COOPERATIVE RESOURCES REPORT 4

ILLINOIS STATE WATER SURVEY ILLINOIS STATE GEOLOGICAL SURVEY

Urbana, Illinois 61801

# COAL AND WATER RESOURCES FOR COAL CONVERSION

# IN ILLINOIS

William H. Smith and John B. Stall

STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION

1975

# COAL AND WATER RESOURCES FOR COAL CONVERSION IN ILLINOIS

WILLIAM H. SMITH and JOHN B. STALL

STATE WATER SURVEY

STATE GEOLOGICAL SURVEY

# COOPERATIVE RESOURCES REPORT 4

URBANA, ILLINOIS

1975

# STATE OF ILLINOIS

# DEPARTMENT OF REGISTRATION AND EDUCATION

Hon. Daniel Walker, Governor

Ronald E. Stackler, J.D., Director

# BOARD OF NATURAL RESOURCES AND CONSERVATION

Ronald E. Stackler, J.D., Chairman Robert H. Anderson, B.S., Engineering Thomas Park, Ph.D., Biology Charles E. Olmsted, Ph.D., Botany Laurence L. Sloss, Ph.D., Geology H. S. Gutowsky, Ph.D., Chemistry William L. Everitt, E.E., Ph.D., University of Illinois John C. Guyon, Ph.D., Southern Illinois University



STATE WATER SURVEY William C. Ackermann, D.Sc, Chief STATE GEOLOGICAL SURVEY Jack A. Simon, M.S., Chief

Printed by Authority of the State of Illinois—IRS, Ch. 127, Par. 58.29 (6-75-4500)

# FOREWORD

The Illinois State Geological Survey and the Illinois State Water Survey have long collected and interpreted information on coal and water resources of Illinois. Many publications concerning these resources have provided authoritative data for a wide range of government agencies, industries, and private citizens.

In mid-1973, aware of the need for basic information about coal and water resources for use in siting coal conversion plants, the two Surveys embarked on a joint project to fill that need. In this publication all available information has been updated and put into a form convenient for assessing resources at sites that could be selected for coal conversion plants.

We believe that the data base on which this study was founded permits a comprehensive interpretation of coal and water resources in Illinois. Results indicate that Illinois has large resources of both coal and water. In addition, many other conditions relevant to the siting of coal conversion plants are so favorable that Illinois could provide excellent sites for a number of such plants.

> William C. Ackermann, Chief Illinois State Water Survey

Jack A. Simon, Chief Illinois State Geological Survey

# CONTENTS

# PAGE

| Abstract                                                  | .1          |
|-----------------------------------------------------------|-------------|
| Introduction                                              | .1          |
| Purpose and scope.                                        | .2          |
| Conversion of coal.                                       | 2           |
| Part 1 Coal resources                                     | 5           |
| Introduction                                              | 5           |
| Introduction                                              | .)<br>6     |
| Prévious investigations.                                  | .0          |
|                                                           | ./          |
|                                                           | ./          |
| Estimated and meaning.                                    | 0.<br>0     |
| Coology of the cool seems                                 | .0          |
| Bogional relations                                        | .11         |
| Ovality of the costs                                      | .11         |
| Harrin (No. 6) Coal Mamber                                | .14         |
| Thiskness of the cost                                     | 10          |
| Depth of the cool                                         | .10         |
| Coology of Herrin Cool relative to mining                 | 22          |
| Geology of Herrin Coal feative to mining.                 | .22         |
| This have a fifthe and                                    | 25          |
| Depth of the coal                                         | 25          |
| Certain of the coal                                       | 23          |
| Geology of Harrisburg-Springheid Coal relative to mining. | 20          |
| Geological factors affecting minability of the coals      | 28          |
| Areas depieted by past mining.                            | .28         |
| Areas closely drilled for oil or gas.                     | 28          |
| Areas affected by sandstone channels and split coal.      | 29          |
| Roof and floor conditions.                                | .30         |
| Interval between Herrin and Harrisburg-Springfield Coals. | .30         |
| Clastic dikes and white-top                               | .30         |
| Dilli 1 ( 1                                               | .30         |
| Bibliography to part 1.                                   | .32         |
| Part 2. Water resources.                                  | .37         |
| Introduction                                              | .37         |
| Acknowledgments                                           | .37         |
| Occurrence of ground water in Illinois                    | .37         |
| Ground water from sand and gravel aquifers                | .37         |
| Ground water from bedrock aquifers                        | .38         |
| Availability of ground water for coal conversion          | <u>.</u> 41 |
| Selected areas for ground-water development.              | .41         |
| Hydrogeologic data                                        | .41         |
| Digital computer models.                                  | .44         |
| Mathematical models.                                      | .45         |
| Cost of ground-water development.                         | .45         |
| Ground-water quality                                      | .47         |
| Legal aspects of ground-water development                 | <u>.</u> 47 |
| Availability of surface water for coal conversion         | <u>4</u> 7  |
| Legal aspects of surface water and Lake Michigan          | 48          |
| Treated wastewater.                                       | .48         |
| Water from rivers.                                        | .49         |
| Existing reservoirs.                                      | .49         |
| Potential reservoirs                                      | .49         |
| Cost of potential reservoirs.                             | .50         |
| Quality of surface water                                  | .50         |
| Conclusions                                               | .52         |
| References to part 2                                      | .52         |
| Appendix 1 Tables                                         | ~ ~         |
| rependent i fubios                                        | .55         |

William H. Smith and John B. Stall

#### ABSTRACT

Illinois has enormous reserves of coal and water. Nearly 100 billion tons of coal have been mapped in the two thickest and most extensive seams in the state, and numerous potential areas having sufficient water to supply one or more coal conversion plants have been evaluated and mapped. These resources of coal and water are sufficient to supply raw materials for many coal conversion plants that could provide synthetic fuels to help meet the rapidly expanding need for new energy sources in the Midwest and the eastern United States.

The report provides an up-to-date assessment of the state's most promising resources of coal and water. Three large maps included in the report show the geographic distribution of the coal and water. Supplementary maps and tables provide the fundamental information on coal and water resources that will be needed by the government agencies and private industries ultimately responsible for decisions regarding the siting of coal conversion facilities.

Remaining in-place reserves 42 or more inches thick total 59 billion tons for the Herrin (No. 6) Coal and 38 billion tons for the Harrisburg-Springfield (No. 5) Coal. In addition, reserves of the Harrisburg-Springfield and Herrin Coals that are less than 42 inches thick plus reserves in other Illinois coal seams total about 64 billion tons. The total reserves, therefore, constitute the largest reserves of bituminous coal in any state in the nation. The importance of these reserves is increased by the fact that 56 percent of the Herrin mapped for this report is 6 feet or more thick and 47 percent of the mapped Harrisburg-Springfield is 5 feet or more thick.

The report also locates sources of water capable of producing the 6 to 72 million gallons per day estimated to be required by coal conversion plants. The abundant reserves of coal and water documented in the report can support a synthetic fuels industry in Illinois large enough to contribute significantly to the energy needs not only of Illinois but of the surrounding regions.

#### INTRODUCTION

The state of Illinois, whose agricultural and mineral wealth and strategic location have made it a center of commerce and industry, contains enormous mapped resources of bituminous coal, only 5.2 percent of which has been depleted. The coal occurs in beds, or layers, varying from less than a foot to as much as 10 feet thick. A number of the beds are of minable thickness over many thousands of square miles. The two thickest and most widespread of these, the Herrin (No. 6) Coal and the Harrisburg-Springfield (No. 5) Coal, have supplied most of the coal needs of the state for the past 100 years, during which time 4.5 billion tons has been produced. In 1918, the year of highest coal production in Illinois history, 966 coal mines in Illinois produced a total of 88 million tons of coal. Illinois now ranks fourth among coal-producing states; in 1974 it had 55 mines that produced 58 million tons of coal, most of which was used for electric power generation. Because oil and gas are cleaner and more convenient to use and because of their low price after World War II, a large and efficient network of oil and gas pipelines and storage facilities was established. Consequently, coal lost many of its markets.

Today, as the nation is well aware, reserves of oil and gas

are declining and in the future cannot be relied upon to meet the ever-increasing energy demands. The undesirability of depending on foreign sources for much of our oil has aroused great interest in other domestic fuels. One alternative source of energy is the conversion of coal to gas or liquid fuels that are environmentally more acceptable than coal itself. Synthetic fuels from coal will be needed in increasingly large quantities to meet future energy needs.

Illinois offers outstanding advantages for the development of facilities for coal conversion by both liquefaction and gasification. Some of these have been presented in a recent report by Hogland and Asbury (1974),\* prepared for the Illinois Institute for Environmental Quality. Among the factors favorable for locating coal conversion plants in Illinois are the huge reserves of relatively thick bituminous coal, mining conditions that are generally favorable for large-scale mining and high productivity, abundant and diverse sources of water, the location of the state in a large industrial and consuming area that has a well developed

<sup>\*</sup> Reference cited in Bibliography at the end of Part 1, under the heading "Coal Conversion."

road and railroad network, easy access to many interstate oil and gas pipelines, and the availability of many existing and potential sites for underground storage of gas.

# **Purpose and Scope**

The distribution, thickness, and quality of coal in Illinois has been studied for many decades by the Illinois State Geological Survey, and the Illinois State Water Survey for a corresponding period has investigated the availability and quality of water resources in the state. This report re-evaluates and summarizes the information available on the major coal resources (Part 1) and water resources (Part 2) in light of their availability for prospective coal conversion facilities in Illinois. Inasmuch as the Herrin (No. 6) and the Harrisburg-Springfield (No. 5) Coal Members constitute approximately 85 percent of the previously mapped coal reserves 42 or more inches thick, they alone were evaluated in this study.

The potential sources of water in the large quantities that will be needed by a single coal conversion plant were located by the Water Survey. They include (1) ground water from shallow and deep aquifers, (2) surface water from rivers, (3) existing and potential man-made reservoirs, and (4) treated wastewaters.

Water needs for coal conversion plants, based on estimates reported in the literature, range from a very low 6 million gallons per day (mgd) under extreme conservation measures, through a more normal low requirement of 14 mgd, to a high of 72 mgd. This range has been used as a basis for determining the availability of the water resources of the state for coal conversion.

No attempt is made in this study to evaluate various conversion processes or to assess many other factors that must be considered in locating coal conversion plants, many of which may be important determinants in site selection. Because availability of sufficient coal and water is so vital, however, we have attempted to assemble all data for the principal coal deposits and potential water sources and to present these data in the form most useful for site evaluation. The basic information on coal and water in the files of the Geological Survey and the Water Survey are accessible for further studies. Systems analysis can be used to interrelate these data with other types of information that can be used to determine the best sites for coal conversion facilities.

This report is the fourth in a series of cooperative reports by the two Surveys. The three previous reports concerned ground-water resources of the Chicago Region (Suter et al., 1959), Du Page County (Zeizel et al., 1962), and the Havana Region (Walker, Bergstrom, and Walton, 1965).\*

#### Conversion of Coal

Gas has been commercially manufactured from coal since the early 19th century. Nearly every major city in the eastern United States once had its own gas plant where gas was manufactured from coal for domestic uses. After World War II, when natural gas pipelines were extended to most communities, the gas from coal plants was no longer needed. Liquid fuels also have been extracted from coal for many years, and gasoline made from coal was widely used in Germany in the later years of World War II. In South Africa gasoline has been produced from coal for several years.

Much research is being devoted to development of largescale coal gasification and coal liquefaction processes. Older technologies are being modified for greater production, while numerous entirely new concepts of coal conversion are being developed, none of them yet operative on a commercial scale. Different processes for gasification of coal produce different types of gas: (1) gas with a low heating value (100 to 200 British thermal units per standard cubic foot [Btu/scf]); (2) gas with intermediate values of 300 to 500 Btu/scf; and (3) gas of pipeline quality, similar in heating value to natural gas (950 to 1,000 Btu/scf). The various gasification processes now under development have been described by Mudge et al. (1974), Hogland and Asbury (1974), National Academy of Engineering (1972, 1973), and Seay et al. (1972).\*

The amount of coal needed for coal conversion at any one plant site will vary, of course, with the plant's capacity, the nature of the coal, and the efficiency of the process. Most discussions in the literature relating to high-Btu gasification consider as a standard a plant with a capability of producing 250 million standard cubic feet per day (scfd). To produce gas of 950 Btu/scf from Illinois coal containing 11,260 Btu/lb (as-received basis) in a plant with 70 percent thermal efficiency, 15,066 tons of coal per day would be required to generate the 250 million scf. On that basis, operation of a conversion plant for 335 days per year would require 5,047,101 tons of coal. If the mines supplying the coal were to operate 250 days per year, a mine production of 20,188 tons would be required daily. For a plant life of 30 years, 151.4 million tons of coal would be needed, a requirement that would necessitate a coal reserve of about 300 million tons in the ground if the recovery rate were 50 percent.

It is likely that such a large amount of coal would require the output of two, or probably three, mines. It would be convenient to have these mines near the plant site, but even then some transportation of the coal would be necessary.

To increase the heating value of the coal, coal preparation may be desirable to remove as much as practical of the

<sup>\*</sup> See references at end of Part 2.

<sup>•</sup> These references are given in the Bibliography of Part 1, under the heading "Coal Conversion."

mineral matter, including sulfur, in the coal. Most of the coal now used in Illinois has had some preparation. The disposal of wastes resulting from coal preparation and of the ash and other wastes remaining after coal conversion must be considered in planning a coal conversion plant, and the method of disposal must be environmentally acceptable.

Although no data based on practical experience are available regarding water requirements for commercial coal conversion operations, estimates of the requirements for the various processes indicate that conversion industries will be major users of water. Large quantities of water will be used for cooling and processing, and the water discharged will be altered in physical state, mineral quality, and temperature. Up to about 10 percent of the water will actually be consumed and must be replaced by make-up water. Most of the consumed water is returned to the atmosphere by evaporation from cooling towers and surfaces such as ponds. A significant portion is consumed to supply hydrogen for the production of hydrocarbons. The total water demands and the make-up water requirements are comparable to the water supplies required by large cities. The total water requirements of a coal conversion plant will depend largely upon the measures taken to conserve or recycle the water. The maximum amount of water would be required by a plant that used once-through circulation of water for cooling.

At the proposed WESCO plant of the Western Gasification Company (1973)\* in New Mexico, where water resources are limited, stringent efforts will be made to reduce use and to maximize reuse of water. The plans for this plant probably involve a minimum of water consumption. Estimated disposition of the water is given in table 1.

In our report, the availability of water resources for coal conversion is evaluated on the basis of requirements for water consumption or make-up water instead of on the total water need. It is assumed that coal conversion plants with a capacity of 250 million scfd of high-Btu synthetic natural gas (SNG) will consume from 14 to 72 mgd of water, but that, with extreme conservation measures, water consumption may be reduced to as low as 6 mgd. The levels of water consumption considered in this report are given in table 2. Much the same amounts of water will be required for liquefaction of coal.

The quality of water required for coal conversion processes has not yet been determined. Water treatment is now so highly developed that raw water of almost any quality can, by a combination of processes, be changed to a finished water that will meet almost any specifications. Naturally, if the water is highly mineralized or highly polluted, the treatment costs will be much higher than they would be if the water is relatively clean.

# TABLE 1-WATER BUDGET FOR A LURGI COAL GASIFICATION PLANT

# (Production 250 million standard cubic feet per day synthetic natural gas; after WESCO, 1973)

| Disposition of water                                     | onm           | Percentage<br>of water |
|----------------------------------------------------------|---------------|------------------------|
|                                                          | SPIII         |                        |
| PROCESS CONSUMPTION                                      |               |                        |
| To supply hydrogen<br>Produced as methanation by-product | 1,120<br>-600 |                        |
| Net consumption                                          | 520           | 10.2                   |
| RETURN TO ATMOSPHERE                                     |               |                        |
| Evaporation:                                             |               |                        |
| From raw water ponds                                     | 420           |                        |
| From cooling tower                                       | 1,760         |                        |
| From quenching hot ash                                   | 150           |                        |
| From pelletizing sulfur                                  | 250           |                        |
| From wetting of mine roads                               | 730           |                        |
|                                                          | 3,310         |                        |
| Stack gases: *                                           |               |                        |
| From steam blowing of boiler tubes                       | 200           |                        |
| From stack gas S0 <sub>2</sub> scrubbers                 | 40            |                        |
| <i>3</i>                                                 |               |                        |
|                                                          | 240           |                        |
| Total return to atmosphere                               | 3,550         | 69.6                   |
| DISPOSAL IN MINE                                         |               |                        |
| In water treating sludges                                | 100           |                        |
| In wetted boiler ash                                     | 30            |                        |
| In wetted gasifier ash                                   | 300           |                        |
| Total disposal in mine                                   | 430           | 8.4                    |
| OTHER MEANS                                              |               |                        |
| Retained in slurry pond                                  | 20            |                        |
| Miscellaneous mine uses                                  | 580           |                        |
|                                                          |               |                        |
| Total others                                             | 600           | 11.8                   |
| TOTAL                                                    | 5,100         | 100.0                  |

\* Does not include water derived from burning of boiler fuel.

# TABLE 2-RANGE IN WATER CONSUMED BY ONE COAL CONVERSION PLANT

(Production 250 million standard cubic feet per day of synthetic natural gas)

| Level of use                     | gpm    | cfs | mgd |
|----------------------------------|--------|-----|-----|
| Very low                         | 4,000  | 9   | 6   |
| (extreme conservation measures)  |        |     |     |
| Low                              | 10,000 | 22  | 14  |
| Medium                           | 20,000 | 45  | 29  |
| High                             | 50,000 | 111 | 72  |
| (would use if readily available) |        |     |     |

<sup>\*</sup> Reference appears in Reference list at end of Part 2.

William H. Smith

# INTRODUCTION

The coal-bearing sequence of rocks in Illinois, formally termed the Pennsylvanian System, underlies about 65 percent of the state—36,806 out of a total of 56,400 square miles. The Herrin (No. 6) Coal Member, the thickest and most widespread coal in Illinois, as mapped in this study is 42 or more inches thick throughout an area of 9,269 square miles and has been mined out in an additional area of about 927 square miles. The Harrisburg-Springfield (No. 5) Coal Member, which is second in abundance, is 42 or more inches thick throughout 7,299 square miles and has been mined out in about 331 square miles.

The distribution, by thickness and tonnage, of an estimated total of approximately 97 billion tons of coal 42 or more inches thick in the Herrin and Harrisburg-Springfield seams is shown in the maps and tables of this report. Of this total, an estimated 59 billion tons are Herrin Coal and 38 billion tons are Harrisburg-Springfield Coal. The distribution of these reserves is shown on plates 1 and 2, in which the color used for each township symbolizes the estimated average tons of coal in place per square mile. Other maps and tables in the report and tables in Appendix 1 provide additional basic information on coal resources and geological factors relating to their minability and use, all of which should prove helpful in the siting of coal conversion facilities.

The inventory of Illinois coal reserves made in 1952 by the Illinois Geological Survey included coal in seams more than 28 inches thick and revealed an estimated 137 billion tons of coal in some 20 different seams. Subsequent studies by the Geological Survey, including a series of seven reports on strippable coal reserves in seams 18 or more inches thick and no more than 150 feet deep, increased the estimate of remaining reserves of coal to 147 billion tons, 71 percent of which was Herrin and Harrisburg-Springfield Coals. In this report additional reserves of approximately 14.7 billion tons have been mapped that were not included in previous studies. Estimated total coal reserves for Illinois mapped by the Geological Survey, therefore, have increased from 147 billion to 161.6 billion tons (fig. 1).

The data on reserves compiled in this report do not represent a complete re-evaluation of total coal resources in Illinois. Several areas in the state have other coal seams 42 or more inches thick, some of which may have large enough reserves to support several mines. Seams less than 42 inches have been strip mined in some places, particularly the Colchester (No. 2) Coal Member, which averages about 30 inches thick in several areas. Other seams containing coal 42 or more inches thick may be locally significant. It is possible that some Illinois coals thinner than 42 inches can be used to supply part of the coal needed for conversion plants but it is unlikely that sites primarily dependent on coals thinner than 42 inches will be selected.

The computer techniques developed for this study will facilitate any future re-evaluation of Illinois coal resources. Details of methods used in assembling and plotting data and in calculating reserves are given in Appendix 2.

This study has been the first to produce statewide maps from the ILLIMAP program developed in 1970 by D. H. Swann and others at the Illinois Geological Survey for computer mapping of geological information. The computergraphics techniques used to calculate the coal resources inventory and to compute and plot the information displayed on the maps employ some new methods that are briefly described in Appendix 2.

The bibliography immediately following Part 1 is divided into six subject categories. Within each category the references appear in alphabetical order, but throughout the



Figure 1. Remaining reserves of coal in place in Illinois, January 1,1975.

# TABLE 3-SUMMARYOF CLASSIFICATIONS FOR COAL RESERVES INVENTORY (Cady and others, 1952<sup>28</sup>)

| Class                                     | Maximum<br>distance from<br>datum points* | Accepted datum points                                                                                                                                    | Remarks                                                                               |
|-------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| I-A <sup>1</sup> / <sub>2</sub><br>Proved | mile                                      | Mined-out areas<br>Diamond drill holes<br>Outcrops                                                                                                       | Approximately equivalent to<br>"measured" category of the<br>U. S. Geological Survey  |
| I-B<br>Probable                           | 2 miles                                   | All points of Class I-A plus coal test churn drill holes                                                                                                 | Approximately equivalent to<br>"indicated" category of the<br>U. S. Geological Survey |
| II-A<br>Strongly indicate                 | 4 miles<br>d                              | All points of Classes I-A and<br>I-B plus churn drill holes<br>drilled for oil or water with<br>unusually good records and<br>control rotary drill holes | Approximately equivalent to<br>"inferred" category of the                             |
| II-B<br>Weakly indicated                  | Indefinite                                | All points used in higher cate-<br>gories plus knowledge of geo-<br>logic probability based on all<br>available information                              | U. S. Geological Survey                                                               |

\* Distances modified in practice by geological considerations.

bibliography as a whole they are numbered consecutively, regardless of category. The text citations, therefore, consist of the author's name, the date of publication, and a superscript referring to the reference number in the bibliography—for example (Damberger,  $1971^5$ ).

# **PREVIOUS INVESTIGATIONS**

The comprehensive report on the minable coal reserves of Illinois published by the Geological Survey (Cady and others, 1952<sup>28</sup>) reviewed the estimates of coal reserves that had previously been made and established definitions and premises for the classification of coal reserves on the basis of the distribution and reliability of data. The definitions (table 3) have been followed, with some modifications, in subsequent reports of the Survey. When the present report was compiled, the work maps for the 1952 study provided the principal source of data for the two coal seams studied, and the classification of the reserves followed the basic premises and parameters that Cady had used, although information from more recent reports was incorporated. In addition, we used conventional electric logs of oil and gas wells to estimate coal thickness in certain areas where the data from coal test holes are scarce.

