151    | 455    | 156    | 157    | 150    | 150    | 100    |
|--------------|--------|--------|--------|--------|----------|------------|------------|----------|----------|----------|----------|----------|----------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|              | 150    | 157    | 150    | 439    |          |            |            | 445      |          | 445      | 110      | 11/      | 115      | 115     | 400     | 451    | 152    | 433    | 131    | 455    | 400    | 157    | 400    | 129    | 400    |
| 1932         | 0      | 0      | 0      |        | 107      | 71         | 25         | 30       | 28       | 36       | 39       | 15       | 0        | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1933         | 0      | 0      | 0      | 0      | 90       | 60         | 37         | 17       | 26       | 42       | 18       | 16       | 11       | 12      | 7       | 7      | 11     | 3      | 4      | 4      | 0      | 0      | 0      | 0      | 0      |
| 1934         | 0      | 0      | 0      | 34     | 218      | 61         | 20         | 16       | 7        | 9        | 0        | 0        | 0        | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1935         | 0      | 0      | 0      | 40     | 31       | 15         | 56         | 39       | 21       | 38       | 53       | 33       | 21       | 9       | 5       | 3      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1936         | 0      | 0      | 58     | 42     | 26       | 32         |            | 40       | 20       | 22       | 9        | 2        | 4        | 5       | 6       | 0      | Ō      | 0      | 0      | Ő      | 0      | 0      | 0      | 0      | Ő      |
| 1937         | 0      | 0      | 20     | 85     | 39       | 28         | 24         | 31       | 23       | 33       | 30       | 30       | 9        | 10      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1938         | 0      | 0      | 2      | 77     | 55       | 20         | 19         | 31       | 23       | 34       | 57       | 33       | 4        | 5       | 5       | 0      | 0      | 0      | 0      | 0      | .0     | 0      | 0      | 0      | 0      |
| 1939         | 0      | 0      | 0      | 2      | 89       | 150        | 25         | 22       | 11       | 15       | 20       | 16       | 7        | 6       | 1       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1940         | 0      | 0      | 0      | 0      | 94       | 238        | 22         | 9        | 3        | 0        | 0        | 0        | 0        | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1941         | 0      | 0      | 0      | 0      |          | 187        | 57         | 24       | 20       | 5        | 19       | 6        | 2        | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1942         | 0      | 0      | 0      | 0      |          | 143        | 65         | 22       | 25       | 10       | 11       | 15       | 7        | 14      | 4       | 5      | Ő      | 0      | 0      | 0      | 0      | 0      | Ő      | 0      | 0      |
| 1943         | 0      | 0      | 0      | 0      |          | 113        | 27         | 17       | 15       | 25       | 30       | 22       | 12       | 17      | 2       | 3      | 3      | 6      | 1      | 4      | 2      | 2      | 5      | 1      | 0      |
| 1944         | 0      | 0      | 0      | 0      | 30       | 195        | 31         | 3        | 4        | 21       | 11       | 11       | 7        | 15      | 2       | 4      | 4      | 5      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|              | ~      |        | ~      | ~      |          |            | <i>c</i> 1 |          |          |          |          |          |          |         |         | _      |        |        | _      |        |        |        |        |        |        |
| 1945         | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 |          | 198        | 61         | 36       | 17       | 4        | 8<br>14  | 3        | 3        | 4       | 5       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1946<br>1947 | 0      | 0      | 0      | 0      |          | 165<br>168 | 43<br>28   | 25<br>13 | 13       | 19<br>16 | 14       | 14<br>12 | 2        | 7<br>10 | 5       | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 |
| 1948         | 0      | 0      | 0      | 0      |          | 201        | 26         | 16       | 15<br>10 | 12       | 15       | 14       | 23<br>5  | 3       | 5<br>2  | 4      | 6      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1949         | 0      | 0      | 0      | 0      |          | 163        | 62         | 19       | 13       | 11       | 16       | 6        | 12       | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|              |        |        |        |        |          |            |            |          | 10       |          |          |          |          |         |         |        |        |        |        |        |        |        |        |        |        |
| 1950         | 0      | 0      | 0      | 0      |          | 137        | 37         | 21       | 12       | 20       | 44       | 24       | 21       | 16      | 9       | 5      | 2      | 2      | 2      | 4      | 0      | 0      | 0      | 0      | 0      |
| 1951         | 0      | 0      | 0      | 0      |          |            | 64         | 37       | 24       | 31       | 42       | 17       | 15       | 10      | 11      | 7      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1952         | 0      | 0<br>0 | 0<br>0 | 0<br>0 |          | 140        | 45<br>42   | 23       | 15       | 25       | 29       | 37       | 16<br>0  | 4       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1953<br>1951 | 0      | 0      | 0      | 0      | 57<br>39 | 221<br>196 | 31         | 18<br>15 | 12<br>23 | 7<br>28  | 8<br>9   | 0<br>13  | 4        | 0<br>2  | 0<br>2  | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 |
| 1))1         | 0      | 0      | 0      | 0      | 55       | 100        | 21         | 10       | 23       | 20       | 9        | 13       | -        | 2       | 2       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1955         | 0      | 0      | 0      | 0      | 43       | 150        | 36         | 59       | 21       | 20       | 27       | 9        | 0        | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1956         | 0      | 0      | 0      | 0      | 101      |            | 42         | 10       | 8        | 18       | 0        | 0        | 0        | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 6      | 0      | 0      |
| 1957         | 0      | 0      | 0      | 0      |          | 129        | 53         | 50       | 34       | 6        | 17       | 13       | 5        | 6       | 6       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1958         | 0      | 0<br>0 | 0<br>0 | 0      |          | 217        | 63<br>84   | 17       | 17       | 10<br>18 | 13       | 5        | 8        | 3       | 7       | 0      | 0      | 0      | 0      | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 0      | 0      |
| 1959         | 0      | 0      | 0      | 0      | 23       | 137        | 04         | 29       | 18       | τo       | 17       | 12       | 17       | 7       | 3       | 0      | 0      | 0      | 0      | 0      | U      | 0      | 0      | 0      | 0      |
| 1960         | 0      | 0      | 0      | 0      | 12       | 179        | 18         | 27       | 35       | 38       | 12       | 12       | 10       | 6       | 9       | 4      | 4      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1961         | 0      | 0      | 0      | 0      |          | 171        | 68         | 50       | 17       | 9        | 5        | 3        | 3        | 3       | 1       | 0      | 0      | 0      | 0      | Ő      | Ő      | Ő      | 0      | 0      | 0      |