Strippable coal reserves were included in the 1952 report but were not differentiated from other coal reserves. In a series of reports published by the Geological Survey, beginning in 1957, strippable coal reserves were mapped at the scale of half an inch to the mile for most of the coal seams in Illinois that are strippable (fig. 2). In those reports,

strippable coal, divided on the basis of quality of data into two categories of reliability of mapped reserves, was mapped by township and by 1-foot increments of coal thickness, beginning at 18 inches. Within each of these categories



Figure 2. Index to reports on strippable coal reserves of Illinois.

the coal was divided into three classes on the basis of depth of overburden-0 to 50 feet, 50 to 100 feet, and 100 to 150 feet (Reinertsen, 1964<sup>42</sup>; Searight and Smith, 1969<sup>43</sup>; Smith, 1957<sup>45</sup>, 1958<sup>46</sup>, 1961<sup>47</sup>, 1968<sup>48</sup>; Smith and Berggren, 1963<sup>49</sup>).

In a series of Geological Survey reports dealing with subsurface geology and coal resources of the Pennsylvanian System in certain Illinois counties, the reserves mapped in the 1952 study were modified to include additional information and more detailed maps of the geology and structure of the coal seams. These reports are listed under "Coal Resources" in the bibliography to Part 1.

Coal reserves in several counties in southeastern Illinois (fig. 3) have been mapped in recent years. Hopkins  $(1968^{37})$  investigated the reserves of the Harrisburg Coal in southeastern Illinois, and his study was the first report published by the Survey to use data from electric logs of oil and gas test holes for mapping coal reserves. Since publication of that report, much of the area for which reserves were mapped has been leased and extensively drilled for coal. Results generally have confirmed the coal thickness interpreted from the electric logs. In a similar report, Allgaier and Hopkins  $(1975^{24})$  mapped reserves for the Herrin Coal in several southeastern Illinois counties (fig. 3).

#### **DEFINITIONS AND METHODS**

The quantities of coal estimated in this study are referred to collectively as reserves and have not been further subdivided, as they were in most previous studies. The term "reserves" as used here refers broadly to coal deposits that, based on interpretation of geologic information, are presumed with a reasonable degree of certainty to exist within a coal seam. We have mapped and calculated only coal that is 42 or more inches thick and could best meet the anticipated demands for large quantities of coal by coal conversion plants. All new information relating to coal thickness and distribution that has been acquired since the inventory conducted by Cady and others (1952<sup>28</sup>) was added to the data base used in the earlier study. Certain areas of coal, described later, have been excluded in making these estimates.

In this report the estimates of coal reserves include coal lying within a maximum distance of 4 miles from the nearest datum point (table 4). This definition encompasses all coal in the categories designated in the 1952 study as Class I-A (*proved*), Class I-B (*probable*), and Class II-A (*strongly indicated*) (table 3).

#### **Classification of Reserves**

The classification of reserves set up in the 1952 study



Figure 3. Index to area reports on coal reserves.

was modified for this report (table 4) to place all coal reserves 42 or more inches thick in a single class. The single classification enabled us to handle the data more quickly and easily by the computer methods employed.

Figures 4 and 5 show areas with Class I reserves and Class II reserves. However, on plates 1 and 2 and in the reserves tabulation, only one class, combining Classes I and II, was used. For the Herrin Coal, approximately 73 percent of the areal extent of the estimated reserves is in Class I (Classes I-A and I-B of the 1952 study) and approximately 27 percent is in Class II (Class II-A of the 1952 study) (table 3). For the Harrisburg-Springfield Coal, approximately 49 percent of the area is in Class I, and about 51 percent is in Class II.

| TABLE 4-CLASSIFICATION | I OF | RESERVES N | <i>I</i> APPED | IN THIS | REPORT |
|------------------------|------|------------|----------------|---------|--------|
|------------------------|------|------------|----------------|---------|--------|

| Class                                                                                                                                                            | Maximum<br>distance fro<br>datum poin | m<br>ts Accepted datum points                                                                                                                   | Remarkst                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| All coals included in a single<br>class that incorporates Classes<br>I-A, I-B, and II-A of Cady and<br>others (1952 <sup>28</sup> ) and subse-<br>quent studies* | 4 miles                               | All classes of data used in 1952<br>report plus interpretations of<br>conventional electric logs of<br>oil and gas drill holes in some<br>areas | Only coal 42 or<br>more inches thick<br>included |

\* Includes strippable coal 42 or more inches thick (total coal in ground with less than 150 feet of overburden).

# All volume calculations were based on coal having a specific gravity of 1.32, which is equivalent to 82.64 Ib/cu ft. This is equivalent to 1,800 tons/acre-ft, or 1.152 million tons/sq mi-ft.

#### Areas Excluded from Estimates of Reserves

Areas where the coal has been mined out or is missing because geologic features such as sandstone-filled channels are known to have disrupted its lateral extent have been excluded from the estimates of reserves. Plates 1 and 2 show mined-out areas for the Herrin and Harrisburg-Springfield Coals as they were on July 1, 1973. Areas overlying oil pools (closely drilled areas), shown on plates 1 and 2, also have been excluded. Not excluded, however, are areas of coal that may be unminable by virtue of their location under municipalities, highways, water impoundments, and other cultural features.

Areas of coal that overlie oil and gas pools and are closely drilled have been excluded from the estimates because current mining practices make it impractical to mine coal within such areas. The current Federal mining law prohibits the mining of coal within a radius of 150 feet around oil wells unless adequate well plugging ensures safe conditions with smaller coal pillars. Well spacing within the excluded areas shown on plates 1 and 2 generally is 660 feet (one well per 10 acres), but mining under such conditions is generally uneconomic.

Only the oil and gas wells within pool areas, shown in gray on plates 1 and 2, have been excluded. In the many single wells scattered throughout the coal fields, a pillar of coal 300 feet in diameter (in some cases smaller pillars) must be left around the well, but the unrecoverable coal around these wells could not accurately be deleted from our calculation of reserves.

Areas in which coal is thin and areas for which insufficient information is available for mapping classified reserves also were excluded from the reserves (pls. 1 and 2), as were the areas adjacent to some of the sandstone channels where the coal is known to be split by partings of shale or sandstone that generally make the coal unminable by underground mining methods. All of the sandstone-channel and split-coal areas that are known within the two coal seams are indicated on plates 1 and 2 and are described later in more detail.

## Acknowledgments

The author is indebted to M. E. Hopkins, Head of the Geological Survey Coal Section, for assistance in the administration of the project and for his help in editing the manuscript and maps. Lawrence E. Bengal was responsible for much of the planning and execution of the mapping, and Russell J. Jacobson assisted in compilation of the reserves estimates, which were drawn from the work of many past and present members of the staff of the Geological Survey Coal Section.

J. P. Hoeflinger of the Computer Services Section of the Geological Survey coordinated computer programming and processing of the data in cooperation with other members of this unit. Assistance in computer mathematics and programming were provided by William G. Miller. L. Michael Kaas and Paul M. Juneman of International Business Machines Corporation supplied information about the STAM-PEDE computer program and its application to the mapping techniques used in this study. Illustrations for Part 1 were prepared by Marie L. Martin, Sue-Ann Meyer, and Patricia A. Whelan. The manuscript was edited by Betty Lynch.

#### ESTIMATED COAL RESERVES

Estimated coal reserves 42 or more inches thick totaling 97 billion tons have been mapped for the Herrin (No. 6) Coal and the Harrisburg-Springfield (No. 5) Coal. Their thickness ranges from the 42-inch minimum established for this study to more than 10 feet. The total coal in the ground in that thickness range is shown in table 5. Average thickness of the Herrin Coal is 5.52 feet, and 56 percent of the mapped reserves of this coal is 6 feet or more thick. The Harrisburg-Springfield Coal averages 4.55 feet thick, and 47 percent of its mapped reserves is 5 feet or more thick (table 5).

The distribution of these reserves for each county is given in table A (Appendix 1) by 1-foot increments of thickness, beginning at 4 feet. Table A also shows for each of



Figure 4. Classification of Herrin Coal reserves. Classes are defined in tables 3 and 4.



Figure 5. Classification of Harrisburg-Springfield Coal reserves. Classes are defined in tables 3 and 4.

|                   |              | 1                    | By thickness of seam      | ns                   |                             |                      |  |
|-------------------|--------------|----------------------|---------------------------|----------------------|-----------------------------|----------------------|--|
| Average*          | <b>H</b> • A | 0                    | Harrisbu                  | rg-                  | Total remaining<br>reserves |                      |  |
| of soom           | Herrin (No   | 0. 6)<br>%of         | Springfield (             | No. 5)<br>%of        | Sub-total                   | 0∕ of                |  |
| (ft)              | - of tons    | sub-total            | of tons                   | sub-total            | (thousands<br>of tons)      | grand total          |  |
| 4                 | 13,300,102   | 22.6                 | 20,261,331                | 53.0                 | 33,561,433                  | 34.5                 |  |
| 5                 | 12,657,243   | 21.5                 | 11,321,567                | 29.6                 | 23,978,810                  | 24.7                 |  |
| 6                 | 12,290,311   | 20.8                 | 5,572,030                 | 14.6                 | 17,862,341                  | 18.4                 |  |
| 7                 | 11,586,777   | 19.7                 | 806,097                   | 2.1                  | 12,392,874                  | 12.7                 |  |
| 8                 | 7,831,170    | 13.3                 | 249,413                   | 0.6                  | 8,080,583                   | 8.3                  |  |
| 9                 | 1,018,906    | 1.7                  | 24,485                    | 0.07                 | 1,043,391                   | 1.1                  |  |
| 10                | 256,668      | <u>0.4</u>           | <u>9,677</u>              | <u>0.03</u>          | 266,345                     | <u>0.3</u>           |  |
|                   |              |                      |                           |                      | Grand total:                |                      |  |
| Totals            | 58,941,177   | 100                  | 38,244,600                | 100                  | 97,185,777                  | 100                  |  |
|                   |              |                      | By area †                 |                      |                             |                      |  |
|                   | Herrin (No   | <b>b. 6</b> )        | Harrisbu<br>Springfield ( | rg-<br>No. 5)        | Total rema<br>reserve       | aining<br>s          |  |
| -                 |              | %of                  |                           | %of                  |                             | %of                  |  |
| Category          | Sq mi        | original<br>reserves | Sqmi                      | original<br>reserves | Sub-total<br>(sq mi)        | original<br>reserves |  |
| Original reserves | 10,196       | 100                  | 7,630                     | 100                  | 17,826                      | 100                  |  |
| Mined out         | 927          | 9.1                  | 331                       | 4.3                  | 1,258                       | 7.1                  |  |
| Remaining reserv  | es 9,269     | 90.9                 | 7,299                     | 95.7                 | 16,567                      | 92.9                 |  |

#### TABLE 5-SUMMARY OF COAL RESERVES

\* The average thickness of all remaining reserves in the Herrin seam is 5.52 feet and in the Harrisburg-Springfield seam 4.55 feet.

*†* Because the areas underlain by the No. 5 and No. 6 seams overlap in part, this represents areas of unmined coal and should not be confused with surface area.

the two coal seams the total area of each county that is underlain by reserves. Also listed in the table are the area of coal mined out from each of the seams, by county, the weighted average thickness of all of the remaining coal in each seam, and the weighted average tons of remaining coal per square mile.

Plates 1 and 2 show the average tons of coal 42 or more inches thick remaining in place per square mile in each township. The maps enable comparison of the amount of coal reserves in one area with reserves in other areas. The reserves can also be related to a variety of geologic features that influence the thickness and distribution of the coal.

# GEOLOGY OF THE COAL SEAMS

#### **Regional Relations**

Illinois has greater reserves of bituminous coal than any other state. Figure 6 shows the distribution of coal fields in the United States, and Appendix table B and figure 7 compare the demonstrated coal reserves of Illinois with those of other coal-producing states. The data in table B and figure 7 are from a recent tabulation by the U.S. Bureau of Mines. Because of differences in criteria used in classification, the Bureau of Mines figures for Illinois are substantially lower than those shown in the other maps and tables of this report.

The coal fields of Illinois lie within the Eastern Region of the Interior Coal Province, which is commonly called the Eastern Interior Coal Field (fig. 8). The coals lie with-



# DISTRIBUTION OF DEMONSTRATED COAL RESERVES



Figure 7. Demonstrated coal reserves base of the United States and estimated energy potentials by state. (Data from US. Bureau of Mines, 1974<sup>\$1</sup>; Library of Congress Congressional Research Service, 1973<sup>\$6</sup>. Prepared by Ramesh Malhotra, Mineral Economics Group, Illinois Geological Survey.)





in a structural depression called the Illinois Basin (fig. 9), the position of which approximately coincides with that of the Eastern Interior Coal Field.

DISTRIBUTION OF DEMONSTRATED COAL RESERVES

Within the Illinois Basin are numerous structural features, such as anticlines, synclines, and faults, that locally influence the dip, thickness, and continuity of the coal seams. The major geologic structures are shown in figure 9. The structure of the Herrin Coal and of some areas of the Harrisburg-Springfield Coal has been mapped on scales of 1 inch to the mile and half an inch to the mile for a substantial part of the Illinois coal fields.

The Herrin and Harrisburg-Springfield Coals occur near the middle of the stratigraphic sequence of Pennsylvanian rocks (fig. 10). They are separated by an interval ranging from 10 feet or less at some places in western and central Illinois to more than 120 feet in southeastern Illinois (fig. 20). The coals crop out toward the margins of the Illinois Basin, and in the deepest part of the basin they attain a maximum depth of more than 1,200 feet (figs. 15 and 17).

The regional thickness of the coals is indicated by colors on plates 1 and 2. Two major geological influences affected their regional thickness. First, on some prominent structures (fig. 9) very little coal was deposited because of their topographic influence on the depositional surface. Second, major drainage systems in the swamps promoted a more abundant accumulation of coal-forming vegetation in the vicinity of the principal channels. However, no plant material accumulated in the drainageways, and they were sub-



Figure 9. Geologic structures of Illinois.



the Herrin and Harrisburg-Springfield Coals within the Pennsylvanian System in Illinois.

sequently filled with sand or mud and became the sandstone or shale channels of the present coal seams.

The long, sinuous features shown in yellow on plates 1 and 2 mark the location of the former stream channels. Interlamination of coal with stream-laid silt and clay at the margins of some of the ancient streams makes it evident that these channels were contemporaneous with the coal swamp. Along the main axes of these channels, thick deposits of sandstone commonly occur and the coal is absent. Later, after the coal had formed and been buried by various layers of sediments, a new system of channels cut through the normal sequence of overlying strata, and in some places also eroded the coal. Like the contemporaneous channels, these later channels eventually filled with sand or mud. Both types of buried stream deposits are referred to on plates 1 and 2 as sandstone channels. Their occurrence is described in greater detail in the discussion of the geology of the specific coal seams, and their effect on coal mining is described in the discussion of minability of the coal seams.

The Geological Survey has made several studies of the distribution of sandstone channels that disrupt the coal. Hopkins (1958<sup>66</sup>) was the first to map in detail part of the Anvil Rock Sandstone Member, tracing its distribution in southern Illinois. Potter and Simon (1961<sup>70</sup>) mapped the sandstone channels in west-central Illinois, which Johnson (1972<sup>67</sup>) treated in greater detail. Hopkins (1968<sup>37</sup>) also mapped a prominent channel in the Harrisburg-Springfield Coal in southeastern Illinois and related it and associated strata to low-sulfur coal deposits in the area.

# Quality of the Coals

The Geological Survey has long conducted a variety of studies relating to the quality of coal. Recently much of the research has involved the potential reduction of the sulfur content of Illinois coals by washing (Helfinstine et al., 1971<sup>10</sup>, 1974<sup>9</sup>) and the occurrence of mineral matter and trace elements in the coal (Rao and Gluskoter, 1973<sup>13</sup>; Ruch, Gluskoter, and Shimp, 1974<sup>15</sup>).

The coal of the Herrin and Harrisburg-Springfield seams is of high-volatile bituminous rank, defined by standards of the American Society for Testing and Materials (ASTM) (table 6). Illinois coals are of high-volatile C rank in the northern part of the state, undergo a progressive increase in rank southeastward, and reach high-volatile A rank near the southeastern margin of the coal (fig. 11). The progressive increase in rank with original depth of burial has been described by Damberger (1971<sup>5</sup>) as a fundamental relation found in coal basins throughout the world. The greater the original depth of burial, the greater the degree of coalification and the higher the rank of the coal. In figure 11 the iso-rank lines for the Herrin Coal' closely parallel the structure lines, except in southernmost Illinois where the rank increases fairly rapidly southward but where the coals crop out at or near the present land surface. There the original coalification pattern may have been modified by heat released from a deep-seated intrusion of igneous rocks. However, a more likely reason for the higher rank in the southeast is the area's proximity to the deepest part of the basin during the Pennsylvanian and Permian Periods, when coalification presumably took place.

The heating value of Illinois coal undergoes a progressive increase (fig. 11) from about 10,500 Btu/lb (moist mineralmatter free) in northwestern Illinois to over 14,000 Btu/lb in southeastern Illinois. Table 7 shows the range of typical analyses of the Herrin (No. 6) and the Harrisburg-Springfield (No. 5) Coals from various areas of the Illinois coal fields.

| Class  |              |                                  | Fixed carbon<br>limits (%)<br>(dry mineral-m |                         | Volatile matter<br>limits (%)<br>natter-free basis) |                          |   | limits (Bt)<br>(moist† mineral-r | value<br>u/lb)<br>natter-free basis) |                            |
|--------|--------------|----------------------------------|----------------------------------------------|-------------------------|-----------------------------------------------------|--------------------------|---|----------------------------------|--------------------------------------|----------------------------|
|        |              | Group                            | Equal or<br>greater<br>than                  | or<br>er Less<br>n than | Greater<br>than                                     | Equal or<br>less<br>than | - | Equal or<br>greater<br>than      | Less<br>than                         | Agglomerating<br>character |
| I. A   | nthracitic   | 1. Meta-anthracite               | 98                                           |                         |                                                     | 2                        |   |                                  |                                      | 1                          |
|        |              | 2. Anthracite                    | 92                                           | 98                      | 2                                                   | 8                        |   |                                  |                                      | Nonagglomerating           |
|        |              | 3. Semianthracite‡               | 86                                           | 92                      | 8                                                   | 14                       |   |                                  |                                      | ) ~ ·                      |
| 8. 1   | Bituminous   | 1. Low-volatile bituminous coal  | 78                                           | 86                      | 14                                                  | 22                       |   |                                  |                                      | 1                          |
|        |              | 2. Medium-volatile bituminous    |                                              |                         |                                                     |                          |   |                                  |                                      | )                          |
|        |              | coal                             | 69                                           | 78                      | 22                                                  | 31                       |   |                                  |                                      | 1                          |
|        |              | 3. High-volatile A bituminous    |                                              |                         |                                                     |                          |   |                                  |                                      | >                          |
|        |              | coal                             |                                              | 69                      | 31                                                  |                          |   | 14,000**                         |                                      | Commonly agglomerating † † |
|        |              | 4. High-volatile B bituminous co | al                                           |                         |                                                     |                          |   | 13,000**                         | 14,000                               |                            |
|        |              | 5. High-volatile C bituminous co | al                                           |                         |                                                     |                          | 5 | 11,500                           | 13,000                               | 1                          |
|        |              | •                                |                                              |                         |                                                     |                          | J | 10,500                           | 11,500                               | Agglomerating              |
| III. S | ubbituminous | 1. Subbituminous A coal          |                                              |                         |                                                     |                          |   | 10,500                           | 11,500                               | 1                          |
|        |              | 2. Subbituminous B coal          |                                              |                         |                                                     |                          |   | 9,500                            | 10,500                               | 1                          |
|        |              | 3. Subbituminous C coal          |                                              |                         |                                                     |                          |   | 8,300                            | 9,500                                | (                          |
|        |              |                                  |                                              |                         |                                                     |                          |   |                                  |                                      | ( Nonagglomerating         |
| tV. L  | ignitic      | 1. Lignite A                     |                                              |                         |                                                     |                          |   | 6,300                            | 8,300                                |                            |
|        |              | 2. Lignite B                     |                                              |                         |                                                     |                          |   |                                  | 6,300                                | 1                          |

# TABLE 6-CLASSIFICATION OF COALS BY RANK\*

(from ASTM, 1973<sup>1</sup>)

\* This classification does not include a few coals, principally nonbanded varieties, which have unusual physical and chemical properties and which come within the limits of fixed carbon or calorific value of the high-volatile bituminous and subbituminous ranks. All of these coals either contain less than 48 percent dry, mineral-matter-free fixed carbon or have more than 15,500 moist, mineral-matter-free British thermal units per pound.

.

† Moist refers to coal containing its natural inherent moisture but not including visible water on the surface of the coal.

‡ If agglomerating, classify in low-volatile group of the bituminous class.

\*\* Coals having 69 percent or more fixed carbon on the dry, mineral-matter-free basis shall be classified according to fixed carbon, regardless of calorific value.

*††* It is recognized that there may be nonagglomerating varieties in these groups of the bituminous class, and there are notable exceptions in high-volatile C bituminous group.