| 1962         | 0      | 0      | 0      | 0      | 39       | 149        | 45         | 30       | 31       | 21       | 15       | 3        | 4        | 9       | 4       | 4      | 3      | 5      | 3      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1963         | 0      | 0      | 0      | 0      |          | 225        | 23         | 10       | 4        | 4        | 5        | 4        | 0        | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1964         | 0      | 0      | 0      | 0      | 79       | 246        | 27         | 8        | 6        | 0        | 0        | 0        | 0        | 0       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1005         | 0      | 0      | 0      | 0      | 2        | 156        | 58         | 23       | 25       | 1 🗆      | 23       | 11       | 1.0      | 1?      | ~       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1965<br>1966 | 0      | 0      | 0      | 0      |          | 128        | 58<br>66   | 23<br>29 | 35<br>25 | 17<br>16 | 23<br>2C | 12       | 19<br>13 | 12      | 3<br>3  | 4      | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1967         | 0      | 0      | Ő      | 0      |          | 163        | 57         | 33       | 21       | 13       | 31       | 20       | 6        | 3       | 2       | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1968         | 0      | 0      | 0      | 0      |          | 160        | 101        | 34       | 25       | 12       | 7        | 5        | 8        | 6       | 6       | õ      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1969         | 0      | 0      | 0      | 0      | 7        | 139        | 47         | 65       | 40       | 27       | 18       | 12       | 10       | 0       | 0       | 0      | 0      | ŏ      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|              |        |        | 0      | 0      |          |            |            |          |          | 1.0      |          | 14       |          |         |         | 2      |        |        |        |        |        | 0      | 0      | 0      | 0      |
| 1970<br>1971 | 0      | 0      | 0      | 0      | 6<br>9   | 96<br>207  | 75<br>70   | 49<br>21 | 27<br>16 | 10<br>14 | 15<br>17 | 14<br>11 | 24<br>0  | 30<br>0 | 14<br>0 | 3<br>0 | 3<br>0 | 1      | 2<br>0 | 2<br>0 | 4<br>0 | 0      | 0<br>0 | 0<br>0 | 0      |
| 1971         | 0      | 0      | 0      | 0      | 9        | 207<br>28  | 61         | 21<br>32 | 52       | 14<br>70 | 1/<br>65 |          | 22       |         | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1972         | 0      | Ő      | Ő      | 0      | -        | 112        | 39         | 23       | 14       | 15       | 24       | 30<br>27 | 26       | 6<br>26 | 10      | 13     | 15     | 4      | q      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1974         | 0      | 0      | 0      | 0      |          | 114        | 40         | 4        | 26       | 13       | 26       | 19       | 38       | 27      | 13      | 11     | 6      | 16     | 4      | 4      | 0      | 0      | 0      | 0      | 0      |
| *1975        | 0      | 0      | 0      | 0      | 0        | 0          | 7          | 25       | 38       | 32       | 24       | 17       | 27       | 6       | 2       | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|              | *      |        | - 1 -  | + -    |          | ~~~        |            |          |          |          |          |          |          |         |         |        |        |        |        |        |        |        |        |        |        |
|              | ~      | THGC   | mple   | ile I  | L ecoi   | La         |            |          |          |          |          |          |          |         |         |        |        |        |        |        |        |        |        |        |        |

Table 20. Duration Table of Daily Case Height at Hennepin (Peoria Pool)



Figure 15

Table 21. Annual High and Low Stage, Extreme Range at Meredosia Station (1938-1974)

| Year | High<br>Stage | Low<br>Stage | Range | Rank | High<br>Stage | Low<br>Stage | Range | Probability |
|------|---------------|--------------|-------|------|---------------|--------------|-------|-------------|
| 1938 | 438.0         | 420.4        | 17.6  | 1    | 446.7         | 418.4        | 27.1  | 2.6         |
| 39   | 436.0         | 419.0        | 17.0  | 2    | 444.7         | 418.8        | 24.3  | 5.3         |
| 1940 | 425.3         | 418.4        | 6.9   | 3    | 443.3         | 418.8        | 23.9  | 7.9         |
| 41   | 431.6         | 419.5        | 12.1  | 4    | 442.8         | 419.0        | 23.2  | 10.5        |
| 42   | 433.7         | 420.1        | 13.6  | 5    | 440.5         | 419.1        | 20.6  | 13.2        |
| 43   | 446.7         | 419.6        | 27.1  | б    | 440.4         | 419.1        | 19.9  | 15.8        |
| 44   | 443.3         | 419.4        | 23.9  | 7    | 438.9         | 419.1        | 19.5  | 18.4        |
| 45   | 436.1         | 419.5        | 16.6  | 8    | 438.8         | 419.2        | 19.3  | 21.1        |
| 46   | 437.0         | 419.8        | 17.2  | 9    | 438.5         | 419.3        | 19.0  | 23.7        |
| 47   | 438.5         | 419.5        | 19.0  | 10   | 438.5         | 419.3        | 18.8  | 26.3        |
| 48   | 438.8         | 419.5        | 19.3  | 11   | 438.1         | 419.4        | 17.6  | 28.9        |
| 49   | 435.0         | 419.5        | 15.5  | 12   | 438.0         | 419.4        | 17.4  | 31.6        |
| 1950 | 438.5         | 419.7        | 18.8  | 13   | 437.0         | 419.4        | 17.3  | 34.2        |
| 51   | 438.1         | 420.7        | 17.4  | 14   | 436.3         | 419.5        | 17.2  | 36.8        |
| 52   | 436.0         | 419.3        | 16.7  | 15   | 436.2         | 419.5        | 17.0  | 39.5        |
| 53   | 429.8         | 418.8        | 11.0  | 16   | 436.1         | 419.5        | 16.9  | 42.1        |
| 54   | 429.1         | 419.5        | 9.6   | 17   | 436.1         | 419.5        | 16.8  | 44.7        |
| 55   | 429.9         | 419.3        | 10.6  | 18   | 436.0         | 419.5        | 16.7  | 47.4        |
| 56   | 426.9         | 419.1        | 7.8   | 19   | 436.0         | 419.5        | 16.7  | 50.0        |
| 57   | 436.1         | 418.8        | 17.3  | 20   | 436.0         | 419.5        | 16.6  | 52.6        |
| 58   | 433.7         | 419.6        | 14.1  | 21   | 435.7         | 419.5        | 15.7  | 55.3        |
| 59   | 436.2         | 419.4        | 16.8  | 22   | 435.5         | 419.6        | 15.5  | 57.9        |
| 1960 | 438.9         | 419.4        | 19.5  | 23   | 435.0         | 419.6        | 15.1  | 60.5        |
| 61   | 433.7         | 419.5        | 14.2  | 24   | 433.7         | 419.6        | 14.2  | 63.2        |
| 62   | 440.4         | 419.8        | 20.6  | 25   | 433.7         | 419.6        | 14.1  | 65.8        |
| 63   | 431.4         | 419.1        | 12.3  | 26   | 433.7         | 419.7        | 13.6  | 68.4        |
| 64   | 432.5         | 419.2        | 13.3  | 27   | 433.7         | 419.8        | 13.3  | 71.1        |
| 65   | 435.7         | 420.0        | 15.7  | 28   | 432.8         | 419.8        | 13.0  | 73.7        |
| 66   | 436.0         | 419.1        | 16.9  | 29   | 432.5         | 419.8        | 12.3  | 76.3        |
| 67   | 432.8         | 419.8        | 13.0  | 30   | 431.6         | 420.0        | 12.1  | 78.9        |
| 68   | 436.3         | 419.6        | 16.7  | 31   | 431.4         | 420.1        | 11.9  | 81.6        |
| 69   | 435.5         | 420.4        | 15.1  | 32   | 431.4         | 420.4        | 11.1  | 84.2        |
| 970  | 440.5         | 420.6        | 19.9  | 33   | 429.9         | 420.4        | 11.0  | 86.8        |
| 71   | 431.4         | 419.5        | 11.9  | 34   | 429.8         | 420.4        | 10.6  | 89.5        |
| 72   | 433.7         | 422.6        | 11.1  | 35   | 429.1         | 420.6        | 9.6   | 92.1        |
| 73   | 444.7         | 420.4        | 24.3  | 36   | 426.9         | 420.7        | 7.8   | 94.7        |
| 74   | 442.8         | 419.6        | 23.2  | 37   | 425.3         | 422.6        | 6.9   | 97.4        |

The extreme range is defined as the difference between the annual maximum and minimum stages. These data were ranked. Their duration curves were plotted in Figures 16 and 17.

The results indicate that the extreme high stage occurred in 1943 with the maximum high stage of 446.7 feet msl. The annual' low stages were in a narrow band of 419 to 420 feet msl. The major reason is due to the pool level control at Alton Lock and Dam. The extreme stage fluctuation range occurred in 1943 of 27.1 feet. The smallest range occurred in 1940 with 6.9 feet. The LaGrarge and Peoria Pools were not analyzed.