Figure 11. Coalification pattern in Illinois shows progressive increase in rank in the Herrin Coal southward (after Damberger, 1971).

|                                      | As-received basis |                           |                        |            |               |                  |                |                       |
|--------------------------------------|-------------------|---------------------------|------------------------|------------|---------------|------------------|----------------|-----------------------|
| County                               | Moisture<br>(%)   | Volatile<br>matter<br>(%) | Fixed<br>carbon<br>(%) | Ash<br>(%) | Sulfur<br>(%) | Btu/lb           | Rank<br>indext | Ash<br>fusion<br><°F) |
|                                      |                   |                           |                        | не         | RRIN (N       | 0.6) COAL        |                |                       |
| La Salle, Grundy                     | 13-16             | 36-41                     | 35-40                  | 7-11       | 3-5           | 10,500-11,400    | 116-123        | 1,950-2,150           |
| Bureau, Stark, Henry, Knox           | 16-20             | 31-35                     | 37-40                  | 8-13       | 3 - 5         | 9,700-10,300     | 111-118        | 1,900-2,120           |
| Peoria, Fulton                       | 15-19             | 32-35                     | 37-43                  | 8-13       | 2 - 4         | 9,800-10,700     | 111-120        | , ,                   |
| Sangamon, Macoupin                   | 12-16             | 35-40                     | 37-41                  | 9-11       | 3 - 5         | 10,400-10,900    | 116-123        | 1,930-2,160           |
| Christian, Montgomery, Bond, Madison | 12-14             | 35-40                     | 38-41                  | 9-11       | 3 - 5         | 10,500-11,000    | 117-125        | 1,920-2,170           |
| Vermilion                            | 14-16             | 32-36                     | 38-41                  | 8-12       | 1-3           | 10,400-11,100    | 118-128        | 2,080-2,220           |
| Clinton, St. Clair                   | 10-13             | 35-40                     | 37-42                  | 9 - 1 2    | 1 - 4         | 10,700-11,100    | 121-129        | 1,920-2,090           |
| Marion, Washington, Randolph, Perry  | 8 - 1 2           | 35-39                     | 38-44                  | 9-13       | 1-4           | 10,800-11,300    | 124-133        | 1,920-2,610           |
| Jefferson, Franklin, Jackson         | 7 - 1 0           | 32-37                     | 45-50                  | 7 - 1 0    | 1-3           | 11,600-12,000    | 130-135        | 1,920-2,650           |
| White, Saline, Williamson            | 4 - 9             | 30-36                     | 46-52                  | 7 - 1 0    | 1-3           | 11,700-12,300    | 130-141        | 1,950-2,430           |
| Gallatin (Eagle Valley)              | 3-5               | 32-35                     | 46-50                  | 10-13      | 3 - 4         | 12,400-12,700    | 138-147        |                       |
|                                      |                   |                           | HAR                    | RISBURG    | -SPRING       | FIELD (No. 5) CO | AL             |                       |
| Peoria, Fulton, Tazewell, Schuyler   | 14-18             | 33-38                     | 34-40                  | 9-12       | 2 - 4         | 10,100-10,800    | 115-122        | 1,890-2,270           |
| McLean, Logan, Menard, Sangamon      | 13-17             | 34-39                     | 36-41                  | 9 - 1 2    | 3-5           | 10,400-11,000    | 117-125        | 1,890-2,060           |
| Macon, Shelby                        | 12-16             | 34-39                     | 35-40                  | 8 - 1 2    | 3 - 4         | 10,500-11,100    | 119-127        |                       |
| Edgar                                | 10-12             | 36-40                     | 37-43                  | 8-10       | 3 - 4         | 11,200-11,500    | 126-130        |                       |
| Randolph, Perry                      | 8-13              | 35-38                     | 40-44                  | 9-12       | 4 - 5         | 11,000-11,400    | 124-135        |                       |
| Jackson                              | 8 - 9             | 35-36                     | 44-55                  | 11         | 3 - 4         | 11,600-11,800    | 130-135        | 2,168-2,174           |
| Gallatin, Saline, Williamson         | 5 - 7             | 33-38                     | 47-53                  | 8 - 1 2    | 2 - 5         | 11,900-12,500    | 132-141        | 1,940-2,010           |
| Gallatin (Eagle Valley)              | 4 - 5             | 34-37                     | 48-52                  | 10-11      | 3 - 4         | 12,400-12,700    | 130-147        | 2,040-2,090           |

# TABLE 7-RANGE OF TYPICAL ANALYSES BY COUNTIES\*

\* Adapted from data compiled by H. H. Damberger from Cody (1935<sup>3</sup>, 1948<sup>4</sup>) and from coal analyses by the Illinois Geological Survey since 1948.

*†* Calorific value of moist coal on a mineral-matter-free basis to the nearest 100 Btu/lb.

#### Sulfur Content

About 4 percent of the total reserves of the Herrin and Harrisburg-Springfield Coals is low-sulfur coal (less than 2.5 percent sulfur), as is shown in figures 12 and 13. In most of the Eastern Interior Coal Field, the coals are overlain by black shale and/or limestone, and the sulfur content normally ranges from 3 to 5 percent. However, in certain areas near sandstone-filled channels (figs. 12 and 13), gray silty shale intervenes between the coal and the overlying black shale and limestone. In areas where the gray shale deposits (which are considered to be genetically related to the sandstone channels) exceed 20 feet thick (figs. 14 and 16), the sulfur content of the coal is normally less than 2.5 percent.

The fact that most Illinois coal contains from 3 to 5 percent sulfur has been responsible for curtailment of its use to observe environmental restrictions. Development of new mines has therefore been greatly retarded. Studies conducted in recent years at the Geological Survey to evaluate and characterize the distribution of sulfur in Illinois coals have shown that sulfur content of Illinois coals ranges between 0.5 and 6.0 percent (dry basis), the average total sulfur content being about 3.5 percent (Gluskoter and Simon, 1968<sup>7</sup>).

Because the low-sulfur coal meets the standards for use in blends for manufacture of metallurgical coke, a significant part of the current production is used for this purpose. In 1972, the latest year for which figures are available, 4.4 million tons of Illinois coal was consumed in coke plants.

#### HERRIN (NO. 6) COAL MEMBER

The Herrin (No. 6) Coal Member, the most extensively mined coal in Illinois, was named for exposures near Herrin, Williamson County (Shaw and Savage, 1912<sup>72</sup>). It is correlated with the No. 11 Coal of western Kentucky, the Herrin Coal Member of Indiana, the Mystic Coal of Iowa, and the Lexington Coal of Missouri and Kansas. As shown on plate 1, it is 42 or more inches thick in an area covering 9,269 square miles in Illinois. It has been and currently is being strip mined along much of the southern and western margins of the Illinois Basin. Underground mining has been most extensive in areas where the coal is thickest and can be reached at moderate depths (generally 700 feet or less), but in Franklin and Jefferson Counties coal having lower than average sulfur content has been extensively mined at depths of as much as 800 feet. Of the total coal production in Illinois in 1973 (61.5 million tons), 75 percent was from the Herrin seam. Of the original area of 10,196 square miles mapped in this study for Herrin Coal reserves, 927 square miles have been mined out. The remaining in-place reserves of Herrin Coal 42 or more inches thick are estimated at 59 billion tons. The distribution of reserves by county appears in table A.

#### Thickness of the Coal

The Herrin Coal is the most widely mapped and thickest coal in Illinois, and it has been mined more extensively than any other seam. Mapping for this study revealed that the weighted average thickness of all coal 42 or more inches thick in the Herrin seam is 5.51 feet. Figure 14 shows the generalized thickness of the Herrin Coal, drawn from the data used for compilation of plate 1.

The Herrin Coal is absent where the Walshville Channel occurs (fig. 14). Along the margins of the channel the coal is generally split by sandstone or shale and may be unminable because it lies in relatively thin benches. On both sides of the channel and beyond the area of split or thin coal, the thickest coal is generally found.

Regions in which the coal is thin (fig. 14) are those in which conditions for coal accumulation were not favorable. In several such regions geologic structures (fig. 9) appear to have been responsible. The area of thin coal in eastern Fayette County, western Effingham County, and central and northern Marion County reflects the Salem and Louden Anticlines, apparently high places in the coal swamps on which relatively little coal material was deposited. The abrupt thinning of the Herrin Coal northward from central Sangamon County and northern Christian County and a corresponding thickening of the Harrisburg-Springfield Coal in the same direction also may have been influenced by regional structure. The effect of the La Salle Anticlinal Belt and other large structural features on coal thickness suggests that most coal seams, including the Herrin Coal, become thin over positive structures and thick over negative structures, although this conclusion does not always apply.

Definition of the reserves of the Herrin Coal in northcentral and east-central Illinois has been hampered by lack of sufficient data. In east-central Illinois Clegg  $(1959^{30}, 1965^{32})$  (fig. 3) mapped the structure of the Herrin Coal in Cumberland, Coles, Douglas, Clark, and Edgar Counties but did not modify reserves estimated by Cady and others  $(1952^{28})$  because no additional coal tests were available to indicate the thickness of the coal. Clegg  $(1965^{32})$  did, however, modify the coal correlations of the 1952 study by pointing out that the coal that was mapped as Danville (No. 7) Coal, which is being mined at Murdock, Douglas County, should have been correlated with the Herrin Coal. Therefore, substantial reserves in those counties formerly classified as the Danville Coal are mapped in this study as Herrin (No. 6) Coal.

Allgaier and Hopkins (1975<sup>24</sup>) mapped the thickness and estimated the reserves of Herrin Coal (fig. 3) in southeastern Illinois. They derived data primarily from electric logs of



Figure 12. Occurrence of low-sulfur coal in the Herrin seam.

| ILLINOIS LOW-SULFUR RESERVES IN GROUND |            |                  |  |  |  |  |  |
|----------------------------------------|------------|------------------|--|--|--|--|--|
| Coal                                   | County     | Millions of tons |  |  |  |  |  |
| Harrisburg-Springfield                 | Edwards    | 54               |  |  |  |  |  |
| (No. 5)                                | Franklin   | 243              |  |  |  |  |  |
| (<2.5% S,                              | Hamilton   | 563              |  |  |  |  |  |
| av.~2%,                                | Saline     | 627              |  |  |  |  |  |
| dry basis)                             | Wabash     | 262              |  |  |  |  |  |
| <b>,</b>                               | Wayne      | 89               |  |  |  |  |  |
|                                        | White      | 626              |  |  |  |  |  |
|                                        | Williamson | 274              |  |  |  |  |  |
|                                        |            | 2.738            |  |  |  |  |  |



Figure 13. Occurrence of low-sulfur coal in the Harrisburg-Springfield seam.



Figure 14. Generalized thickness of Herrin Coal.

oil wells and used them to interpret the coal thickness, as Hopkins (1968<sup>37</sup>) had done previously for the Harrisburg-Springfield Coal in much of the same region.

# Depth of the Coal

The areas where the Herrin Coal is strippable lie toward the margins of the Illinois Basin; coal depth increases to a known maximum of 1,248 feet in Jasper County, near the center of the basin (fig. 15). The 150-foot depth line is shown on plate 1 to designate areas where the coal may be potentially strippable. Strippable areas of the Herrin Coal have been mapped in a series of reports (numbers 42, 43, 45, 46, 47, 48, 49 in the Bibliography) located geographically in figure 2. The strippable reserves of Herrin Coal by counties covered in that series of reports are summarized in table 8.

A comparison of the depth of the Herrin Coal throughout Illinois (fig. 15) with the overburden line on plate 1 shows that, fortunately, where the coal is thickest it also happens to be at moderate depth. None of the Herrin Coal lies deep enough to make it economically prohibitive to mine, and the availability of large volumes of thick coal at moderate depth may make it unnecessary at present to mine the coal in the deepest parts of the Illinois Basin.

#### Geology of the Herrin Coal Relative to Mining

The Herrin Coal has been mined more than any other coal seam in Illinois because of its thickness, its shallow-to-moderate depth throughout extensive areas, and the prevalence of suitable conditions for large-scale mining. The location of all mines operating in the Herrin Coal in Illinois in 1974 is shown in figure 15. These 37 mines, 19 underground mines and 18 strip mines, accounted for 75 percent of the 1973 production of coal in Illinois. The locations of these mines and all other Illinois coal mines are shown on a new map (Hopkins, 1975<sup>38</sup>) prepared on the same scale as the three plates accompanying this report.

# Southern and Central Illinois

The Herrin Coal has been mined more extensively in southern Illinois than in any other part of the state. Five of the current underground mines are now operating in the low-sulfur coal area, located in Franklin and Jefferson Counties (fig. 12). In Jackson, Perry, Randolph, and St. Clair Counties, most current production is from strip mines, four of which are mining in both the Herrin Coal and the Harrisburg-Springfield Coal. In central Illinois, large underground mines in Christian, Macoupin, and Montgomery Counties (fig. 15) produce from the Herrin Coal.

In a large area in eastern Fayette County, western Effingham County, eastern Marion County, and western Clay County, the Herrin Coal is less than 42 inches thick. In part of that area it is less than 28 inches thick.

# Western Illinois

All of the coal production in western Illinois in recent years has been from strip mines primarily from the Herrin, Harrisburg-Springfield, and Colchester (No. 2) Coals. All active mines except one are now producing from the Herrin and/or the Harrisburg-Springfield Coals, and extensive reserves are shown for these coals in this area (table 8).

The Herrin Coal is now being strip mined in Stark, Peoria, Knox, and Fulton Counties (fig. 15). Large areas of potentially strippable Herrin Coal also are present in southeastern Henry County and southwestern Bureau County (Smith and Berggren, 1963<sup>49</sup>).

In Fulton County, strip mines in the past have mined coal from both the Herrin and Harrisburg-Springfield seams from adjacent strip pits. In this area the two seams are 60 to 75 feet apart. In the counties farther north, however, the Harrisburg-Springfield Coal becomes thinner and only the Herrin Coal has been mined.

# Northern Illinois

There is no current mining in the Herrin Coal in northern Illinois (fig. 15). It was formerly mined, principally by underground methods, near Streator in La Salle County and along the Illinois River in both Bureau and La Salle Counties.

The remaining coal reserves in these areas, as shown on plate 1, are small compared to those of other regions of the state. However, in a large part of northern Illinois the coal resources have not yet been adequately assessed because data on which to make an evaluation are scarce.

# Eastern Illinois

Three mines are operating at present in the Herrin Coal in eastern Illinois, two near Murdock in eastern Douglas County and one, a small mine, southwest of Danville in Vermilion County (fig. 15). Substantial quantities of additional coal have been mapped in Douglas, Vermilion, and Edgar Counties. For Clark, Coles, and Cumberland Counties, because not enough data are available for mapping the Herrin Coal reserves, no estimate has been made. Farther south, in part of southeastern Illinois, large reserves of Herrin Coal are mapped, but the coal is much deeper there than in other parts of the state and numerous oil pools will seriously limit the minability of the coal in many parts of this region. In southern Cumberland County, eastern Effingham County, and western Jasper County the Herrin Coal has been mapped in large areas, principally from interpretation of geophysical logs of oil and gas wells (Allgaier and Hopkins, 1975<sup>24</sup>). Therefore the Herrin Coal in these Counties has been placed in the Class II category (table 3 and fig. 4).



Figure 15. Generalized depth of Herrin Coal. Mines active in the Herrin seam on January 1,1975, are indicated.

| Class I reserves at overburden thickness (ft) |              |                |                               | Class II re                 | serves at o      |               | Mined                            |                |                  |                   |          |
|-----------------------------------------------|--------------|----------------|-------------------------------|-----------------------------|------------------|---------------|----------------------------------|----------------|------------------|-------------------|----------|
| County                                        | Coal<br>seam | 0-50           | 50-100                        | 100-150                     | Total            | 0-50          | 50-100                           | 100-150        | Total            | – Totals<br>I & П | (sq mi)  |
| Bureau                                        | 6            | 24,218         | 63,058                        | 76,061                      | 163,337          | 628           | 29,055                           | 69,095         | 98,778           | 262,115           | 4.91     |
| Cass                                          | 6            |                | 14,600                        | 5,100                       | 19,700           |               | 14,729                           | 21,455         | 36,184           | 55,884            |          |
| Fulton                                        | 6            | 42,556         | 126,588                       | 80,142                      | 249,286          |               |                                  |                |                  | 249,286           | 4.93     |
|                                               | 5            | 172,925        | 389,624                       | 139,837                     | 702,386          |               |                                  |                |                  | 702,386           | 51.19    |
| Gallatin                                      | 6            | 37,104         | 45,035                        | 32,367                      | 114,506          |               | 718                              | 6,681          | 7,399            | 121,905           |          |
|                                               | 5            | 2,343          | 29,582                        | 83,924                      | 115,849          |               |                                  |                |                  | 115,849           | 1.64     |
| Greene                                        | 6            | 13,831         | 23,988                        | 37,540                      | 75,359           | 9,069         | 12,555                           | 291            | 21,915           | 97,274            |          |
| Henry                                         | 6            | 38,919         | 104,433                       | 49,175                      | 192,527          | 583           | 45,107                           | 17,218         | 62,908           | 255,435           | 1.94     |
| Jackson                                       | 6            | 26,969         | 73,264                        | 49,085                      | 149,318          |               |                                  |                |                  | 149,318           | 9.47     |
|                                               | 5            | 18,585         | 34,424                        | 46,834                      | 99,843           |               |                                  |                |                  | 99,843            | 1.88     |
| Jersey                                        | 6            | 18,159         | 23,910                        | 8,452                       | 50,521           | 807           | 4,887                            | 1,121          | 6,815            | 57,336            |          |
| Knox                                          | 6            | 124,723        | 128,050                       | 4,293                       | 257,066          |               |                                  |                |                  | 257,066           | 11.28    |
|                                               | 5            | 178,543        | 233,719                       | 55,960                      | 468,222          | 23,282        | 77,659                           | 57,346         | 158,287          | 626,509           | 5.50     |
| La Salle                                      | 6            | 14,897         | 24,480                        | 9,574                       | 48,951           | 8,732         | 12,521                           |                | 21,253           | 70,204            | 9.19     |
| Livingston                                    | 6            | 5,829          | 17,553                        | 1,671                       | 25,053           | 1,794         | 2,197                            |                | 3,991            | 29,044            | 3.33     |
| Macoupin                                      | 6            | 36,967         | 64,264                        | 90,371                      | 191,602          | 246           | 16,949                           | 42,013         | 59,208           | 250,810           |          |
| Madison                                       | 6            | 31,789         | 165,036                       | 195,200                     | 392,025          | 1,883         | 14,942                           | 40,433         | 57,258           | 449,283           |          |
| Monroe                                        | 6            | 6,726          |                               |                             | 6,726            |               |                                  |                |                  | 6,726             |          |
| Morgan                                        | 6            | 4,081          | 61,759                        | 26,622                      | 92,462           | 7,466         | 202,510                          | 183,442        | 393,418          | 485,880           |          |
| Peoria                                        | 6            | 204,817        | 404,294                       | 272,710                     | 881,821          | 5,173         | 46,873                           | 124,504        | 176,550          | 1,058,371         | 1.85     |
|                                               | 5            | 45,712         | 173,645                       | 248,778                     | 468,135          | 28,489        | 117,689                          | 111,236        | 257,414          | 725,549           | 17.83    |
| Perry                                         | 6            | 136,037        | 510,782                       | 249,948                     | 896,767          |               |                                  |                |                  | 896,767           | 35.94    |
|                                               | 5            | 33,112         | 117,156                       | 31,162                      | 181,430          |               | 13,182                           | 14,662         | 27,844           | 209,274           | .58      |
| Randolph                                      | 6            | 51,116         | 102,241                       | 125,782                     | 279,139          |               |                                  |                |                  | 279,139           | 8.19     |
|                                               | 5            | 41,125         | 86,795                        | 32,557                      | 160,477          | 196           | 6,283                            | 8,934          | 15,413           | 175,890           | .88      |
| St. Clair                                     | 6            | 101,714        | 409,091                       | 738,318                     | 1,249,123        |               |                                  |                |                  | 1,249,123         | 36.06    |
| Saline                                        | 6            | 56,125         | 102,589                       | 125,858                     | 284,572          |               |                                  |                |                  | 284,572           | 6.03     |
|                                               | 5            | 11,782         | 24,044                        | 57,596                      | 93,422           |               |                                  |                |                  | 93,422            | 10.67    |
| Schuyler                                      | 5            | 79,664         | 23,204                        | 2,186                       | 105,054          | 8,340         |                                  |                | 8,340            | 113,394           | 1.03     |
| Scott                                         | 6            | 583            | 5,537                         |                             | 6,120            |               |                                  |                |                  | 6,120             |          |
| Stark                                         | 6            | 41,700         | 158,412                       | 42,949                      | 243,061          | 2,107         | 89,329                           | 107,970        | 199,406          | 442,467           | .25      |
| Tazewell                                      | 6            | 6,097          | 16,377                        | 35,163                      | 57,637           | 140           | 7,034                            | 4,875          | 12,049           | 69,686            |          |
|                                               | 5            | 1,211          | 5,851                         | 21,085                      | 28,147           |               |                                  | 8,928          | 8,928            | 37,075            | 1.35     |
| Warren                                        | 5            | 807            |                               |                             | 807              |               |                                  |                |                  | 807               |          |
| Williamson                                    | 6            | 66,461         | 92,603                        | 131,654                     | 290,718          |               |                                  |                |                  | 290,718           | 33.62    |
| Total                                         | 5            | <u>40,494</u>  | <u>37,434</u><br>2 727 044    | 2 388 025                   | <u>200,208</u>   | 28 678        | 100 407                          | 610 000        | 1 157 122        | 7 374 520         | 166.00   |
| 10181                                         | 5            | <u>614,103</u> | 2,737,944<br><u>1,177,498</u> | 2,368,035<br><u>832,412</u> | <u>2,624,013</u> | <u>60,307</u> | <u>499,406</u><br><u>214,813</u> | <u>201,106</u> | <u>476,226</u>   | <u>3,100,239</u>  | 267.07   |
| Totals                                        |              | 1,705,521      | 3,915,442                     | 3,220,447                   | 8,841,410        | 98,935        | 714,219                          | 820,204        | 1,633,358        | 10,474,768        | 267.07   |
| * Does not                                    | t inclu      | de studies n   | ow in progress                | s for Springfie             | eld (No. 5) Coa  | l in Menard d | and Sangan                       | non Count      | ies or Herrin (N | lo. 6) Coal in V  | ermilion |

# TABLE 8-STRIPPABLE COAL RESERVES IN THE HERRIN (NO. 6) AND HARRISBURG-SPRINGFIELD (NO. 5) COAL MEMBERS BY COUNTY AND RELIABILITY CLASSIFICATION\*† (thousands of tons)

and Edgar Counties.

# HARRISBURG-SPRINGFIELD (NO. 5) COAL MEMBER

The Harrisburg (No. 5) Coal Member was defined by Shaw and Savage  $(1912^{72})$ , who named it for exposures and mines near Harrisburg, Saline County. The coal had previously been given the name "Springfield Coal" in the area of Springfield, Sangamon County (Worthen, 1883<sup>82</sup>). Subsequently, the coal was found to be in the same stratigraphic position in both regions, and therefore the form "Harrisburg-Springfield Coal" is used in this report. The seam is correlated with the No. 9 Coal of western Kentucky, the Springfield Coal Member (V) of Indiana, and the Summit Coal of Iowa and Missouri.

In Illinois the Harrisburg-Springfield Coal ranks second only to the Herrin Coal in total mapped reserves. Production from this seam accounted for 16 percent of the 1973 total production. It has been mapped (pl. 2) as being 42 or more inches thick throughout an area of 7,630 square miles, 331 square miles of which has been mined out, leaving 7,299 square miles of in-place reserves estimated at 38 billion tons.

The Harrisburg-Springfield Coal has been extensively mined underground in the Harrisburg region, the Springfield region, near Canton, Peoria, and Pekin, and in a large new mine near Keensburg in Wabash County. After World War II, strip mining in this seam increased, and many of the underground mines were closed. Along the outcrop in Gallatin, Saline, Williamson, Perry, and Randolph Counties, and in Fulton County, this seam has been extensively strip mined. In some areas it was, and still is in a few places, the principal seam mined, while in other areas it is strip mined along with the overlying Herrin Coal.

#### Thickness of the Coal

The Harrisburg-Springfield Coal averages about 1 foot thinner than the Herrin Coal. As determined in this study, its weighted average thickness in Illinois is 4.55 feet, compared to 5.52 feet for the Herrin Coal. The generalized thickness of the Harrisburg-Springfield Coal is shown in figure 16. It shows that the thickest coal is in southeastern Illinois adjacent to the prominent sandstone-filled channel mapped by Hopkins (1968<sup>37</sup>). The relation between coal thickness and proximity to the channel shown in figure 16 and plate 2 is similar to that shown for the Herrin Coal in figure 14 and plate 1. A similar relation is apparent between the low-sulfur areas of the two coals and the proximity of the coals to channels that existed during coal deposition, as shown in figures 12 and 13.