# Accumulated Inflow and Outflow to Backwater Lakes

One of the factors affecting the sediment deposition is the inflow to the backwater lake. There are no recording gages in the backwater lakes. Therefore, direct observations of the inflow record are not available. However, due to the flat pool level, the stream stage station can depict the lake stage very closely. The first approximation of the inflow per year can be calculated as the accumulated rising stage, times the lake surface area. The accumulated rising stream stages at Meredosia from 1938 to 1974 are shown in Table 22. For the purpose of matching with the 1956 and 1965 surveys, we calculated the 1956 to 1974 total inflow as 1,559,000 ac.-ft and the 1938 to 1955 total inflow as 1,417,000 acre-feet. Based on the sedimentation results, given in Table 9, the sediment desposited during 1956 to 1975

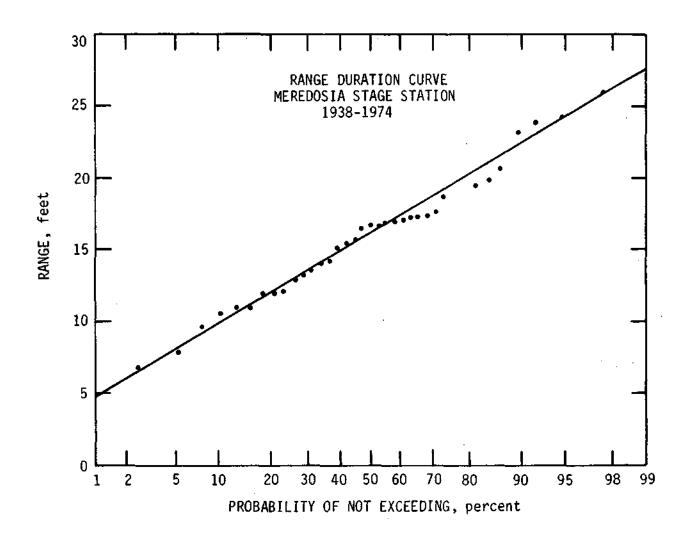



Figure 16

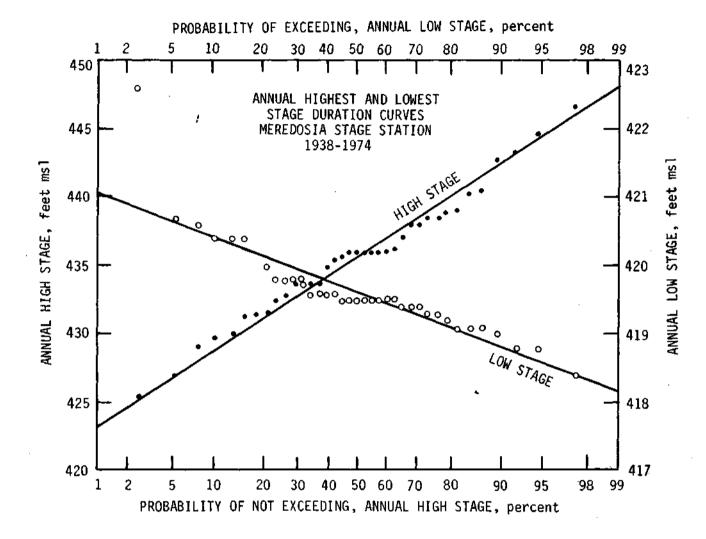



Figure 17

Table 22. Accumulated State Change at Feredosia (1938-1974)

.