Other large areas of Harrisburg-Springfield Coal mapped in this study are located in the Springfield region and in the vicinity of Peoria and Canton in western Illinois. In both of these regions the coal is at least 5 feet thick in considerable areas. In the vicinity of Springfield and Peoria the coal formerly was mined rather widely in underground mines, whereas around Canton it has been extensively strip mined. In other parts of the state the Harrisburg-Springfield is either thin (less than 28 inches thick) or there is insufficient information available to warrant mapping the coal reserves.

#### Depth of the Coal

The depth of the Harrisburg-Springfield Coal is shown in figure 17. The Harrisburg-Springfield ranges from 10 to 130 feet below the Herrin seam (fig. 20). Like the overlying Herrin Coal, it is being strip mined near the margins of the Illinois Basin. Only 4.5 percent of the area of original Harrisburg-Springfield reserves mapped in this study has been mined out. It seems probable that the greater general thickness of the overlying Herrin Coal rather than the slightly greater depth of the Harrisburg-Springfield Coal has been largely responsible for the less extensive development of the lower coal.

# Geology of the Harrisburg-Springfield Coal Relative to Mining

The Harrisburg-Springfield Coal has been extensively mined near Harrisburg, along its outcrop in southern Illinois, near Springfield, and near Peoria and Canton in western Illinois.

The locations of 16 mines operating in this coal in 1974 are shown in figure 17, 10 of them strip mines and 6 of them underground mines. In 1973 these mines accounted for 16 percent of the state's total coal production.

#### Southern and Central Illinois

In southern Illinois the Harrisburg-Springfield Coal is being strip mined at several places along its outcrop in Randolph, Perry, and Williamson Counties. Near Harrisburg, Saline County, it has been strip mined along its outcrop and was formerly mined underground much more extensively than it has been in recent years, although two underground mines still are operating there (fig. 17). As can be seen in figure 13, much of the coal formerly mined near Harrisburg had a lower sulfur content than that mined elsewhere in the region.

Hopkins (1968<sup>s7</sup>) mapped reserves totaling 11.8 billion tons for coal 42 or more inches thick in the Harrisburg-Springfield (No. 5) Coal in southeastern Illinois. This included substantial quantities of low-sulfur coal in a belt along the prominent sandstone channel that extends northward from the vicinity of Harrisburg to Wabash County (figs. 13, 16, and pl. 1). Much of the coal along this belt is thicker than the coal elsewhere in the region. One new mine is now operating in this low-sulfur coal in Wabash County, and another is under construction in Hamilton County.



Figure 16. Generalized thickness of Harrisburg-Springfield Coal.



Figure 17. Generalized depth of the Harrisburg-Springfield Coal. Mines active in the Harrisburg-Springfield seam on January 1,1975, are located.

In central Illinois some of the Harrisburg-Springfield Coal that is mapped on plate 2 is less than 42 inches thick. However, for much of this region only scattered information is available from coal test drilling. In the central Illinois area where reserves have been mapped, the estimate is based mainly on interpretation of coal thickness from electric logs of oil test holes, following the procedures described by Hopkins (1968<sup>37</sup>).

Electric logs also have been used to interpret coal thickness and to estimate reserves in large parts of Marion County and northwestern Jefferson County. Other counties in this region were not mapped for the present study because no information is available from coal test holes. There are, however, numerous oil well logs from which a systematic study could be made of the coal reserves, as Allgaier and Hopkins (1975<sup>24</sup>) did for the Herrin Coal in southeastern Illinois.

# Northern and Western Illinois

The Harrisburg-Springfield Coal averages 4 to 5 feet or more thick in a large area that extends from the Decatur-Springfield region northward and westward to the Peoria-Canton region. This area of relatively thick coal probably was once much more extensive, but in large areas between the Sangamon Valley north of Springfield and the Illinois Valley near Peoria (pl. 2) the coal has been eroded.

The Harrisburg-Springfield Coal was formerly mined at numerous places in western Illinois, in spite of which the remaining reserves are very large. In fact, more coal remains than has been mined. Within this region the reserves (pl. 2) are potentially great enough to support several facilities for coal conversion.

# Eastern Illinois

In Edgar, Clark, Crawford, and Lawrence Counties, the reserves (pl. 2) border areas in Indiana where the coal is not as deep and therefore has been more extensively mined. Information regarding the Illinois coal has been obtained from general knowledge of Indiana mines and from limited mining and exploratory drilling in Illinois. For the remaining areas of eastern Illinois, however, reserves of the Harrisburg-Springfield seam have not been mapped because of a paucity of information.

# GEOLOGICAL FACTORS AFFECTING MINABILITY OF THE COALS

A total area of 1,258 square miles has been mined to date for the Herrin and Harrisburg-Springfield Coals, 7.1 percent of the area of original reserves mapped in this study (table 5). Substantial information on mining conditions that has been garnered from past mining provides the best

28

guide to the mining conditions that are likely to be encountered in the future.

For more than 60 years the Geological Survey has been engaged in studying the coals and their associated roof and floor strata as mining and exploratory drilling in Illinois has progressed. Much has been learned from these investigations about geological features that affect the minability of the coal seams, and the Geological Survey has published regional reports covering much of the Illinois coal field area that show structure contours on the coal, location of faults, major sandstone channels, and other geological features that are important to the planning of mines.

The Illinois Geological Survey is currently engaged in a study, partially funded by the U.S. Bureau of Mines, of the geologic characteristics of the roof of the Herrin Coal in the major areas of underground mining. The investigation is concerned with determining how the geology of the strata above the coal might be related to roof failures. Structural features and the stratigraphy of selected areas of the roof in representative mines are being mapped in detail, and regional maps showing the characteristics of the strata several feet above the coal are being prepared. The results of the study should be valuable for the planning of future mines.

#### Areas Depleted by Past Mining

Much of the mining in Illinois in the past was concentrated in the areas of thickest coal near the outcrop, along major railroad lines, or in the areas in which the coal is relatively low in sulfur (figs. 12 and 13). The location of all mined-out coal areas in Illinois and all mines operating on January 1, 1975, are shown on a map newly issued by the Geological Survey (Hopkins, 1975<sup>38</sup>). More detailed information on mined-out areas is shown on maps available from the Illinois Geological Survey (fig. 18).

The Geological Survey has for many years maintained files of geological information regarding individual mines. Observations of mining conditions relating to geology have been collected by Survey geologists and are available for public inspection. Some of the observations of mining conditions were made in the early part of this century when many more individual mines operated in Illinois than at present, and they contain information valuable for the planning of new mines.

#### Areas Closely Drilled for Oil or Gas

Oil and gas fields in which holes are closely spaced were excluded from the estimates of coal resources in this study. In much of southeastern Illinois a substantial portion of the original in-place coal resources lie above oil pools and are not at present considered recoverable. In these places oil wells producing from depths of less than 4,000 feet are



Figure 18. Index to maps of areas where coal has been mined out. Maps are available from the Illinois State Geological Survey, Urbana.

normally spaced to allow 10 acres per well (660 feet apart) where production is from sandstone and 20 acres per well where the production is from limestone. For wells producing from depths between 4,000 and 6,000 feet, the spacing is 40 acres per well. Since Federal mining law prohibits mining within an area 300 feet in diameter surrounding each well unless special precautions are taken, the coal in these areas cannot be effectively mined unless the wells are adequately plugged and permission to mine obtained from the authorities. New methods of plugging abandoned wells are being developed (Rennick et al., 1972<sup>71</sup>) that would permit mining without leaving the large barrier pillar around each well.

Approximately 100,000 test holes have been drilled for oil or gas within the coal-bearing areas of Illinois, many of which will affect the recoverability of the state's coal reserves. Fortunately, most oil test holes in Illinois are quite adequately recorded, and maps that show the number and distribution of wells are available for mine planners to consult. Figure 19 is the index to a series of maps (scale, 2 inches equal 1 mile) available from the Illinois Geological Survey that show the location of holes drilled for oil or gas, as well as many other kinds of test holes. Logs and other pertinent records, including information on well plugging, for essentially all of these test holes also are available for examination at the Geological Survey.

#### Areas Affected by Sandstone Channels and Split Coal

The presence of sandstone channels, described earlier, will influence the siting of new mines in some areas because where the channels have cut out the coal the lateral extent of the mines may be limited. Poor mine roof conditions and, in some instances, shale or sandstone partings in the coal seam occur in areas near the channels. Channel sandstone deposits in the roof strata must also be considered, even when they are at some distance above the coal, because, in addition to their direct effect on the stability of the roof strata, they may contain large amounts of water that can adversely affect roof shales. The water may also enter the mine and interfere with mining operations.

Future exploration for coal and actual mining activities undoubtedly will disclose additional channels. However, the major channels and their trends, especially those in the Herrin Coal, are now believed to be fairly well known, except in areas of east-central Illinois where there are obvious gaps in the mapped continuity of the channels (pls. 1 and 2). Sandstone was reported by Potter and Simon (1961<sup>70</sup>, pl. 1) in many mines, either in the roof or partially or totally replacing the Herrin Coal in west-central Illinois.



Figure 19. Index to the maps, available from the Illinois Geological Survey, that show location of oil and gas wells.



Figure 20. Generalized thickness of the interval between the Herrin and Harrisburg-Springfield Coals.

#### **Roof and Floor Conditions**

Some mine roof problems occur in all mines and many appear to be related to variations in the lithologic sequence and changes in structural properties of the roof strata into which the roof bolts are set. In spite of many local exceptions, the strata composing the roof and floor of the Herrin and Harrisburg-Springfield Coals can be described in general because of the widespread uniformity of many of the lithologic units.

Both seams are characteristically overlain by black shale, generally less than 3 feet thick, which is in turn overlain by widespread marine limestone members. Although somewhat similar in lithology, the limestone members differ characteristically in physical appearance and in fossil content. In certain areas, however, the marine limestone (especially above the Herrin Coal) is somewhat lenticular, a condition that causes roof problems where the limestone is very thin or absent. In many of the regions where the seams have been or are now being mined, the sequence of strata forming the roof is relatively uniform and provides average-togood roof conditions.

The floor of most mines operating in the two coals commonly consists of gray claystone that causes few problems, except when it becomes wet during mining. In a few places, however, a local change in the moisture content or mineralogy of the strata below the coal may increase the tendency of the clay to "squeeze" from beneath coal pillars. When that happens, the argillaceous materials flow plastically into the floor strata of the mined-out rooms and entries, causing the floors to heave and impede mining (White,  $1956^{77}$ ; report in preparation<sup>78</sup>).

The Illinois Geological Survey is investigating ways in which areas of unstable underclay can be identified during exploratory drilling. Mines could then be designed to cope with or avoid the problems caused by the underclays.

#### Interval between Herrin and Harrisburg-Springfield Coals

A map showing the thickness of the interval between the Herrin and Harrisburg-Springfield Coals (fig. 20) was prepared by using the computerized geological mapping program described in Appendix 2. The interval between the two coals ranges from 10 feet or less to more than 130 feet. Where they are less than 30 feet apart, as indicated by the stippled area on figure 20, only one of the two seams, commonly the Herrin, is likely to be more than 42 inches thick. Even in areas where both seams are thick enough for mining and are less than 30 feet apart, it is questionable whether both seams can be mined underground. However, both seams may be strip mined, and strip mines are now operating in both coals in several mines in southwestern Illinois.

In southern and southeastern Illinois where the interval separating the Herrin from the Harrisburg-Springfield Coal

is greater than in the southwest, each coal exceeds 4 feet thick in many localities and they could both be mined if it proved economically feasible. However, up to the present, no underground mining of both seams has been undertaken.

# **Clastic Dikes and White-Top**

In both the Herrin and Harrisburg-Springfield Coals, irregular claystone-filled cracks called clastic dikes have been encountered in mines (Damberger, 1970<sup>64</sup>). They vary in width from a few inches to a few feet and may extend vertically throughout the thickness of the coal. Many extend into the roof strata but not into the floor. The dikes have been observed in the Harrisburg-Springfield Coal, principally in the Springfield and Peoria regions, in both strip and underground mines. In the Herrin Coal they are particularly plentiful in the northwestern portion of the Illinois coal field and less numerous in west-central Illinois. When encountered in underground mines, dikes often cause problems with roof stability. In strip mines they cause only minor problems. They contribute to the ash content of the coal as mined.

In northwestern Illinois the Herrin Coal is also disturbed by white-top—in which the top layers of coal are replaced and infiltrated by light gray, often silty claystone. Whitetop is always associated with clastic dikes. Herrin (No. 6) Coal affected by white-top is widely mined in strip mines of northwestern Illinois, but the resultant undulating surface of the coal seam and the presence in varying thicknesses of the claystone layer and associated clastic dikes in the coal seam are hard on the equipment. It is also difficult to separate the finely dispersed clay from the coal in preparation plants.

The intensity of occurrence of clastic dikes and white-top in the two coals and their distribution in the state are shown in figure 21.

## CONCLUSIONS

Reserves of approximately 97 billion tons of coal 42 or more inches thick remain in the two most productive coal seams of Illinois, the Herrin (No. 6) and the Harrisburg-Springfield (No. 5) Coal Members. This estimate does not include the coal from these two seams that cannot be mined by present methods under existing laws because it overlies oil pools. Also excluded from the estimate are areas where the coal has been mined out or is missing because geologic features such as sandstone-filled channels have disrupted the coal. Areas in which the coal is thin or for which there is a dearth of information were not included, nor were areas



Figure 21. Areas in Illinois affected by claystone dikes and white-top (from Damberger, 1970 ).

adjacent to the channels where the coal is known to be split by partings of shale or sandstone.

As the large-scale underground mines needed to supply a coal conversion industry will be developed in the thicker coals, 42 inches was the minimum thickness selected for reserves estimates. Only the Herrin and Harrisburg-Springfield Coals were mapped for the study because they are the most extensive and thickest of the Illinois coals, but additional reserves are available in thinner and less extensive coal seams of the state. However, the reserves mapped in the Herrin and Harrisburg-Springfield Coals are clearly sufficient to supply coal for numerous conversion plants that will be located in Illinois.

The data base of coal and water resources in Illinois that has been compiled for this report can now be further interpreted and integrated with other data by systems analysis. Many of the variables that must be considered before selection of sites for coal conversion plants, or for other facilities that require large quantities of coal and water, can thus be comprehensively evaluated to determine the best possible locations for such installations.

#### BIBLIOGRAPHY TO PART 1

#### ANAL YSIS OF COAL

- American Society for Testing and Materials, 1973, 1973 annual book of standards: ASTM, Philadelphia, p. 57.
- Aresco, S. J., and others, 1953-1972, Analyses of tipple and delivered samples of coal: U.S. Bureau of Mines Reports of Investigations 4934 (1953); 4972 (1953); 5085 (1955); 5221 (1956); 5270 (1956); 5332 (1957); 5401 (1958); 5489 (1959); 5615 (1960); 5792 (1961); 6086 (1962); 6300 (1963); 6461 (1964); 6622 (1965); 6792 (1966); 6904 (1967); 7104 (1968); 7219 (1969); 7346 (1970); 7490 (1971); 7588 (1972).
- Cady, G. H., 1935, Classification and selection of Illinois coals: Illinois Geological Survey Bulletin 62, 354 p.
- 4. Cady, G. H., 1948, *Analyses of Illinois coals:* Illinois Geological Survey Bulletin 62 Supp., 77 p.
- Damberger, H. H., 1971, Coalification pattern of the Illinois Basin: Economic Geology, v. 66, no. 3, p. 488-494. (Reprinted as Illinois Geological Survey Reprint 1971-D.)
- 6. Gluskoter, H. J., and M. E. Hopkins, 1970, *Distribution of sulfur in Illinois coals*, in Depositional environments in parts of the Carbondale Formationwestern and southern Illinois: Guidebook for An-

nual Field Trip, Coal Geology Division, Geological Society of America, Milwaukee, Wis., Nov. 9-10, 1970. Illinois Geological Survey Guidebook 8, p. 89-95.

- Gluskoter, H. J., and J. A. Simon, 1968, Sulfur in Illinois coals: Illinois Geological Survey Circular 432, 28 p.
- Gluskoter, H. J., and O. W. Rees, 1964, *Chlorine in Illinois coal:* Illinois Geological Survey Circular 372, 23 p.
- Helfinstine, R. J., N. F. Shimp, M. E. Hopkins, and J. A. Simon, 1974, Sulfur reduction of Illinois coals—Washability studies. Part 2: Illinois Geological Survey Circular 484, 32 p.
- Helfinstine, R. J., N. F. Shimp, J. A. Simon, and M. E. Hopkins, 1971, Sulfur reduction of Illinois coals—Washability studies. Part 1: Illinois Geological Survey Circular 462, 44 p.
- Janus, J. B., and B. S. Shirley, 1973, Analyses of tipple and delivered samples of coal: U.S. Bureau of Mines Report of Investigations 7712, 17 p.
- Marshall, C. E., J. A. Harrison, J. A. Simon, and M. A. Parker, 1958, *Petrographic and coking characteristics of coal:* Laboratory study of Illinois coal seams Nos. 5 and 6: Illinois Geological Survey Bulletin 84, 120 p.
- Rao, C. P., and H. J. Gluskoter, 1973, Occurrence and distribution of minerals in Illinois coals: Illinois Geological Survey Circular 476, 56 p.
- Rees, O. W., 1964, Composition of the ash of Illinois coals: Illinois Geological Survey Circular 365, 20 p.
- Ruch, R. R., H. J. Gluskoter, and N. F. Shimp, 1974, *Occurrence and distribution of potentially volatile trace elements in coal: A final report:* Illinois Geological Survey Environmental Geology Note 72, 96 p.
- Snyder, N. H., and S. J. Aresco, 1953, Analyses of tipple and delivered samples of coal: U.S. Bureau of Mines Bulletin 516, 133 p.
- U.S. Bureau of Mines, 1942, Analyses of Illinois coals: U.S. Bureau of Mines Technical Paper 641, Washington, D.C.

# COAL CONVERSION

- Hogland, B. M., and J. G. Asbury, 1974, *Potential* sites for coal conversion facilities in Illinois: Illinois Institute for Environmental Quality Document No. 74-60,121 p.
- Mudge, L. K., G. F. Schiefelbein, C. T. Li, and R. H. Moore, 1974, *The gasification of coal:* Battelle Pacific Northwest Laboratories, Battelle Energy Program Report, Richland, Washington, 53 p., app.
- National Academy of Engineering, 1972, Evaluation of coal-gasification technology. Part I—Pipelinequality gas: Prepared by Ad Hoc Panel on Evaluation of Coal-Gasification Technology, Division of Engineering, National Research Council, National Academy of Engineering, Washington, D.C, 80 p.
- National Academy of Engineering, 1973, Evaluation of coal-gasification technology. Part II—Low- and intermediate-Btu fuel gases: Prepared by Ad Hoc Panel on Evaluation of Coal-Gasification Technology, Division of Engineering, National Research Council, National Academy of Engineering, Washington, D.C, 91 p.
- Risser, H. E., 1968, Gasification and liquefaction— Their potential impact on various aspects of the coal industry: Illinois Geological Survey Circular 430, 28 p.
- Seay, J. G., P. J. Anderson, N. P. Biederman, and B. Ritter, 1972, Evaluation of sites for an Illinois coal gasification industry: Project 8931 of Illinois Institute for Environmental Quality, Institute of Gas Technology, Illinois Institute of Technology Center, Chicago, 110 p.

## COAL RESOURCES

- Allgaier, G. J., and M. E. Hopkins, 1975, Reserves of the Herrin (No. 6) Coal in the Fairfield Basin in southeastern Illinois: Illinois Geological Survey Circular 489, 31 p.
- Cady, G. H., H. A. Lowenstam, H. L. Smith, M. W. Pullen, M. B. Rolley, and Raymond Siever, 1951, Subsurface geology and coal resources of the Pennsylvanian System in certain counties of the Illinois Basin: Illinois Geological Survey Report of Investigations 148, p. 9-25.
- Cady, G. H., E. T. Benson, E. F. Taylor, and others, 1938, Structure of Herrin (No. 6) Coal bed in central and southern Jefferson, southeastern Washington, Franklin, Williamson, Jackson, and eastern Perry Counties, Illinois: Illinois Geological Survey Circular 24, 11 p.
- Cady, G. H., E. F. Taylor, C. C. Boley, and others, 1939, Structure of Herrin (No. 6) Coal bed in Hamilton, White, Saline, and Gallatin Counties, Illinois, north of Shawneetown Fault: Illinois Geological Survey Circular 42, 16 p.
- Cady, G. H., and others, 1952, *Minable coal reserves* of *Illinois:* Illinois Geological Survey Bulletin 78, 138 p.
- Cady, G. H., M. B. Rolley, Adabell Karstrom, M. A. Parker, and M. E. Hopkins, 1955, Subsurface geology and coal resources of the Pennsylvanian System in Wabash County, Illinois: Illinois Geological Survey Report of Investigations 183, 24 p.
- Clegg, K. E., 1959, Subsurface geology and coal resources of the Pennsylvanian System in Douglas, Coles, and Cumberland Counties, Illinois: Illinois Geological Survey Circular 271,16 p.
- Clegg, K. E., 1961, Subsurface geology and coal resources of the Pennsylvanian System—Sangamon, Macon, Menard, and parts of Christian and Logan Counties, Illinois: Illinois Geological Survey Circular 312, 28 p.
- 32. Clegg, K. E., 1965, Subsurface geology and coal resources of the Pennsylvanian System in Clark and Edgar Counties, Illinois: Illinois Geological Survey Circular 380, 28 p.
- Clegg, K. E., 1972, Subsurface geology and coal resources of the Pennsylvanian System in De Witt, McLean, and Piatt Counties, Illinois: Illinois Geological Survey Circular 473, 27 p.
- 34. DuBois, E. P., 1951, Geology and coal resources of a part of the Pennsylvanian System in Shelby, Moultrie, and portions of Effingham and Fayette Counties: Illinois Geological Survey Report of Investigations 156, 32 p.

- DuBois, E. P., and Raymond Siever, 1955, Structure of the Shoal Creek Limestone and Herrin (No. 6) Coal in Wayne County, Illinois: Illinois Geological Survey Report of Investigations 182, 7 p.
- Harrison, J. A., 1951, Subsurface geology and coal resources of the Pennsylvanian System in White County, Illinois: Illinois Geological Survey Report of Investigations 153, 40 p.
- Hopkins, M. E., 1968, Harrisburg (No. 5) Coal reserves of southeastern Illinois: Illinois Geological Survey Circular 431, 25 p.
- Hopkins, M. E., 1975, Coal mines in Illinois [map, 1:500,000 scale]: Illinois Geological Survey, Urbana.
- Hopkins, M. E., and J. A. Simon, 1974, *Coalresources* of *Illinois:* Illinois Geological Survey Illinois Minerals Note 53, 24 p.
- 40. Malhotra, Ramesh, in preparation, *Economic factors* favoring development of synthetic fuels industry in Illinois: Illinois Geological Survey Illinois Minerals Note.
- Potter, P. E., 1956, Subsurface geology and coal resources of the Pennsylvanian System in Crawford and Lawrence Counties, Illinois: Illinois Geological Survey Report of Investigations 193, 17 p.
- 42. Reinertsen, D. L., 1964, Strippable coal reserves of Illinois. Part 4–Adams, Brown, Calhoun, Hancock, McDonough, Pike, Schuyler, and the southern parts of Henderson and Warren Counties: Illinois Geological Survey Circular 374, 32 p.
- Searight, T. K., and W. H. Smith, 1969, Strippable coal reserves of Illinois. Part 5B—Mercer, Rock Island, Warren, and parts of Henderson and Henry Counties: Illinois Geological Survey Circular 439, 24 p.
- Siever, Raymond, 1950, Structure of Herrin (No. 6) Coal bed in Marion and Fayette Counties and adjacent parts of Bond, Clinton, Montgomery, Clay, Effingham, Washington, Jefferson, and Wayne Counties: Illinois Geological Survey Circular 164, 100 p.
- Smith, W. H., 1957, Strippable coal reserves of Illinois. Part 1—Gallatin, Hardin, Johnson, Pope, Saline, and Williamson Counties: Illinois Geological Survey Circular 228, 39 p.
- Smith, W. H., 1958, Strippable coal reserves of Illinois. Part 2—Jackson, Monroe, Perry, Randolph, and St. Clair Counties: Illinois Geological Survey Circular 260, 35 p.
- Smith, W. H., 1961, Strippable coal reserves of Illinois. Part 3—Madison, Macoupin, Jersey, Greene, Scott, Morgan, and Cass Counties: Illinois Geological Survey Circular 311, 40 p.

- Smith, W. H., 1968, Strippable coal reserves of Illinois. Part 6-La Salle, Livingston, Grundy, Kankakee, Will, Putnam, and parts of Bureau and Marshall Counties: Illinois Geological Survey Circular 419, 29 p.
- Smith, W. H., and D. J. Berggren, 1963, Strippable coal reserves of Illinois. Part 5A—Fulton, Henry, Knox, Peoria, Stark, Tazewell, and parts of Bureau, Marshall, Mercer, and Warren Counties: Illinois Geological Survey Circular 348, 59 p.
- 50. Stonehouse, H. B., and G.M.Wilson, 1955, Faults and other structures in southern Illinois—A compilation: Illinois Geological Survey Circular 195, 4 p.
- U.S. Bureau of Mines, 1974, The reserve base of bituminous coal and anthracite for underground mining in the Eastern United States: Bureau of Mines Information Circular 8655, Washington, D.C., 428 p.
- Wanless, H. R., 1957, Geology and mineral resources of the Beardstown, Glasford, Havana, and Vermont Quadrangles: Illinois Geological Survey Bulletin 82,233 p.
- 53. Williams, F. E., and M. B. Rolley, 1955, Subsurface geology and coal resources of the Pennsylvanian System in Jasper County, Illinois: Illinois Geological Survey Report of Investigations 181, 14 p.
- Willman, H. B., and J. N. Payne, 1942, Geology and mineral resources of the Marseilles, Ottawa, and Streator Quadrangles, including Introduction to mineral resources by W. H. Voskuil: Illinois Geological Survey Bulletin 66, 388 p.

## ENERGY STUDIES

- 55. Dupree, W. G., Jr., and J. A. West, 1972, *United States* energy through the year 2000: U.S. Department of the Interior, Washington, D.C., 66 p.
- 56. Library of Congress Congressional Research Service, Science Policy Research Division, 1973, Energy facts: U.S. Government Printing Office, Washington, D.C., 539 p. [Prepared for Subcommittee on Energy, Committee on Science and Astronautics, U.S. House of Representatives, 93rd Congress.]
- 57. Risser, H. E., 1960, *Coal in the future energy market:* Illinois Geological Survey Circular 310, 15 p.
- Risser, H. E., 1970, Power and the environment—A potential crisis in energy supply: Illinois Geological Survey Environmental Geology Note 40, 47 p.
- 59. Risser, H. E., 1973, *The U.S. energy dilemma: The gap between today's requirements and tomorrow's potential:* Illinois Geological Survey Environmental Geology Note 64, 64 p.

- Illinois Department of Mines and Minerals, 1974, 1973 annual coal report, in 92nd annual report on coal, oil, and gas: Department of Mines and Minerals, Springfield, 128 p.
- Malhotra, Ramesh, 1974, Illinois mineral industry in 1972 and review of preliminary mineral production data for 1973: Illinois Geological Survey Illinois Minerals Note 58, 54 p.
- 62. Malhotra, Ramesh, in preparation, *Illinois mineral industry in 1973 and review of preliminary production data for 1974:* Illinois Geological Survey Illinois Minerals Note.
- Risser, H. E., 1969, Evaluation of fuels—Long-term factors and considerations: Illinois Geological Survey Mineral Economics Brief 26, 7 p.

#### OTHER REPORTS

- 64. Damberger, H. H., 1970, Clastic dikes and related impurities in Herrin (No. 6) and Springfield (No. 5) Coals of the Illinois Basin, in W. H. Smith et al., Depositional environments in parts of the Carbondale Formation—western and northern Illinois: Illinois Geological Survey Guidebook 8, p. 111-119.
- 65. Damberger, H. H., 1974, Physical properties of the Illinois Herrin (No. 6) Coal before burial, as inferred from earthquake-induced disturbances: 7th International Congres de Stratigraphie et de Geologie du Carbonifere, Compte Rendu, v. 2, p. 341-350, 1973. (Illinois Geological Survey Reprint 1974-G.)
- Hopkins, M. E., 1958, Geology and petrology of the Anvil Rock Sandstone in southern Illinois: Illinois Geological Survey Circular 256, 49 p.
- Johnson, D. O., 1972, Stratigraphic analysis of the interval between the Herrin (No. 6) Coal and the Piasa Limestone in southwestern Illinois: Univ. Illinois Ph.D. thesis, Urbana, 105 p.
- Kosanke, R. M., J. A. Simon, H. R. Wanless, and H. B. Willman, 1960, *Classification of the Pennsyl*vanian strata of Illinois: Illinois Geological Survey Report of Investigations 214, 84 p.
- 69. Piskin, Kemal, and R. E. Bergstrom, in preparation, Glacial drift thickness in Illinois: Thickness and character: Illinois Geological Survey Circular 490, 35 p.
- Potter, P. E., and J. A. Simon, 1961, Anvil Rock Sandstone and channel cutouts of Herrin (No. 6) Coal in west-central Illinois: Illinois Geological Survey Circular 314, 12 p.
- 71. Rennick, C. E., J. Pasini III, F. E. Armstrong, and J. R. Abrams, 1972, *Demonstration of safety plug-*

ging of oil wells penetrating Appalachian coal mines: U.S. Bureau of Mines Technical Progress Report 56, 23 p.

- Shaw, E. W., and T. E. Savage, 1912, Description of the Murphysboro-Herrin Quadrangles: U.S. Geological Survey Folio 185 (in cooperation with Illinois Geological Survey), 15 p.
- 73. Suter, Max, R. E. Bergstrom, H. F. Smith, G. H. Emrich, W. C. Walton, and T. E. Larson, 1959, Preliminary report on ground-mater resources of the Chicago region, Illinois: Illinois Geological Survey and Illinois State Water Survey Cooperative Ground-Water Report 1, 89 p.
- 74. Swann, D. H., P. B. DuMontelle, R. F. Mast, and L. H. Van Dyke, 1970,ILLIMAP-A computer-based mapping system for Illinois: Illinois Geological Survey Circular 451, 24 p.
- 75. U.S. Bureau of Mines, 1974, Demonstrated coal reserve base of the United States on January 1, 1974: Mineral Industry Surveys, U.S. Bureau of Mines, Washington, D.C., 6 p.
- 76. Walker, W. H., R. E. Bergstrom, and W. C. Walton, 1965, Preliminary report on the ground-water resources of the Havana region in west-central Illinois: Illinois Geological Survey and Illinois State Water Survey Cooperative Ground-Water Report 3, 61 p.
- White, W. A., 1956, Underclay squeezes in coal mines: Mining Engineering, v. 8, no. 10, p. 1024-1028; American Institute of Mining, Metallurgical, and Petroleum Engineers Transactions, v. 205, p. 1024-1028 (1957); Illinois Geological Survey Reprint 1956-R, 5 p.
- 78. White, W. A., in preparation, A method for determining possible areas where coal mine squeezing and heaving may occur: Illinois Geological Survey Illinois Minerals Note.
- Willman, H. B., and others, 1967, *Geologic map of Illinois:* Illinois Geological Survey, Urbana.
- Willman, H. B., J. A. Simon, B. M. Lynch, and V. A. Langenheim, 1968, *Bibliography and index of Illinois geology through 1965:* Illinois Geological Survey Bulletin 92, 373 p.
- Willman, H. B., Elwood Atherton, T. C. Buschbach, Charles Collinson, J. C. Frye, M. E. Hopkins, J. A. Lineback, and J. A. Simon, in press, *Handbook of Illinois stratigraphy:* Illinois Geological Survey Bulletin 95.
- Worthen, A. H., 1883, *Geology:* Geological Survey of Illinois, vol. VII, p. 6.
- Zeizel, A. J., W. C. Walton, R. T. Sasman, and T. A. Prickett, 1962, *Ground-water resources of Du Page County, Illinois:* Illinois Geological Survey and Illinois State Water Survey Cooperative Ground-Water Report 2, 103 p.

John B. Stall

# INTRODUCTION

Illinois has abundant water resources. Annual rainfall ranges from 32 inches in northern Illinois to 46 inches in southern Illinois. Annual runoff to streams ranges from 8 inches in the northern part of the state to 15 inches in the southern part. In addition to the water within the state, Illinois is almost surrounded by water—the Mississippi River on the west, the Ohio and Wabash Rivers on the south and east, and Lake Michigan on the northeast.

Illinois also has a large supply of ground water. Most municipal water supplies in Illinois are obtained from ground-water reservoirs. Water-bearing formations with high yields include limestone and sandstone strata in the bedrock and glacial deposits of sand and gravel.

Illinois water resources are as large today as they were when the area was a wilderness. As far as modern science can determine, they will continue to be undiminished, for they are constantly renewed by a great inflow of atmospheric moisture, or water vapor, that passes over Illinois at an average rate of 2,000 billion gallons per day. Rainfall from this moisture averages 99 billion gallons per day (bgd). The total annual runoff to streams in Illinois is 23 bgd. When the dependable flows of the Mississippi and Ohio Rivers are added, a total supply of 53 bgd is available. This is an immense amount of water—more than 3 times the amount now used in Illinois and a sixth of the water used for all purposes in the entire United States.

The quantities of water needed for coal conversion were considered in the main Introduction to this report (table 2). This section deals with locations in Illinois at which the water resource could be developed to produce 6 to 72 mgd. The sources of water considered are ground water, rivers, man-made reservoirs, and wastewater treatment plants. Each is considered separately, although more than one source may be tapped for a single coal conversion plant.

#### Acknowledgments

The compilation of results on water resources has been prepared in the Hydrology Section of the Water Survey. The work was under the general supervision of Dr. William C. Ackermann, Chief. The material on ground-water availability was developed by Richard J. Schicht, Thomas A. Prickett, and Adrian P. Visocky. Information on the water available from potential reservoirs was collected by Nani G. Bhowmik and Julius H. Dawes, with the help of Wyndham J. Roberts. The water supply available from major rivers was determined by Krishan P. Singh. Data on the cost of reservoir construction were compiled by Dr. Bhowmik. Illustrations for Part 2 were prepared by John W. Brother, Jr.

# OCCURRENCE OF GROUND WATER IN ILLINOIS

Ground water in Illinois is affected in many ways by the geology of the state. Permeable rock formations such as sandstone, limestone, sand, and gravel serve as aquifers in which water is stored and ultimately supplied to wells. Impermeable beds, such as shale and clay, act as barriers to ground-water movement and maintain differences in pressure and water quality between aquifers. In some areas, creviced limestone or dolomite formations at land surface make the ground warer susceptible to pollution. The configuration and deformation of the bedrock commonly influence ground-water movement.

Ground water in Illinois is commonly drawn from unconsolidated deposits of sand and gravel in the glacial drift or in river valleys, or from bedrock formations of limestone or sandstone. Figure 22 shows the principal water-yielding rocks or aquifers of Illinois.

The most favorable ground-water conditions are found in the northern third of the state, where dependable sandstone and limestone aquifers occur in the bedrock and extensive sand and gravel aquifers are found in the glacial drift. In most of Illinois, the only aquifers of high potential yield are sand and gravel deposits of the Mississippi, Illinois, Wabash, Ohio, Kaskaskia, Embarras, and buried Mahomet River Valleys.

#### Ground Water from Sand and Gravel Aquifers

Most unconsolidated, or sand and gravel, aquifers of Illinois were deposited by meltwater from glaciers. The sand and gravel were deposited mainly in valleys leading away from the melting ice or in outwash plains at the front of the ice.

The distribution of sand and gravel aquifers and their estimated yields to individual wells are shown in figure 23. General areas are indicated where conditions are especially favorable for drilling wells with large yields. However, test drilling is required to locate satisfactory well sites, because conditions vary from place to place.

| <u>SX</u>                  |                                                                                 |                     |                                                                                                                                                                                                          |                                                                                                                                                    |
|----------------------------|---------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| LER                        | SERIES                                                                          | COL-                | UNIT                                                                                                                                                                                                     | AQUIFER                                                                                                                                            |
| ŧ.                         | · · · · · · · · · · · · · · · · · · ·                                           |                     | Soil alluming                                                                                                                                                                                            |                                                                                                                                                    |
| ĒΨ                         | DI CICTOCENE                                                                    |                     | Till loose                                                                                                                                                                                               | Sand and                                                                                                                                           |
| 24                         | PLEISTOCENE                                                                     | (2, 4)              | ini, idess,                                                                                                                                                                                              | orovel                                                                                                                                             |
| 2-                         |                                                                                 | 1 A                 | sona, grovei                                                                                                                                                                                             |                                                                                                                                                    |
| Ĭ.                         | 🗠 PLIOCENE 🗲                                                                    |                     |                                                                                                                                                                                                          | WILCOX                                                                                                                                             |
| 누는                         | FOCENE                                                                          |                     | Semiconsolidated                                                                                                                                                                                         |                                                                                                                                                    |
| μų                         |                                                                                 |                     |                                                                                                                                                                                                          |                                                                                                                                                    |
| F                          | PALEOCENE                                                                       |                     | sand, siir,                                                                                                                                                                                              |                                                                                                                                                    |
| ųδ                         |                                                                                 | P 1                 | clay: some                                                                                                                                                                                               | MC NAIRY                                                                                                                                           |
| ᄪ의                         | GULFIAN                                                                         | H                   |                                                                                                                                                                                                          |                                                                                                                                                    |
| αŭ                         | 00011100                                                                        | $H^{-}$             | gravel                                                                                                                                                                                                   |                                                                                                                                                    |
| υu                         |                                                                                 | 2.00                | -                                                                                                                                                                                                        |                                                                                                                                                    |
|                            | VIDCILIAM                                                                       |                     |                                                                                                                                                                                                          |                                                                                                                                                    |
|                            | VIRGILIAN                                                                       |                     | MATTOON                                                                                                                                                                                                  |                                                                                                                                                    |
|                            |                                                                                 |                     | 10014                                                                                                                                                                                                    |                                                                                                                                                    |
| 2                          | 400000000444                                                                    |                     |                                                                                                                                                                                                          |                                                                                                                                                    |
| ন                          | MISSOURIAN                                                                      |                     | BOND                                                                                                                                                                                                     |                                                                                                                                                    |
| ÷                          |                                                                                 |                     | 80.00                                                                                                                                                                                                    |                                                                                                                                                    |
| 2                          |                                                                                 |                     | MODESTO                                                                                                                                                                                                  |                                                                                                                                                    |
| N S                        |                                                                                 |                     | -                                                                                                                                                                                                        |                                                                                                                                                    |
| 21                         | OCC MOINESIAN                                                                   |                     | CARBONDALE                                                                                                                                                                                               | Sandstones                                                                                                                                         |
| 2                          | DES MOINE STAN                                                                  |                     | -                                                                                                                                                                                                        |                                                                                                                                                    |
| Ξ                          |                                                                                 |                     | SPOON                                                                                                                                                                                                    |                                                                                                                                                    |
| Σ                          |                                                                                 |                     | _                                                                                                                                                                                                        |                                                                                                                                                    |
| Ξ                          | <b>ΔΤΟΚΔΝ</b>                                                                   |                     | ABBOTT                                                                                                                                                                                                   |                                                                                                                                                    |
| ۵.                         |                                                                                 |                     |                                                                                                                                                                                                          |                                                                                                                                                    |
|                            |                                                                                 |                     |                                                                                                                                                                                                          |                                                                                                                                                    |
|                            | MORROWAN                                                                        | 13-51               | CASETVICLE                                                                                                                                                                                               |                                                                                                                                                    |
|                            |                                                                                 |                     |                                                                                                                                                                                                          |                                                                                                                                                    |
| 1                          |                                                                                 |                     | KINKAID                                                                                                                                                                                                  |                                                                                                                                                    |
|                            |                                                                                 |                     | -                                                                                                                                                                                                        |                                                                                                                                                    |
|                            |                                                                                 |                     | MÉNARD                                                                                                                                                                                                   |                                                                                                                                                    |
|                            |                                                                                 |                     | 740 000.4/25                                                                                                                                                                                             |                                                                                                                                                    |
|                            | CHESTERIAM                                                                      | 1000                | CAR SPRINGS                                                                                                                                                                                              | CHESTER                                                                                                                                            |
|                            | CHESTERIAN                                                                      | 出去                  |                                                                                                                                                                                                          |                                                                                                                                                    |
|                            |                                                                                 |                     |                                                                                                                                                                                                          |                                                                                                                                                    |
| _                          |                                                                                 |                     | CYPRESS                                                                                                                                                                                                  |                                                                                                                                                    |
| 5                          |                                                                                 |                     |                                                                                                                                                                                                          |                                                                                                                                                    |
| 2                          |                                                                                 |                     |                                                                                                                                                                                                          |                                                                                                                                                    |
| <u>o</u>                   |                                                                                 |                     | AUX VASES                                                                                                                                                                                                |                                                                                                                                                    |
| 5                          |                                                                                 | 바라                  | STE. GENEVIEVE                                                                                                                                                                                           |                                                                                                                                                    |
| ŝ                          |                                                                                 |                     | STLOUIS                                                                                                                                                                                                  |                                                                                                                                                    |
| 笁                          |                                                                                 | É                   |                                                                                                                                                                                                          |                                                                                                                                                    |
| S                          |                                                                                 |                     | SALEM                                                                                                                                                                                                    |                                                                                                                                                    |
| Ϋ́                         | VAL MEYERAN                                                                     | ᄨᅖ                  |                                                                                                                                                                                                          | VALMEYER                                                                                                                                           |
| 2                          |                                                                                 |                     | WARSAW o ULLIN                                                                                                                                                                                           |                                                                                                                                                    |
|                            | -                                                                               | 日日                  | WEAKING OF FORT                                                                                                                                                                                          |                                                                                                                                                    |
|                            |                                                                                 | 巴油                  | REDRUK OFORT                                                                                                                                                                                             |                                                                                                                                                    |
|                            |                                                                                 | 田、岡田                | PUPI INCTON                                                                                                                                                                                              |                                                                                                                                                    |
|                            |                                                                                 | <b>₩</b> , <b>%</b> | BORLINGTON                                                                                                                                                                                               |                                                                                                                                                    |
|                            |                                                                                 |                     | -                                                                                                                                                                                                        |                                                                                                                                                    |
|                            | KINDERHOOKIAN                                                                   |                     |                                                                                                                                                                                                          |                                                                                                                                                    |
| 2                          | HPPER                                                                           |                     | NEW ALBANY                                                                                                                                                                                               |                                                                                                                                                    |
| a                          |                                                                                 | ╔╤╝                 | -                                                                                                                                                                                                        |                                                                                                                                                    |
| Ξ                          | MIDDLE                                                                          | 53                  |                                                                                                                                                                                                          | SILURIAN-                                                                                                                                          |
| ō                          |                                                                                 |                     |                                                                                                                                                                                                          | DE VONIAN                                                                                                                                          |
| $\geq$                     | LOWER                                                                           |                     |                                                                                                                                                                                                          |                                                                                                                                                    |
| ъ                          |                                                                                 |                     |                                                                                                                                                                                                          |                                                                                                                                                    |
| -                          | NUACADAN-CAVILCAN                                                               |                     | -                                                                                                                                                                                                        |                                                                                                                                                    |
| 1 1                        |                                                                                 | 1                   |                                                                                                                                                                                                          |                                                                                                                                                    |
| j,                         | NIAGARAN CATOGAN                                                                |                     |                                                                                                                                                                                                          |                                                                                                                                                    |
| SIL                        |                                                                                 |                     | -                                                                                                                                                                                                        |                                                                                                                                                    |
| SIL                        |                                                                                 |                     | MADUOKETA                                                                                                                                                                                                |                                                                                                                                                    |
| SIL                        |                                                                                 |                     | MAQUOKETA                                                                                                                                                                                                |                                                                                                                                                    |
| SIL                        | ALEXANDRIAN<br>CINCINNATIAN                                                     |                     | MAQUOKETA<br>GALENA                                                                                                                                                                                      | GALENA-                                                                                                                                            |
| V SIL.                     | ALEXANDRIAN<br>CINCINNATIAN                                                     |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE                                                                                                                                                                       | GALENA-                                                                                                                                            |
| AN SIL.                    |                                                                                 |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE                                                                                                                                                                       | GALENA-<br>PLATTEVILLE                                                                                                                             |
| CIAN SIL.                  |                                                                                 |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD                                                                                                                                                   | GALENA-<br>PLATTEVILLE<br>GLENWOOD-                                                                                                                |
| ICIAN SIL.                 |                                                                                 |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER                                                                                                                                      | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST.PETER                                                                                                    |
| OVICIAN SIL.               | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN                                     |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER                                                                                                                                      | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER                                                                                                   |
| DOVICIAN SIL.              |                                                                                 |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE                                                                                                                          | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER                                                                                                   |
| RDOVICIAN SIL.             |                                                                                 |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE                                                                                                                          | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU                                                                                     |
| ORDOVICIAN SIL.            | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN                         |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND                                                                                                          | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN                                                                            |
| ORDOVICIAN SIL.            | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN                         |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA                                                                                                | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST.PETER<br>PRAIRIE DU<br>CHIEN                                                                             |
| ORDOVICIAN SIL.            | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN                         |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER                                                                                      | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST.PETER<br>PRAIRIE DU<br>CHIEN                                                                             |
| ORDOVICIAN SIL.            | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN                         |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE                                                                          | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-                                                               |
| ORDOVICIAN SIL.            | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN                         |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE                                                                          | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST.PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI                                                      |
| ORDOVICIAN SIL.            | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN                         |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI                                                                | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI                                                     |
| ORDOVICIAN SIL.            | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN                         |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI                                                                | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI                                                     |
| ORDOVICIAN SIL.            | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN                         |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA                                                   | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI<br>FRANCONIA                                        |
| ORDOVICIAN SIL.            | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN                         |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSJ<br>FRANCONIA                                                   | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI<br>FRANCONIA<br>IRONTON-                            |
| ORDOVICIAN SIL.            | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN                         |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA<br>IRONTON-GALESVILLE                             | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST.PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI<br>FRANCONIA<br>IRONTON-<br>GALESVILLE               |
| IN ORDOVICIAN SIL.         | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN                         |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA<br>IRONTON-GALESVILLE<br>EAU CLAIRE               | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI<br>FRANCONIA<br>IRONTON-<br>GALESVILLE              |
| IAN ORDOVICIAN SIL.        | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN                         |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA<br>IRONTON-GALESVILLE<br>EAU CLAIRE               | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI<br>FRANCONIA<br>IRONTON-<br>GALESVILLE              |
| IRIAN ORDOVICIAN SIL.      | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN                         |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA<br>IRONTON-GALESVILLE<br>EAU CLAIRE               | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI<br>FRANCONIA<br>IRONTON-<br>GALESVILLE              |
| 1BRIAN ORDOVICIAN SIL.     | CHAMPLAINIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN                        |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA<br>IRONTON-GALESVILLE<br>EAU CLAIRE               | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI<br>FRANCONIA<br>IRONTON-<br>GALESVILLE              |
| MBRIAN ORDOVICIAN SIL.     | CROIXAN                                                                         |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA<br>IRONTON-GALESVILLE<br>EAU CLAIRE               | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI<br>FRANCONIA<br>IRONTON-<br>GALESVILLE              |
| CAMBRIAN ORDOVICIAN SIL.   | CHAMPLAINIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN<br>CANADIAN            |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA<br>IRONTON-GALESVILLE<br>EAU CLAIRE               | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI<br>FRANCONIA<br>IRONTON-<br>GALESVILLE              |
| CAMBRIAN ORDOVICIAN SIL.   | CHAMPLAINIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN<br>CROIXAN             |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA<br>IRONTON-GALESVILLE<br>E AU CLAIRE              | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST.PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTDSI<br>FRANCONIA<br>IRONTON-<br>GALESVILLE               |
| CAMBRIAN ORDOVICIAN SIL.   | CHAMPLAINIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN<br>CANADIAN            |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA<br>IRONTON-GALESVILLE<br>EAU CLAIRE               | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI<br>FRANCONIA<br>IRONTON-<br>GALESVILLE              |
| CAMBRIAN I ORDOVICIAN SIL  | CHAMPLAINIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN<br>CANADIAN            |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA<br>IRONTON-GALESVILLE<br>E AU CLAIRE              | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI<br>FRANCONIA<br>IRONTON-<br>GALESVILLE              |
| CAMBRIAN ORDOVICIAN SIL    | CHAMPLAINIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN<br>CANADIAN            |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA<br>IRONTON-GALESVILLE<br>EAU CLAIRE               | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI<br>FRANCONIA<br>IRONTON-<br>GALESVILLE              |
| CAMBRIAN ORDOVICIAN SIL.   | CINCINNATIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN<br>CANADIAN            |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA<br>IRONTON-GALESVILLE<br>EAU CLAIRE               | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI<br>FRANCONIA<br>IRONTON-<br>GALESVILLE              |
| CAMBRIAN   ORDOVICIAN SIL. | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN<br>CANADIAN             |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA<br>IRONTON-GALESVILLE<br>E AU CLAIRE              | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI<br>FRANCONIA<br>IRONTON-<br>GALESVILLE<br>MT. SIMON |
| CAMBRIAN I ORDOVICIAN SIL  | ALEXANDRIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN<br>CANADIAN             |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA<br>IRONTON-GALESVILLE<br>EAU CLAIRE               | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTOSI<br>FRANCONIA<br>IRONTON-<br>GALESVILLE<br>MT. SIMON |
| CAMBRIAN ORDOVICIAN SIL    | CINCINNATIAN<br>CINCINNATIAN<br>CHAMPLAINIAN<br>CANADIAN<br>CANADIAN<br>CROIXAN |                     | MAQUOKETA<br>GALENA<br>PLATTEVILLE<br>JOACHIM GLENWOOD<br>ST. PETER<br>SHAKOPEE<br>NEW RICHMOND<br>ONEOTA<br>GUNTER<br>EMINENCE<br>POTOSI<br>FRANCONIA<br>IRONTON-GALESVILLE<br>E AU CLAIRE<br>MT. SIMON | GALENA-<br>PLATTEVILLE<br>GLENWOOD-<br>ST. PETER<br>PRAIRIE DU<br>CHIEN<br>EMINENCE-<br>POTDSI<br>FRANCONIA<br>IRONTON-<br>GALESVILLE<br>MT. SIMON |