| tr                                                                   |                                                              | ted (ft)                                                             | -et(ft)                                                           |                                                                                                                                                |
|----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Year                                                                 | Bising Stage                                                 | Palling Stare                                                        | et                                                                | Perarks                                                                                                                                        |
| 193 <b>8</b><br>1939<br>1940<br>1941<br>1942<br>1943<br>1944         | 31.8<br>55.8<br>51.7<br>61.3<br>74.7<br>60.0<br>54.1         | 34.9<br>56.3<br>51.4<br>55.6<br>69.1<br>69.9<br>55.0                 | -3.1<br>-0.5<br>0.7<br>-0.7<br>-2.9<br>-0.9                       | <pre>(1) Total Inflow of (1956<br/>to 1974) 1134 x 1375 =<br/>1,550,250 acre-feet in<br/>19 years =<br/>32,066 <u>acre-feet</u><br/>year</pre> |
| 1945<br>1946<br>1946<br>1948<br>1948<br>1950<br>1951                 | 58.1<br>67.8<br>61.4<br>65.9<br>61.5<br>49.2<br>74.3         | 54.7<br>71.8<br>60.1<br>67.5<br><b>5</b> 2.4<br>57.1<br>70.1         | 3.4<br>-4.0<br>1.3<br>-1.6<br>9.1<br>-7.0<br>4.2                  | <pre>(?) Total Inflow of 1938<br/>to 1955 1030.6 x 1375<br/>= 1,417,075 acre-feet<br/>in 18 years =<br/>78,720 <u>acre-feet</u><br/>year</pre> |
| 1952<br>1953<br>1954<br>1955<br>1956                                 | 43.5<br>48.8<br>51.9<br>53.8<br>51.1                         | 48.2<br>50.4<br>49.5<br>60.3<br>49.4                                 | -4.7<br>-1.6<br>2.4<br>-1.5<br>1.7                                | (3) Average Inflow and<br>Sediment Deposition<br>Potio<br>1938 to 1955 1619:1                                                                  |
| 1957<br>1959<br>1959<br>1960<br>1961<br>1962<br>1963                 | 56.4<br>51.3<br>61.7<br>53.0<br>77.1<br>46.6<br>45.4         | 51.4<br>57.8<br>56.5<br>57.6<br>73.6<br>51.3<br>44.4                 | 5.0<br>-6.5<br>-4.6<br>-4.6<br>-4.7<br>1.0                        | 1056 to 1975 1822:1                                                                                                                            |
| 1964<br>1965<br>1966<br>1967<br>1968<br>1969<br>1970<br>1971<br>1972 | 55.3<br>78.3<br>59.8<br>67.1<br>64.4<br>66.9<br>59.3<br>49.4 | 56.1<br>69.9<br>64.9<br>58.3<br>72.0<br>70.7<br>64.5<br>55.9<br>45.8 | -0.0<br>8.4<br>-5.1<br>-4.0<br>-4.0<br>-4.0<br>2.4<br>3.0<br>-0.0 |                                                                                                                                                |
| 1973<br>1974                                                         | 68.2<br>55.8                                                 | 68.8<br>61.0                                                         | - <u>r</u> .c                                                     |                                                                                                                                                |

was 856 acre-feet. Therefore we can derive the ratio of the total inflow and sediment deposition as 1822 to 1. Similarly, for 1938 to 1955, the ratio of total inflow and sediment deposition is 1619 to 1. These hydrologic study results seem to be generally in line with the sediment deposition rates measured in Lake Meredosia.

### Chapter 8

### REFERENCES

- Department of Business and Economic Development, 1971. State of Illinois, <u>Inventory of Illinois Drainage and Levee</u> Districts, State of Illinois, Springfield.
- Division of Waterways, 1969, <u>Report for Recreational Development</u>, Illinois River Backwater Areas, State of Illinois, Springfield.
- Division of Waterways, 1971, <u>Map Atlas of Upper Illinois River</u>, State of Illinois, Springfield.
- McKibben, J.C. and M.O. Schmidt, 1954, <u>Datum Planes in Illinois</u>, University of Illinois, Civil Engineering Studies, Surveying Series No. 1, December.
- Ogata, Kent M. "Drainage Areas for Illinois Streams," Water-Resources Investigation 13-75, U.S. Geological Survey, prepared in cooperation with Illinois Institute for Environmental Quality, 1975.
- Starrett, William C. 1972, <u>Man and the Illinois River</u> In <u>River</u> <u>Ecology and Man</u> by Ray T. Oglesby, Clarence A. Carlson, James A. McCann, Academic Press, New York.
- <u>Upper Mississippi River Comprehensive Basin Study</u>, 1970, Vol. III, Appendix G - Pluvial Sediment, U.S. Army Corps of Engineers, Chicago.
- Vanoni, V.A., 1975 Editor, <u>Sedimentation Engineering</u>, ASCE Manuals and Reports on Engineering Practice - No. 54.

Woermann, J.W., 1903, <u>Maps of the Illinois and Pes Plaines</u> <u>River from Lockport, Illinois to the Mouth of the Illinois</u> <u>River</u>, U.S. Corps of Engineers, U.S. Army.