Figure 22. Geologic column of Illinois. The position of the major aquifers is indicated.

Most of the areas in which conditions are favorable for drilling sand and gravel wells that will yield more than 500 gpm contain water-yielding sand and gravel lying within major valley systems. These systems include the Mississippi, Illinois, Ohio, and Wabash River Valleys, the buried Mahomet Valley in east-central Illinois, and several buried and surface valley systems in the northern third of the state. Large quantities of water are available from relatively shallow wells, many drilled to depths of less than 300 feet.

# Ground Water from Bedrock Aquifers

In the northern third of the state, large quantities of ground water for industrial and municipal use come from wells in the deep sandstone aquifers of Cambrian and Ordovician ages and from the shallow dolomite aquifers of Silurian and Ordovician ages (fig. 24). The Ironton-Galesville Sandstone is the main bedrock aquifer because of its consistently high yield. Part of the yield of many high-capacity, deep sandstone wells comes from the Glenwood-St. Peter and Mt. Simon Sandstones. Many deep sandstone wells have yields exceeding 700 gpm and have been prolific sources of water for nearly 100 years. Deep sandstone wells average about 1,300 feet deep, and many recent wells are 16 to 20 inches in diameter. Some deep wells in the northern part of the state are open to and draw water from several different aquifers, including the Galena-Platteville Dolomite, Glenwood-St. Peter Sandstone, Ironton-Galesville Sandstone, and Mt. Simon Sandstone. These wateryielding formations are sometimes grouped as the Cambrian-Ordovician aquifer.

Shallow dolomite aquifers of Silurian age and the Galena-Platteville Dolomite of Ordovician age are the main sources of ground water for many moderate-to-large public and industrial supplies in the northern third of Illinois. The average depth of shallow dolomite wells is about 140 feet, and most wells of recent design are 12 to 16 inches in diameter.

In the southern two-thirds of Illinois, thin sandstone and limestone beds of Pennsylvanian age and sandstone and limestone formations of Mississippian age yield small quantities of ground water. Although wells in these rocks commonly yield less than 25 gpm, they are the only source of water for several thousand farms and homes, several hundred small municipalities, and numerous industries. Deeper rocks in this area contain water that is too highly mineralized for most purposes. The Pennsylvanian and Mississippian rocks are also an important source of water for water-flooding operations in oil fields. The average depth of wells in Pennsylvanian rocks is 170 feet and the average in Mississippian rocks is 250 feet. Many wells are 6 to 12 inches in diameter.



Figure 23. Yields of sand and gravel aquifers.



Figure 24. Yields of bedrock aquifers.

# AVAILABILITY OF GROUND WATER FOR COAL CONVERSION

The quantity of water needed for coal conversion plants was estimated in table 2 as being between 6 and 72 mgd. In terms of ground-water development, that is a vast supply. Therefore, only locations where ground-water conditions are especially favorable can be considered as possible sites. In Illinois favorable conditions exist in areas where yields of wells are high (in excess of 500 gpm), where the aquifers are extensive and highly permeable, and where either the natural rate of recharge is high or water can be induced (by pumping of near-by wells) to flow from the streams into the ground-water reservoir, a process called induced infiltration.

## Selected Areas for Ground-Water Development

Sand and gravel aquifers that meet the desired conditions are found in the major bedrock valleys of Illinois or their buried counterparts. Such deposits are shown in figure 23 as areas in which chances of obtaining wells with yields of 500 gpm or more are good.

Bedrock aquifers are most likely to be present in deep sandstones and shallow dolomites in the northern third of the state. Figure 24 shows the areas wherein individual bedrock well yields are estimated to be more than 500 gpm.

Conditions are not considered favorable for extensive ground-water development in areas where estimated well yields are less than 500 gpm. Available geohydrologic data from such areas strongly suggest that an unreasonably large number of wells and well fields, placed with unusually large spacings, would be necessary to produce the large supplies of water needed for coal conversion plants.

Some of the potential areas for extensive development of ground water are already supporting concentrated pumping centers that would be in direct competition with new pumpage from coal conversion plants. For this reason northeastern Illinois and the Peoria-Pekin area are excluded from consideration, and in the East St. Louis area only ground water available in excess of present pumpage is considered.

In figure 25, 17 areas of Illinois are shown where water well systems can be developed that are capable of yielding an estimated 14 to 72 mgd. In each region a system of wells could be drilled, connected, and pumped together to provide the water supply needed. A digital computer model or mathematical model, based on available hydrologic and geologic data, was constructed for each of the areas. The model was used to determine the spacing of wells so that safe pumping levels could be maintained in a continuous pumping situation. Table 9 identifies the 17 areas by county, by the supply available in mgd, and by the source of the ground water.

## Hydrogeologic Data

Å

Table 10 gives the locations of the 17 selected areas noted in table 9 and the major hydrogeologic properties of each area. The properties summarized in the table are relevant to the availability of ground water. In general, the higher the rate, permeability, and thickness, the more favorable the conditions for pumping large quantities of ground water. The river infiltration rates are a measure of the quantities of water that can be drawn from the river into the aquifer by pumping wells to supplement natural recharge and thus sustain the well field. The estimated river infiltration rates in table 10 are based on a correlation study of known rates from hydrogeologically similar areas. The infiltration rates are expressed in gallons per day per acre of riverbed per foot of head difference between head in the river and that in the aquifer (gpd/acre/ft). The permeability of the aquifer expressed in gallons per day per square foot of aquifer (gpd/sq ft) is one measure of the rate of flow that the aquifer might transmit to a well. The permeability values are based on averages computed from pumping tests already made in each of the areas under study.

# TABLE 9-WATER SUPPLIES AVAILABLE FROM GROUND WATER

(Locations are shown in figure 25)

| Area no<br>on<br>fig. 25 | o.<br>County    | Amount<br>(mgd) | Source                        |
|--------------------------|-----------------|-----------------|-------------------------------|
| 1                        | Carroll         | 14              | Gravel near Mississippi River |
| 2                        | Henderson and   | 14              | Gravel near Mississippi River |
|                          | Mercer          |                 |                               |
| 3                        | Hancock         | 72              | Gravel near Mississippi River |
| 4                        | Pike            | 72              | Gravel near Mississippi River |
| 5                        | Monroe and      | 72              | Gravel near Mississippi River |
|                          | Randolph        |                 |                               |
| 6                        | Jackson and     | 72              | Gravel near Mississippi River |
|                          | Union           |                 |                               |
| 7                        | Alexander and   | 72              | Gravel near Mississippi River |
|                          | Pulaski         |                 |                               |
| 8                        | Massac          | 28              | Gravel near Ohio River        |
| 9                        | Gallatin and    | 72              | Gravel near Wabash River      |
|                          | White           |                 |                               |
| 10                       | Lawrence        | 28              | Gravel near Wabash River      |
| 11                       | Greene, Jersey, | 72              | Gravel near Illinois River    |
|                          | and Scott       |                 |                               |
| 12                       | Mason           | 72              | Gravel near Illinois River in |
|                          |                 |                 | Havana Lowlands (Walker       |
|                          |                 |                 | et al., 1965)                 |
| 13                       | Bureau          | 72              | Shallow glacial gravel        |
| 14                       | Ogle            | 72              | Deep sandstone in the bedrock |
| 15                       | De Witt and     | 72              | Buried Mahomet Valley         |
|                          | Piatt           |                 | (Visocky and Schicht, 1969)   |
| 16                       | Ford            | 72              | Buried Mahomet Valley         |
|                          |                 |                 | (Visocky and Schicht, 1969)   |
| 17                       | Madison         | 28              | East St. Louis area           |
|                          |                 |                 | (Schicht, 1965)               |
|                          |                 |                 |                               |



Figure 25. Water available for coal conversion.

| Area no.<br>on<br>fig. 25 | Location                                                         | Estimated<br>river infil-<br>tration rate<br>(gpd/acre/ft) | Estimated<br>aquifer<br>permeability<br>(gpd/ft <sup>2</sup> ) | Estimated<br>average<br>aquifer<br>thickness<br>(ft) | General<br>ground-water<br>conditions                 |
|---------------------------|------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| 1                         | Along Mississippi River in Carroll<br>County                     | 450                                                        | 2,700                                                          | 100                                                  | Water table with induced in-<br>filtration from river |
| 2                         | Along Mississippi River in Hen-<br>derson County                 | 450                                                        | 3,500                                                          | 100                                                  | Water table with induced in-<br>filtration from river |
| 3                         | Along Mississippi River north of<br>Quincy in Hancock County     | 22,500                                                     | 3,500                                                          | 100                                                  | Water table with induced in-<br>filtration from river |
| 4                         | Along Mississippi River south of<br>Quincy in Pike County        | 22,500                                                     | 2,500                                                          | 100                                                  | Water table with induced in-<br>filtration from river |
| 5                         | Along Mississippi River between<br>Valmeyer and Kaskaskia Island | 45,000                                                     | 2,000                                                          | 90                                                   | Water table with induced in-<br>filtration from river |
| 6                         | Along Mississippi River south of Grand Tower Island              | 45,000                                                     | 1,800                                                          | 110                                                  | Water table with induced in-<br>filtration from river |
| 7                         | Along Mississippi River in souther<br>Alexander County           | n 45,000                                                   | 2,000                                                          | 125                                                  | Water table with induced in-<br>filtration from river |
| 8                         | Along Ohio River in Massac<br>County                             | 45,000                                                     | 2,500                                                          | 70                                                   | Water table with induced in-<br>filtration from river |
| 9                         | Along Wabash River in Gallatin<br>County                         | 22,500                                                     | 2,000                                                          | 95                                                   | Water table with induced in-<br>filtration from river |
| 10                        | Along Wabash River in Lawrence<br>County                         | 22,500                                                     | 3,000                                                          | 85                                                   | Water table with induced in-<br>filtration from river |
| 11                        | Along Illinois River centered in<br>Greene County                | 22,500                                                     | 2,000                                                          | 110                                                  | Water table with induced in-<br>filtration from river |
| 12                        | Havana Lowlands, centered in<br>Mason County                     | 22,500                                                     | (2 values)<br>2,000 in east<br>5,000 in west                   | 150                                                  |                                                       |
| 13                        | Princeton Valley in Bureau and<br>Whiteside Counties             | none                                                       | 2,000                                                          | 150                                                  | Water table                                           |
| 14                        | Deep sandstone area centered in<br>Ogle County                   | none                                                       | 23                                                             | 800                                                  |                                                       |
| 15                        | Along Buried Mahomet Valley in<br>De Witt and Piatt Counties     | none                                                       | 2,120                                                          | 120                                                  | Leaky artesian                                        |
| 16                        | Along Buried Mahomet Valley in<br>Ford and Iroquois Counties     | none                                                       | 2,500                                                          | 150                                                  | Leaky artesian                                        |
| 17                        | East St. Louis area                                              | 45,000                                                     | 2,500                                                          | 80                                                   | Water table with induced in-<br>filtration from river |

# TABLE 10-HYDROGEOLOGIC PROPERTIES OF SELECTED GROUND-WATER DEVELOPMENT SITES

All aquifers, with the exception of those in areas 12 and 17, were assumed to be of a uniform thickness that was based upon the difference between known static water levels in the aquifers and estimated elevations of bedrock at the base of the aquifers. Areas 12 and 17, the Havana Lowlands and the East St. Louis area, were modeled in some detail because data on aquifer thickness were available from previously published reports (Walker, Bergstrom, and Walton, 1965; Bergstrom and Walker, 1956; Schicht, 1965).

In the selected areas general conditions under which ground water occurs are of three types. First, *water table* conditions exist where an aquifer is unconfined at the top and pumped water is derived from gravity drainage of the interstices in the portion of the aquifer being dewatered. Gravity drainage of the interstices decreases the saturated thickness of the aquifer. Under these conditions, water levels in wells become critical after more than half the initial saturated thickness of the aquifer is dewatered.

Second, *leaky artesian* conditions exist where aquifers are overlain by confining beds that impede the vertical flow of the ground water that is recharging the aquifer being pumped. Under these circumstances, critical water levels in wells occur when water levels fall below the bottom of the confining layer. When that happens, the rate of flow through the confining layer reaches a limit as maximum hydraulic gradients are created.



Figure 26. Computer model of discrete elements of aquifer, used for location of wells.

Third, *induced infiltration* conditions exist when wells are pumped in aquifers near, or in hydraulic connection with, streams, rivers, or other surface water bodies. In the course of pumping, water levels in the aquifer may be lowered below surface water levels and the aquifer is recharged by seepage from the surface water body. Induced infiltration conditions can occur in combination with either water table or leaky artesian conditions. However, induced infiltration coexisting with water table conditions is the only combination found in the selected areas. The critical water level in wells for this combination is the same as that for water table conditions.

## **Digital Computer Models**

Digital computer models were developed for studying areas 1 through 13 and 17, and mathematical models were used for studying areas 14 through 16. The digital computer models are capable of simulating two-dimensional flow of ground water in aquifers under water table conditions. The models also can simulate pumpage from wells and the movement of water between surface waters and the groundwater reservoir, thus yielding data on changes in water levels. The equations governing the flow of ground water in models such as those described have been given by Prickett and Lonnquist (1971).

One of the 14 digital models is shown in figure 26. It illustrates the transmission network for a 20-well pumping scheme designed to furnish a 20,000-gpm water supply along the Mississippi River in Pike County, Illinois. The figure shows a grid (finite difference) superposed on a map of the sand and gravel aquifer that lies along the Mississippi River south of Quincy. The aquifer is thus subdivided into discrete elements associated with the numbered rows and columns of the finite difference grid. The edges of the model approximate the sides of the valley that forms the boundary of the aquifer. Sufficient rows in the grid are included upstream and downstream from the area of analysis to prevent the projected water levels from being affected by their position at the edge of the model.

Figure 26 also shows locations of 20 hypothetical wells used to predict the effects of pumping 20,000 gpm of water. The location of the wells was based on (1) reasonably close spacing to avoid mutual interference, (2) present flood control levees (all wells were placed on the land side of the levees), and (3) placement of all wells as close as possible to a river to get maximum induced infiltration from that source of recharge. Most wells were spaced 1,000 to 2,000 feet apart.

The computer produced printed water-level elevations resulting from the various well-pumping schemes. Several computer runs were made for each area to find a suitable scheme for obtaining well yields of 4,000, 10,000, 20,000, and 50,000 gpm (6 to 72 mgd) without creating critically low water levels.

To assure a dependable water supply, the only source of recharge included in the model studies for areas 1 through 11 and 17 was induced infiltration from near-by perennial rivers. No allowance for natural recharge from precipitation as such was included in any of the model simulations.

For areas 12 and 13, which have no rivers near their well fields, the computer models were designed to simulate the effects of pumping where the only recharge is from precipitation. Estimates of recharge rates for a year of normal precipitation were based on known recharge rates in hydrogeologically similar areas. To assure that the water supply in areas 12 and 13 would be dependable, allowance was also made for taking water from storage within the aquifer for a sustained 5-year period of no recharge.

The models for areas 1, 2, 8, 10, and 17 showed that even with reasonable well spacings and the estimated infiltration rates it was not possible to produce 72 mgd of water. Areas 1 and 2 were capable of yielding only 14 mgd, while areas 8, 10, and 17 were capable of supplying 28 mgd. Areas 3 through 7, 9, and 11 through 13 were estimated to be capable of supporting a 72-mgd water demand.

#### **Mathematical Models**

Mathematical models were used to study the feasibility of obtaining the supplies of water needed for coal conversion plants in areas 14 through 16. Mathematical models were used for these areas because previous analyses by the Water Survey could be directly applied to the evaluation of these aquifers.

The mathematical models were of the types outlined by Walker and Walton (1961). Mathematical models involve creation of simplified geometric forms that approximate the configuration of the aquifer. The average hydrogeologic properties of the aquifer and of the confining layer, if any, were selected on the same basis as those for the digital models previously described.

The resulting model is called an idealized aquifer. Analysis is based on the hydrogeologic properties of the idealized aquifer, an analytical technique that simulates the effects of recharge and barrier boundaries on drawdown of water levels in the pumped aquifer (image-well theory), and on an appropriate theoretical ground-water equation.

The results of analyses of areas 14 through 16 made with the mathematical models indicate that these areas are capable of producing the maximum 72 mgd of water needed for a coal conversion plant.

#### Cost of Ground-Water Development

Analyses of cost for developing ground water in the favorable areas include estimates for wells, pumps, electrical power for pumping, pipelines to a central point, operation, and maintenance. Other possible costs, such as test drilling, tests to determine precise aquifer properties, and land procurement are not included.

#### Well Costs

Production wells were designed for a maximum development of 1,000 gpm per well (1,390 gpm at areas 15 and 16). Wells in sand and gravel aquifers use screens of 24-inch diameter and from 40 to 100 feet long, whereas those in the Cambrian-Ordovician aquifer of northwestern Illinois (area 14) were 12 inches in diameter. Depths of sand and gravel wells were estimated from elevations taken from topographic and bedrock surface maps, while depths for Cambrian-Ordovician wells were estimated at 1,000 feet (Walton and Csallany, 1962).

Gibb and Sanderson (1969) developed the following cost-to-depth formula for gravel-packed wells finished in sand and gravel and for wells in the Cambrian-Ordovician aquifer:

$$C_{wg} = 680 \qquad d^{0.482} \qquad (1)$$

and

$$C_{wco} = 0.029$$
  $d^{1.87}$  (2)

where

 $C_{wg}$  is the well construction cost for sand and gravel wells and  $C_{wco}$  the cost for Cambrian-Ordovician wells in 1966 dollars; d is well depth in feet. Equations (1) and (2) were adjusted to 1973 prices by applying Engineering News-Record Cost Indexes for 1966 and 1973 (Eng. News-Record, 1974). Well construction costs then become:

$$C_{wg} = 1288$$
  $d^{0.482}$  (3)

and

$$C_{wco} = 0.055$$
  $d^{1.87}$  (4)

Annual costs for wells were obtained by amortizing capital costs at 6 7/8 percent over an assumed 30-year service life. For this determination a capital recovery factor (CRF) of 0.07985 was used.

#### Pump Costs

It was assumed that submersible pumps capable of operating at rates of 1,000 gpm would be used. The average pumping lift for pumps within a production field was taken to be the average drawdown (as computed in the digital model), adjusted for dewatering, partial penetration, well loss, nonpumping water level, and a nominal 25-foot head loss to allow for pipeline friction and pressure. To provide stand-by wells, the number of wells (pumps) was increased by 20 percent. Gibb and Sanderson (1969) determined capital costs for submersible turbine pumps in Illinois to be:

$$C_p = 5.629 Q^{0.541} H^{0.658}$$
 (5)

where

 $C_p$  is individual pump cost in 1970 dollars, Q is production rate in gpm, and H is average pumping lift (as computed above). When costs are adjusted for 1973 prices, individual pump costs become:

$$C_{\rm p} = 10.66 \ {\rm Q}^{0.541} \ {\rm H}^{0.658} \tag{6}$$

Annual costs for pumps were obtained by amortizing capital costs at 6 7/8 percent over an assumed 15-year service life (CRF = 0.1089).

#### Electrical Costs

Determinations of electrical cost for production wells were made on the basis of an assumed unit power charge of 1.0 cents per kilowatt hour (kwhr) and on the following expression for pumping energy (Ackermann, 1967):

$$kwhr = 1.88 \times 10^{-4} Qht/E$$
 (7)

where

Q is flow in gpm, h is total pumping lift in feet, t is time in hours (assumed to be 1 year or 8760 hr), and E is wire-towater efficiency (assumed to be 0.5). The annual power cost becomes:

$$C_e = 0.0329 \text{ Qh}$$
 (8)

#### Transmission Costs

The construction cost of connecting the well field to the pipeline can be expressed by the equation (Ackermann, 1967):

$$C_{\rm f} = 4450 \, {\rm D}^{1.2} \, {\rm L}$$
 (9)

where

 $C_t$  is capital cost in 1973 dollars, D is pipeline diameter in inches, and L is pipeline length in miles.

Annual operation, maintenance, and repair costs for pipelines were estimated by Singh, Visocky, and Lonnquist (1972) and, adjusted to 1973 prices, appear as:

$$C_{omrt} = 21 DL \tag{10}$$

Easement costs for placement of pipelines along rights-ofway (Singh, Visocky, and Lonnquist, 1972), in 1973 dollars, are expressed as:

$$C_{rowt} = 3500 L$$

The total annual transmission cost for collecting groundwater supplies is the sum of operation, maintenance, and repair ( $C_{omrt}$ ) and amortized capital costs ( $C_t$  and  $C_{rowt}$ ). Capital costs were amortized at 6 7/8 percent for a period of 30 years.

Pipe diameters (D) in equations (9) and (10) were selected according to the method used in studies of optimum diameters by Singh (1971).

## Cost Summary

Annual and unit costs for water supplies yielding 4,000, 10,000, 20,000, and 50,000 gpm from sand and gravel wells were estimated in 16 areas along the Mississippi, Ohio, Illinois, and Wabash Rivers and in the Princeton and Mahomet bedrock valleys. Similar estimates were made for bedrock wells in area 14 in Ogle County. Unit costs are summarized in table 11. In areas 1, 2, 8, 10, and 17, water is available in limited supplies only, and in area 5. the 50,000-gpm supply requires two 25,000-gpm fields whose centers are 15.7 miles apart. Area 17 also needs two well fields.

TABLE 11-ESTIMATED COST OF GROUND-WATER SUPPLY AT SELECTED SITES

|            | Estimated cost of supply (0/1,000 gal) |               |               |               |  |  |  |  |  |  |
|------------|----------------------------------------|---------------|---------------|---------------|--|--|--|--|--|--|
| Area       | 4,000<br>gpm                           | 10,000<br>gpm | 20,000<br>gpm | 50,000<br>gpm |  |  |  |  |  |  |
| 1          | 1.17                                   | 1.38          | N. A.*        | N. A.         |  |  |  |  |  |  |
| 2          | 1.20                                   | 1.45          | N. A.         | N. A.         |  |  |  |  |  |  |
| 3          | 1.43                                   | 1.86          | 2.27          | 3.28          |  |  |  |  |  |  |
| 4          | 1.41                                   | 1.87          | 2.33          | 3.36          |  |  |  |  |  |  |
| 5          | 1.22                                   | 1.44          | 1.73          | 4.43†         |  |  |  |  |  |  |
| 6          | 1.46                                   | 1.85          | 2.21          | 3.28          |  |  |  |  |  |  |
| 7          | 1.12                                   | 1.27          | 1.57          | 1.73          |  |  |  |  |  |  |
| 8          | 1.00                                   | 1.21          | 1.47          | N. A.         |  |  |  |  |  |  |
| 9          | 1.10                                   | 1.30          | 1.85          | 2.01          |  |  |  |  |  |  |
| 10         | 0.92                                   | 1.22          | 1.47          | N. A.         |  |  |  |  |  |  |
| 11         | 1.08                                   | 1.28          | 1.49          | 1.68          |  |  |  |  |  |  |
| 12         | 1.24                                   | 1.61          | 2.05          | 2.76          |  |  |  |  |  |  |
| 13         | 1.55                                   | 2.00          | 2.55          | 2.98          |  |  |  |  |  |  |
| 14‡        | 3.58                                   | 5.31          | 6.49          | 8.46          |  |  |  |  |  |  |
| 15         | 1.56                                   | 1.87          | 2.32          | 1.92          |  |  |  |  |  |  |
| 16         | 1.69                                   | 1.99          | 2.40          | 2.16          |  |  |  |  |  |  |
| 17**       | 1.42                                   | 1.76          | 2.27          | N. A.         |  |  |  |  |  |  |
| Average    | 1.29                                   | 1.59          | 2.00          | 2.69          |  |  |  |  |  |  |
| (excluding | g site 14)                             |               |               |               |  |  |  |  |  |  |

\* Supply not available.

*†* From two 25,000-gpm well fields 15.7 miles apart.

*‡* Bedrock aquifer.

\*\*From two 10,000-gpm well fields 10 miles apart.

| Area | Total<br>dissolved<br>solids | Hard-<br>ness | Alka-<br>linity | Fe   | Mn   | а    | F   | N0 <sub>3</sub> | $S0_4$ | Temp,<br>(°F) |
|------|------------------------------|---------------|-----------------|------|------|------|-----|-----------------|--------|---------------|
| 1    | 233                          | 172           | 116             | 1.1  | 0.2  | 0.9  | 0.3 | 26.4            | 28.9   | 53.2          |
| 2    | 261                          | 223           | 179             | 0.8  | 0.3  | 6.9  | 0.2 | 9.4             | 29.1   | 55.3          |
| 3    | 338                          | 301           | 294             | 5.3  | 1.5  | 7.1  |     | 5.8             | 7.4    |               |
| 4    | 305                          | 254           | 227             | 3.9  | 1.7  | 13.6 | 0.4 | 2.3             | 42.2   | 56.4          |
| 5    | 515                          | 429           | 307             | 13.4 | 1.0  | 48   | 0.3 | 7.9             | 72     | 56.3          |
| 6    | 347                          | 262           | 251             | 2.0  | 0.2  | 6.4  | 0.1 | 6.5             | 35.6   | 58.3          |
| 7    | 377                          | 306           | 315             | 3.6  | 0.2  | 10.1 | 0.2 | 5.6             | 19.1   | 58.5          |
| 8    | 134                          | 102           | 103             | 6.1  | 0.1  | 6.3  | 0.3 | 1.9             | 12.0   | 60            |
| 9    | 510                          | 342           | 363             | 1.0  | 0.2  | 54.8 | 0.2 | 1.4             | 9.8    | 59.3          |
| 10   | 359                          | 266           | 250             | 0.7  | 0.1  | 11.6 | 0.1 | 11.1            | 55.0   |               |
| 11   | 428                          | 380           | 285             | 0.1  | Tr   | 15.6 | 0.1 | 11.8            | 43.2   | 56            |
| 12   | 322                          | 285           | 236             | 1.6  |      | 6.4  | 0.1 | 10.0            | 42.2   | 55.4          |
| 13   | 360                          | 263           | 332             | 3.3- | 0.2  | 1.6  | 0.4 | 0.9             | 0.2    | 54.0          |
| 14   | 299                          | 295           | 285             | 0.4  | 0.03 | 2.0  | 0.7 | 0.7             | 25.3   | 51.4          |
| 15   | 494                          | 306           | 409             | 1.4  | 0.04 | 46.3 | 0.4 | 1.1             | 1.2    | 56.2          |
| 16   | 408                          | 332           | 364             | 1.1  | 0.03 | 4.1  | 0.2 | 1.8             | 19.4   | 55            |
| 17   | 504                          | 409           | 296             | 7.4  | 0.40 | 17.6 | 0.4 | 1.8             | 113.6  | 57.5          |

# TABLE 12-AVERAGE AMOUNTS OF MINERAL CONSTITUENTS IN GROUND WATER AT SELECTED SITES (mg/l)

Excluding area 14, which has bedrock aquifers, unit costs in areas 1 to 17 (sand and gravel wells) ranged from 0.92 to 1.69 cents per 1,000 gallons for a 4,000-gpm supply and from 1.68 to 4.43 cents per 1,000 gallons for a 50,000-gpm supply. Unit costs generally increase with production rate, there being no economies of scale involved in the cost factors considered. It is assumed that no treatment will be given to the water. Average costs in areas 1 to 13 and 15 to 17 for supplies of 4,000, 10,000, 20,000, and 50,000 gpm were 1.29, 1.59, 2.00, and 2.69 cents per 1,000 gallons, respectively. Corresponding costs from the deep sandstone aquifer (area 14) were approximately three times as great, 3.58, 5.31, 6.49, and 8.46 cents per 1,000 gallons. While other unit costs in areas 1 to 13 and 15 to 17 remain relatively stable, average transmission costs rise from 31.5 percent of the total costs for 4,000-gpm supplies to 56.2 percent of the total for 50,000-gpm supplies. For Cambrian-Ordovician wells, such as that in area 14, electrical costs are the largest unit cost., They decrease as the gallons per minute rate increases from 61.2 to 44.3 percent of the total, but transmission costs increase from 16.7 to 43.9 percent of the total cost.

# **Ground-Water Quality**

The chemical quality of water supplies at the 17 study areas can be estimated from mineral analyses of near-by existing ground-water supplies. Such analyses on file at the Illinois State Water Survey were averaged for each area to determine the average quality that might be expected there. The average values of chemical concentration and temperature are summarized in table 12.

The review revealed that water in most of the areas studied is of fairly good quality, with total dissolved solids averaging between 134 and 515 milligrams per liter (mg/l). It has moderate to high hardness, averaging between 102 and 429 mg/l. Iron also is present in considerable concentration, between 0.1 and 13.4 mg/l. Average water temperature ranges from 51.4 to 60 F, the cooler temperatures appearing in the northern areas and the warmer ones in southern areas.

#### Legal Aspects of Ground-Water Development

It is beyond the scope of this report to deal more than briefly with Illinois water law, but several excellent sources are available as described in *Water for Illinois, A Plan for Action* (Board of Economic Development, 1967). The Illinois Supreme Court has adopted the English common law rule for cases involving percolating ground water. In essence, the rule states that the owner of the land owns all the percolating water underlying his land.

# AVAILABILITY OF SURFACE WATER FOR COAL CONVERSION

Not only is Illinois bordered by the Mississippi, the Ohio, and the Wabash Rivers and by Lake Michigan, but it is also internally drained by the Rock, the Illinois, the Sangamon, the Kaskaskia, the Big Muddy, the Embarras, and the Little Wabash Rivers, as well as many smaller streams. In addition, Illinois has 368 bodies of water of 40 acres or more.

Streamflow is continuously recorded along the streams of the state. These flow data are collected and published by the U. S. Geological Survey (1974), half the cost being provided by a state sponsor. The Illinois State Water Survey is the largest of the state sponsors of this program. In 1971 records were kept at 167 locations. Continuous streamflow records for the 25-year period 1950 through 1974 are available from about 100 gaging stations.

The average runoff to streams is about 9 inches a year in most of central Illinois and about 15 inches in southern Illinois. Runoff is a major water resource because it can be taken directly from a stream and used immediately or it can be stored in a reservoir and used as needed.

One important means of conserving water is to capture flood runoff and keep it in a reservoir for use in dry seasons. Reservoir lakes can also be used for recreation and other purposes. Illinois has several large reservoirs, and more are being planned or constructed; a large potential remains for the development of additional impoundments. Man-made lakes or reservoirs have been developed throughout the state for various purposes. Some of the larger existing lakes are listed in table 13.

Except for lakes in the valleys of the larger streams, natural lakes are confined to the northeastern portion of Illinois. They are the result of juvenile drainage following the last glacial period. Most of them are in the Chain O'Lakes region in Lake and McHenry Counties.

Bodies of water of 40 acres or more have a total surface area of 138,317 acres. The northern section of the state contains 117 such lakes, 47 of them in Lake County. Of the 128 bodies of water in the north-central section, 27 are in Mason County. The south-central section contains 72 lakes, 11 in Calhoun County and 11 in Macoupin County. Of the 51 lakes in the southern section, Franklin and Williamson Counties have 9 each. A small portion of the total water surface and storage area is made up of many ponds, lakes, and reservoirs of less than 40 acres.

Four potential sources of surface water were studied to locate possible water supplies for coal conversion—water flowing in rivers and streams, water impounded in existing reservoirs, surface water that could be impounded in reservoirs, and treated wastewater.

#### Legal Aspects of Surface Water and Lake Michigan

For streams within the state, the Illinois Supreme Court has subscribed to the doctrine of riparian rights with respect to the reasonable use of water in natural water courses.

The diversion of water from Lake Michigan by Illinois is limited to 3,200 cubic feet per second (cfs) by decree of the U. S. Supreme Court (Northeastern Illinois Planning Com-

| TABLE 13-L | ARGE M | AN-MADE | LAKES O | F ILLINOIS |
|------------|--------|---------|---------|------------|
|------------|--------|---------|---------|------------|

|                                |              | Lake<br>capacity |
|--------------------------------|--------------|------------------|
| Purpose and name               | Near-by city | (million gal)    |
| Flood Control and Water Supply |              |                  |
| Carlyle Lake                   | Carlyle      | 92,204           |
| Lake Shelbyville               | Shelbyville  | 68,669           |
| Rend Lake                      | Benton       | 60,167           |
| Recreation and Wildlife        |              |                  |
| Crab Orchard Lake              | Carbondale   | 19,901           |
| Little Grassy Lake             | Carbondale   | 8,386            |
| Devils Kitchen Lake            | Carbondale   | 9,122            |
| Power Plant Supply             |              |                  |
| Impounded Lakes                |              |                  |
| Lake of Egypt                  | Marion       | 13,863           |
| Sangchris Lake                 | Springfield  | 11,403           |
| Coffeen Lake                   | Coffeen      | 7,179            |
| Side-Channel Lakes             |              |                  |
| Lake Baldwin                   | Baldwin      | 7,982            |
| Con-Ed Lake                    | La Salle     | 6,540            |
| City Water Supply              |              |                  |
| Lake Springfield               | Springfield  | 18,434           |
| Lake Decatur                   | Decatur      | 7,278            |
| Lake Bloomington               | Bloomington  | 2,628            |
| Evergreen Lake                 | Bloomington  | 4,473            |
| Lake Kinkaid                   | Murphysboro  | 25,738           |
| Lake Vermilion                 | Danville     | 1,776            |
| Lake Taylorville               | Taylorville  | 3,183            |
| Lake Sara                      | Effingham    | 4,496            |
| Lake Lou Yaeger                | Litchfield   | 1,430            |
| -                              |              |                  |

mission, 1974). At present this water is being used for water supply, chiefly by Chicago, and to augment flow in the Chicago Sanitary and Ship Canal and the Calumet-Sag Canal. This report does not evaluate the potential application of Lake Michigan water for coal conversion.

#### **Treated Wastewater**

Treated wastewater, or sewage effluent of acceptable quality, is another possible source of water for coal conversion. All cities operating wastewater treatment plants are required by the Illinois Environmental Protection Agency to submit monthly operation reports. These reports show the amount of wastewater in gallons per day leaving the plant after treatment, any wastewater bypassed untreated during rains in places where the storm and sanitary sewer systems are combined, and quality parameters such as biologic oxygen demand (BOD) and concentration of suspended solids.

The state EPA field offices supplied information on effluent flow for the year 1970, as well as for a few earlier years. Study of this information indicated that 15 municipalities in the state have 7-day low-flow sewage effluents that are within the range of the defined water consumption

| TABLE 14-MUNICIPAL PLANTS WITH | 7-DAY |
|--------------------------------|-------|
| LOW-FLOW EFFLUENT OF 6 MGD OR  | MORE  |
| IN 1970                        |       |
| (Locations in figure 25)       |       |

| Town or plant  | County     | 7-day low-flow<br>effluent (mgd) |
|----------------|------------|----------------------------------|
| Rockford       | Winnebago  | 27                               |
| Aurora         | Kane       | 13                               |
| Elgin          | Kane, Cook | 7                                |
| Bloom Township | Cook       | 8                                |
| Joliet         | Will       | 12                               |
| Northside      | Cook       | 240                              |
| West Southwest | Cook       | 650                              |
| Calumet        | Cook       | 130                              |
| Peoria         | Peoria     | 25                               |
| Springfield    | Sangamon   | 15                               |
| Decatur        | Macon      | 15                               |
| Bloomington    | McLean     | 8                                |
| East St. Louis | St. Clair  | 8                                |
| Danville       | Vermilion  | 7                                |
| Urbana         | Champaign  | 7                                |

needs for coal conversion. The plants are listed in table 14 and their locations are shown on figure 25.

#### Water from Rivers

Available flow records for the principal rivers in and bounding Illinois were used to estimate the minimum daily flow that could be expected during a 50-year period (fig. 25). These quantities of water are considered as being available for use by coal conversion plants.

The Mississippi River on the western edge of Illinois was estimated to have a minimum flow of 6,500 mgd, an amount almost 100 times greater than the maximum amount of water (72 mgd) assumed to be needed by one coal conversion plant. Along the southwestern part of Illinois, minimum flows in the Mississippi River rise to between 20,000 and 23,000 mgd. Along the Ohio River, in southern Illinois, the range of flow is from 3,500 mgd to 11,000 mgd. The Wabash River bounding southeastern Illinois has a minimum flow of between 350 and 950 mgd. The Illinois River of central Illinois has flows of 700 mgd at its upper extremity, about 1,000 mgd near Peoria, and 1,200 mgd at its confluence with the Mississippi River. All these amounts greatly exceed the amount of water used by one coal conversion plant. Values for the Rock River in northern Illinois range from 60 mgd near the Wisconsin state line to 500 mgd where the Rock River empties into the Mississippi River.

# **Existing Reservoirs**

A number of relatively large reservoirs already exist in Illinois (table 13), but the water supply of most of them has already been committed to public supply. Only two of these present a possible, but not probable, source for conversion plants.

Rend Lake in Franklin County can provide a water supply of 40 mgd, which is already committed to the Rend Lake Intercity Water System. It is unlikely that water can be furnished for any additional use at present. The state of Illinois owns part of the water supply in Lake Shelbyville, Shelby County, and a supply of 14 mgd could be provided for coal conversion if the state so decided. The state also owns part of the water supply in Carlyle Lake in Clinton County. This lake could provide a water supply of 29 mgd. These two are the only existing reservoirs that might furnish a water supply for coal conversion.

## **Potential Reservoirs**

From 1962 to 1967, a detailed study of Illinois was made by the State Water Survey to locate potential reservoir sites. Some 1,200 potential sites were examined, 800 of which seemed favorable for reservoir construction. Detailed information was published on the physical aspects of each of these sites. Separate reports contain results for southern Illinois (Roberts et al., 1962), south-central Illinois (Dawes and Terstriep, 1966a), north-central Illinois (Dawes and Terstriep, 1966b), and northern Illinois (Dawes and Terstriep, 1967). Most of the reservoir sites described in these four reports are of a size suitable for public water supply in Illinois but are not large enough to supply a coal conversion plant.

To evaluate the potential man-made reservoirs as sources of water for coal conversion, the Water Survey made a further study of all potential reservoir sites in Illinois. The study found 228 locations where a potential reservoir capable of supplying more than 6 mgd of water could be built. Table D (Appendix 1) gives data for each of the sites. The yield of a reservoir in million gallons per day (table D) would use only half the reservoir capacity during a drouth that had a recurrence interval of 40 years. Recreational use of the lake could therefore continue during the drouth. The yield shown in the table is the amount of water a reservoir could furnish for use by coal conversion plants. In table D there are 266 entries for the 228 sites selected because two sizes of reservoirs have been proposed for some sites, noted in the table as, for instance, 26 and 26A. Sites with letter suffixes are different versions of the sites with plain numbers, but the general location is the same.

The potential reservoirs that could be built at the 228 locations (table D) indicate the vast water resources available for coal conversion plants in Illinois. Each one of the possible reservoirs could supply at least the minimum quantity of water required for one coal conversion plant (6 mgd).

## **Cost of Potential Reservoirs**

A typical cost analysis was made for selected reservoir capacities in different geographic locations of the state. Computation of the estimated project cost of the reservoirs followed the method proposed by Dawes and Wathne (1968). The formula given by Dawes and Wathne (1968) is based on a 1964 cost level, but the Handy-Whitman Index (1973) was used to bring the cost to a 1972 level. The price of land is based on the land values in Illinois cited in the Agricultural Census of 1969, converted to 1972 level by the cost index numbers of Illinois farmland values supplied by Dr. F. J. Reiss, Professor of Land Economics and Extension Specialist in Farm Management and Tenancy of the University of Illinois (personal communication, 1975).

The original equation for cost of reservoirs proposed by Dawes and Wathne (1968) is based on data for reservoirs constructed in Illinois since 1946 that were collected from consulting engineers, private and municipal water utilities, and state and Federal agencies. The project cost used here is the sum of the cost of construction, engineering and legal services, contingencies, and land. The term "construction cost" in the analysis encompasses costs of land clearing, dam and spillway construction, and relocations. Engineering and legal services were added as a fixed percentage—15 percent of construction cost. Contingencies were added as 10 percent of the construction cost. The amount of land required for a project was determined to be 50 percent more than the actual normal surface area of the pool. The reservoir project cost is estimated by the following equation:

$$\mathbf{P}_{\mathbf{c}} = \mathbf{C}_1 \ \mathbf{C} + \mathbf{C}_2 \ \mathbf{L}_a \ \mathbf{k}$$

where

- $P_c$  = total project cost in dollars
- C<sub>1</sub> = 1.25, a combined constant accounting for engineering and legal services (15 percent of C) plus contingencies (10 percent of C)
- C = 4287  $S^{0.54}$ , the construction cost (S = storage capacity in acre-feet)
- $C_2 = 1.50$ , total required land area, 50 percent more area than needed for normal surface area of pool
- $L_a = 0.23 \ S^{0.87}$ , the required lake area
- k = land cost expressed in dollars per acre

The measure of dispersion in both the construction cost, C, and the lake area required,  $L_a$ , is given by the respective standard deviations expressed in percentages as 70.9 and 39.0. For estimates of project cost, values one standard deviation above the regression line were selected. This implies that, on the average, the actual values in excess of the estimated cost is expected only 16 percent of the time. In simplified form, the appropriate substitutions in the cost equation provide:

$$P_c = 9161 \ S^{0.54} + 0.49 \ S^{0.87} \ k$$

The ratio in the Handy-Whitman Cost Index (Whitman et al., 1973) for impounding reservoirs between 1964 and 1972 is:

$$(282.2)/(176.5) = 1.60$$

Therefore, the final equation for project cost is:

$$P_{c} = (9161) (1.598867) S^{0.54} + 0.49 S^{0.87} k$$
  
= 14,647 S^{0.54} + 0.49 S^{0.87} k (12)

Equation 12 was used to compute the cost of potential reservoir sites, and the results are shown in figure 27.

As can be seen in figure 27, the cost of potential reservoirs varies with geographic location in Illinois. Costs are higher in northern Illinois than in southern, principally because land costs are higher in the northern part of the state. The project cost of potential reservoirs also varies with the reservoir capacity and ranges from about 1.8 million dollars for a reservoir capacity of 5,000 acre-ft to about 35 million dollars for a reservoir capacity of 500,000 acre-ft (fig. 27).

The relation between the reservoir yield and the reservoir capacity is given in figure 28, which provides a rough way of estimating the net yield of a reservoir, based upon reservoir capacity only. Figures 27 and 28 can be used together to relate project costs and reservoir net yield.

#### Quality of Surface Water

When a water supply is being planned for a coal conversion plant or for municipal, agricultural, industrial, or other uses, it is not enough to know that the water is merely potable. The amount and the kind of minerals in the water also must be known if an estimate of the cost of water treatment is to be made.

Available information and interviews with several engineers and researchers in this field reveal that no general standards can be set for the minimum water quality that is required by the various coal conversion processes. For that reason, existing surface-water qualities in Illinois are described here.

The parameters selected for defining mineral quality in this report were chosen because of their effect on general municipal and industrial use. No assessment is made here of the sanitary quality of the water.

Water dissolves minerals and other substances. The degree to which solution takes place depends on the type of mineral involved, the time of contact, and, in some cases, the presence or absence of dissolved oxygen. For example, Illinois surface waters in rivers and lakes seldom contain dissolved iron because they contain dissolved oxygen. Iron



Figure 27. Reservoir capacity and cost.



Figure 28. Relation between reservoir yield and reservoir capacity.

may be present as suspended iron oxide or in suspended silt, but it is not dissolved. On the other hand, well waters seldom contain dissolved oxygen and iron is present in the water of about three of every four wells in a concentration of more than 0.3 mg/1, which is sufficient to cause staining.

The minerals in ground water are related to the associated geologic formation. The minerals in surface water are generally those of the surface soil, although many streams are occasionally fed by ground water. Other minerals are added through public, industrial, and agricultural use of water.

For most subsurface waters, chemical analysis of a sin-

gle sample is sufficient to give an accurate evaluation of the quality of the water produced from a given well. However, because the quality of the water in a stream varies almost continuously, a series of analyses must be made on numerous samples obtained by a regulated sampling program.

Most waters in Illinois are suitable for agricultural use if the mineral content is satisfactory for municipal use and if the sodium adsorption ratio (the total dissolved minerals minus the hardness, divided by 5 times the square root of the hardness) does not exceed 10. A ratio of more than 20 to 25 is generally unsatisfactory.

The surface-water quality for various parts of the state is summarized in table E (Appendix 1). Data were analyzed from samples collected by the State Water Survey in 29 watersheds from 44 sampling locations. Samples were generally collected monthly for a period of four to five years at each sampling station. Locations of the sampling stations are shown in figure 29.



Figure 29. Location of water quality sampling stations.

## CONCLUSIONS

Illinois is rich in water in the quantities needed for coal conversion. Water could be supplied to a plant anywhere along the major rivers—the Mississippi, Ohio, Wabash, Illinois or Rock. The minimum flow in the Mississippi River, as shown on the accompanying map (pl. 3), could supply numerous coal conversion plants, each using water at a rate of 72 mgd.

At 228 locations (pl. 3) at least 6 mgd could be supplied to a coal conversion plant from a man-made reservoir. At 17 locations a system of wells could be constructed to provide a water supply of at least 14 mgd for coal conversion.

# REFERENCES TO PART 2

- Ackermann, W. C, 1967, *Water transmission costs:* Illinois State Water Survey Technical Letter 7, 4 p.
- Babcock and Wilcox Co., 1968, *Water treatment for industrial boilers:* Power Generation Division Bulletin BR 884, Barberton, Ohio.
- Bergstrom, R. E., and T. R. Walker, 1956, Groundwater geology of the East St. Louis area, Illinois: Illinois Geological Survey Report of Investigations 191, 44 p.
- Board of Economic Development, 1967, *Water for Illinois a plan for action:* State of Illinois, Springfield, 541 p.
- Cady, G. H., and others, 1952, *Minable coal reserves of Illinois:* Illinois Geological Survey Bulletin 78, 138 p.
- Dawes, J. H., and M. L. Terstriep, 1966a, Potential surface water reservoirs of south-central Illinois: Illinois State Water Survey Report of Investigation 54, 119 p.
- Dawes, J. H., and M. L. Terstriep, 1966b, Potential surface water reservoirs of north-central Illinois: Illinois State Water Survey Report of Investigation 56, 144 p.
- Dawes, J. H., and M. L. Terstriep, 1967, Potential surface water reservoirs of northern Illinois: Illinois State Water Survey Report of Investigation 58, 86 p.
- Dawes, J. H., and Magne Wathne, 1968, Cost of reservoirs in Illinois: Illinois State Water Survey Circular 96, 22 p.
- Engineering News-Record, 1974, *ENR indexes expected to rise sharply in 1974:* Engineering News-Record, v. 192, no. 12, p. 62-65.
- Gibb, J. P., and E. W. Sanderson, 1969, Cost of municipal and industrial wells in Illinois, 1964-1966: Illinois State Water Survey Circular 98, 22 p.
- Hammond, A. L., W. D. Metz, and T. H. Mough II, 1973, *Energy and the future:* American Association for the Advancement of Science, Washington, D. C, 184 p.
- Harmeson, R. H., and V. M. Schnepper, 1965, *Temperatures of surface waters in Illinois:* Illinois State Water Survey Report of Investigation 49, 45 p.
- Harmeson, R. H., T. E. Larson, L. M. Henley, R. A. Sinclair, and J. C. Neill, 1973, *Quality of surface water in Illinois*, 1966-1971: Illinois State Water Survey Bulletin 56, 100 p.

- Hottel, H. C, and J. B. Howard, 1971, New energy technology; some facts and assessments: the MIT Press, Cambridge, Massachusetts, 364 p.
- National Academy of Engineering, 1972, Evaluation of coalgasification technology, Part I, Pipeline-quality gas: National Academy of Engineering, Washington, D. C, 79 p.
- Northeastern Illinois Planning Commission, 1974, Regional water supply report: Technical Report 8, Chicago, 97 p.
- Perry, Harry, 1974, *The gasification of coal:* Scientific American, v. 230, no. 3, p. 19-25.
- Prickett, T. A., and C. G. Lonnquist, 1971, Selected digital computer techniques for groundwater resource evaluation: Illinois State Water Survey Bulletin 55, 62 p.
- Roberts, W. J., Ross Hanson, F. A. Huff, S. A. Changnon, Jr., and T. E. Larson, 1962, *Potential water resources of southern Illinois:* Illinois State Water Survey Report of Investigation 31,100 p.
- Roberts, W. J., and J. B. Stall, 1967, *Lake evaporation in Illinois:* Illinois State Water Survey Report of Investigation 57, 44 p.
- Sasman, R. T., C. R. Benson, G. L. Dzurisin, and N. E. Risk, 1973, Water-level decline and pumpage in deep wells in northern Illinois, 1966-1971: Illinois State Water Survey Circular 113,41 p.
- Schicht, R. J., 1965, Ground-water development in East St. Louis area, Illinois: Illinois State Water Survey Report of Investigation 51, 70 p.
- Seay, J. G., P. J. Anderson, N. P. Biederman, and B. Ritter, 1972, Evaluation of sites for an Illinois coal gasification industry: Institute of Gas Technology, Illinois Institute of Technology, Chicago, Illinois, 110 p.
- Singh, K. P., 1971, Economic design of central water supply systems for medium-sized towns: Water Resources Bulletin, v. 7, no. 1, p. 79-92.
- Singh, K. P., A. P. Visocky, and C. G. Lonnquist, 1972, *Plans for meeting water requirements in the Kaskaskia River Basin 1970-2020:* Illinois State Water Survey Report of Investigation 70, 24 p.

- Stall, J. B., and D. W. Heistand, 1969, Provisional time-oftravel for Illinois streams: Illinois State Water Survey Report of Investigation 63, 31 p.
- Suter, Max, and R. H. Harmeson, 1960, *Artificial ground-water recharge at Peoria, Illinois:* Illinois State Water Survey Bulletin 48, 48 p.
- Suter, Max, R. E. Bergstrom, H. F. Smith, G. H. Emrich, W. C. Walton, and T. E. Larson, 1959, *Preliminary report* on ground-water resources of the Chicago region: Illinois State Water Survey and Illinois State Geological Survey Cooperative Ground-Water Report 1, 89 p.
- U. S. Geological Survey, 1974, Water resources data for Illinois, 1973: Champaign, Illinois, 300 p.
- Visocky, A. P., and R. J. Schicht, 1969, *Groundwater re*sources of the buried Mahomet Bedrock Valley: Illinois State Water Survey Report of Investigation 62, 52 p.
- Walker, W. H., R. E. Bergstrom, and W. C. Walton, 1965, Preliminary report on the ground-water resources of the Havana region in west-central Illinois: Illinois State Water Survey and Illinois Geological Survey Cooperative Ground-Water Report 3, 61 p.

- Walker, W. H., and W. C. Walton, 1961, Ground-water development in three areas of central Illinois: Illinois State Water Survey Report of Investigation 41, 43 p.
- Walton, W. C, 1962, Selected analytical methods for well and aquifer evaluation: Illinois State Water Survey Bulletin 49, 82 p.
- Walton, W. C, and Sandor Csallany, 1962, Yields of deep sandstone wells in northern Illinois: Illinois State Water Survey Report of Investigation 43, 47 p.
- Western Gasification Company (WESCO), 1973, *Coal gasification: a technical description:* Western Gasification Company, Farmington, New Mexico, 32 p.
- Whitman, Requardi, and Associates, 1973, *The Handy-Whitman index of water utility construction costs:* Whitman, Requardi, and Associates, Baltimore, Maryland.
- Woller, D. M., 1974, Public groundwater supplies in Ford County: Illinois State Water Survey Bulletin 60-8, 19 p.
- Zeizel, A. J., W. C. Walton, R. T. Sasman, and T. A. Prickett, 1962, Ground-water resources of Du Page County, Illinois: Illinois State Water Survey and Illinois State Geological Survey Cooperative Ground-Water Report 2, 103 p.

APPENDIX 1 TABLES

|            | <del>-</del> - |         |           |               |                       | <u> </u>   |         |        |                      |                                      |                               | County                 | averagest                        |
|------------|----------------|---------|-----------|---------------|-----------------------|------------|---------|--------|----------------------|--------------------------------------|-------------------------------|------------------------|----------------------------------|
|            |                |         |           | Coal reserves | (thousands o          | f tons) by |         |        | Co                   | ounty totals*                        |                               | Average                | Av. tons                         |
| County     | Coal<br>seam   | 4 ft    | 5 ft      | aver<br>6 ft  | age thickness<br>7 ft | 8 ft       | 9 ft    | 10+ ft | Thousands<br>of tons | Area of coal<br>remaining<br>(sq mi) | Area‡<br>mined out<br>(sq mi) | thick-<br>ness<br>(ft) | per sq mi<br>(in thou-<br>sands) |
|            | 4              | 178 102 | 786 247   | 542 461       | 678 091               | 114 265    | 12.078  | •      | 2 257 228            | 244.29                               | 4.12                          | 5 60                   | 6 886                            |
| DOUG       | 5              | 175,105 | /80,24/   | 0             | 045,981               | 0          | 13,078  | ŏ      | 0                    | 0.0                                  | 0.0                           | 5.09                   | 0,550                            |
| Totals     |                | 175,103 | 786,247   | 542,461       | 625,981               | 114,365    | 13,078  | 0      | 2,257,235            |                                      |                               |                        |                                  |
| Bureau     | 6              | 189,556 | 355,843   | 21,427        | 0                     | 0          | 0       | 0      | 566,826              | 106.01                               | 4.64                          | 4.64                   | 5,347                            |
|            | 5              | 0       | 0         | 0             | 0                     | 0          | 0       | 0      | 0                    | 0.0                                  | 0.0                           |                        |                                  |
| Totals     |                | 189,556 | 355,843   | 21,427        | 0                     | 0          | 0       | 0      | 566,826              |                                      |                               |                        |                                  |
| Cass       | 6              | 0       | 0         | 0             | 0                     | 0          | 0       | 0      | 0                    | 0.0                                  | 0.0                           |                        |                                  |
|            | 5              | 41,564  | 38,477    | 66,355        | 0                     | 0          | 0       | 0      | 146,396              | 25.30                                | 0.0                           | 5.02                   | 5,786                            |
| Totals     |                | 41,564  | 38,477    | 66,355        | 0                     | 0          | 0       | 0      | 146,396              |                                      |                               |                        |                                  |
| Champaign  | 6              | 57,180  | 6,409     | 0             | 0                     | 0          | 0       | 0      | 63,589               | 13.52                                | 0.0                           | 4.08                   | 4,703                            |
|            | 5              | 0       | 0         | 0             | 0                     | 0          | 0       | 0      |                      | 0.0                                  | 0.0                           |                        |                                  |
| Totals     |                | 57,180  | 6,409     | 0             | 0                     | 0          | 0       | 0      | 63,589               |                                      |                               |                        |                                  |
| Christian  | 6              | 200,171 | 266,621   | 460,738       | 605,485               | 1,595,682  | 368,293 | 52,410 | 3,549,400            | 444.69                               | 91.13                         | 6.93                   | 7,982                            |
|            | 5              | 131,633 | 914,911   | 168,860       | 0                     | 0          | 0       | 0      | 1,215,404            | 211.83                               | 0.70                          | 4.98                   | 5,738                            |
| Totals     |                | 331,804 | 1,181,532 | 629,598       | 605,485               | 1,595,682  | 368,293 | 52,410 | 4,764,804            |                                      |                               |                        |                                  |
| Clark      | 6              | 0       | 0         | 0             | 0                     | 0          | 0       | 0      | 0                    | 0.0                                  | 0.0                           |                        |                                  |
|            | 5              | 423,655 | 759,097   | 0             | 0                     | 0          | 0       | 0      | 1,182,752            | 223.73                               | 0.0                           | 4.59                   | 5,287                            |
| Totals     |                | 423,655 | 759,097   | 0             | 0                     | 0          | 0       | 0      | 1,182,752            |                                      |                               |                        |                                  |
| Clay       | 6              | 583,716 | 360,935   | 109,516       | 0                     | 0          | 0       | 0      | 1,054,167            | 205.18                               | 0.0                           | 4.46                   | 5,138                            |
|            | 5              | 0       | 0         | 0             | 0                     | 0          | 0       | 0      | 0                    | 0.0                                  | 0.0                           |                        |                                  |
| Totals     |                | 583,716 | 360,935   | 109,516       | 0                     | 0          | 0       | 0      | 1,054,167            |                                      |                               |                        |                                  |
| Clinton    | 6              | 90,536  | 858,601   | 610,684       | 668,059               | 666,902    | 100,339 | 15,831 | 3,010,952            | 423.32                               | 13.42                         | 6.17                   | 7,113                            |
|            | 5              | 472     | 0         | 0             | 0                     | 0          | 0       | 0      | 472                  | 0.10                                 | 0.0                           | 4.00                   | 4,608                            |
| Totals     |                | 91,008  | 858,601   | 610,684       | 668,059               | 666,902    | 100,339 | 15,831 | 3,011,424            |                                      |                               |                        |                                  |
| Coles      | 6              | 175,483 | 0         | 0             | 0                     | 0          | 0       | 0      | 175,483              | 38.08                                | 0.0                           | 4.00                   | 4,608                            |
|            | 5              | 0       | 0         | 0             | 0                     | 0          | 0       | 0      | 0                    | 0.0                                  | 0.0                           |                        |                                  |
| Totals     |                | 175,483 | 0         | 0             | 0                     | 0          | 0       | 0      | 175,483              |                                      |                               |                        |                                  |
| Crawford   | 6              | 92,185  | 19,287    | 0             | 0                     | 0          | 0       | 0      | 111,472              | 23.35                                | 0.0                           | 4.14                   | 4,773                            |
|            | 5              | 259,915 | 13,541    | 4,562         | 0                     | 0          | 0       | 0      | 278,018              | 59.42                                | 0.0                           | 4.06                   | 4,679                            |
| Totals     |                | 352,100 | 32,828    | 4,562         | 0                     | 0          | 0       | 0      | 389,490              |                                      |                               |                        |                                  |
| Cumberland | 6              | 33,186  | 359,679   | 19,773        | 0                     | 0          | 0       | 0      | 412,638              | 72.51                                | 0.0                           | 4.94                   | 5,691                            |
|            | 5              | 62,484  | 59,789    | 0             | 0                     | 0          | 0       | 0      | 122,273              | 23.94                                | 0.0                           | 4.43                   | 5,107                            |
| Totals     |                | 95,670  | 419,468   | 19,773        | 0                     | 0          | 0       | 0      | 534,911              |                                      |                               |                        |                                  |

# TABLE A-SUMMARY OF COAL RESERVES 42 OR MORE INCHES THICK IN THE HERRIN (NO. 6)AND HARRISBURG-SPRINGFIELD (NO. 5) SEAMS

| De Witt   | 6 | 0         | 0                  | 0         | 0        | 0       | 0       | 0      | 0         | 0.0         | 0.0    |      |         |
|-----------|---|-----------|--------------------|-----------|----------|---------|---------|--------|-----------|-------------|--------|------|---------|
|           | 5 | 1,394,292 | 69,890             | 0         |          |         |         | 0      | 1,464,182 | 314.71      | 0.0    | 4.04 | 4,652   |
| Totals    |   | 1,394,292 | 69,890             | 0         | 0        | 0       | 0       | 0      | 1,464,182 |             |        |      |         |
| Douglas   | 6 | 154.234   | 154,096            | 252.387   | 74,944   | 0       | 0       | 0      | 635,661   | 106.03      | 5.54   | 5.20 | 5.995   |
|           | 5 | 0         | 0                  | 0         | 0        | 0       | 0       | 0      | 0         | 0.0         | 0.0    |      |         |
| Totals    |   | 154,234   | 154,096            | 252,387   | 74,944   | 0       | 0       | 0      | 635,661   |             |        |      |         |
| Edgar     | 6 | 451,363   | 164,486            | 129,851   | 5,484    | 0       | 0       | 0      | 751,184   | 145.98      | 0.0    | 4.47 | 5,146   |
|           | 5 | 427,643   | 0                  | 0         | 0        | 0       | 0       | 0      | 427,643   | 92.80       | 1.40   | 4.00 | 4,608   |
| Totals    |   | 879,006   | 164,486            | 129,851   | 5,484    | 0       | 0       | 0      | 1,178,827 |             |        |      |         |
| Edwards   | 6 | 339,800   | 75,589             | 16,112    | 0        | D       | 0       | 0      | 431,501   | 89.20       | 0.0    | 4.20 | 4,838   |
|           | 5 | 157,249   | 151,635            | 185,539   | 148,638  | 78,775  | 10,575  | 7,258  | 739,669   | 115.92      | 0.0    | 5.54 | 6,381   |
| Totals    |   | 497,049   | 227,224            | 201,651   | 148,638  | 78,775  | 10,575  | 7,258  | 1,171,170 |             |        |      |         |
| Effingham | 6 | 418.299   | 414.317            | 188.218   | 0        | 0       | 0       | 0      | 1.020.834 | 189.94      | 0.0    | 4.67 | 5.375   |
| <b>8</b>  | 5 | 807,967   | 373,478            | 0         | Ō        | Ó       | 0       | Ō      | 1,181,445 | 240.18      | 0.0    | 4.27 | 4,919   |
| Totals    |   | 1,226,266 | 787,795            | 188,218   | 0        | 0       | 0       | 0      | 2,202,279 |             |        |      |         |
| Favette   | 6 | 161 744   | 1 136 909          | 1 273 194 | 672.067  | 157 974 | 0       | 0      | 1 401 888 | 517 16      | 0.0    | 5 71 | 6 5 7 8 |
| , ayene   | 5 | 0         | 0                  | 0         | 0        | 0       | ŏ       | ŏ      | 0         | 0.0         | 0.0    | 0.11 | 0,210   |
| Totals    |   | 161,744   | 1,136,909          | 1,273,194 | 672,067  | 157,974 | 0       | 0      | 3,401,888 |             |        |      |         |
| Franklin  | 6 | 59,711    | 184,546            | 463,011   | 492,142  | 193,727 | 163,791 | 26,937 | 1,583,865 | 212.17      | 150.94 | 6.48 | 7,465   |
|           | 5 | 1,337,102 | 476,175            | 89,364    | 0        | 0       | 0       | 0      | 1,902,641 | 385.77      | 0.0    | 4.28 | 4,932   |
| Totals    |   | 1,396,813 | 660,721            | \$52,375  | 492,142  | 193,727 | 163,791 | 26,937 | 3,486,506 |             |        |      |         |
| Fuiron    | 6 | 234.696   | 0                  | 0         | 0        | . 0     | 0       | 0      | 234,696   | 50.93       | 6.24   | 4.00 | 4.608   |
| 1 4100    | 5 | 334,860   | 293,818            | 21,704    | ŏ        | ŏ       | õ       | ō      | 650,382   | 126.82      | 81.91  | 4.45 | 5,128   |
| Totals    |   | 569,556   | 293,818            | 21,704    | 0        |         | 0       | 0      | 885,078   |             |        |      |         |
| Colletia  | 4 | 402 207   | 110 722            | 22 278    | 7 741    | 0       | 0       |        | 553 330   | 112 21      | 2 1 1  | 4 37 | 4 01 7  |
| Cataton   | 5 | 505.402   | 680.624            | 36.081    | 0        | ŏ       | ő       | 0      | 1.222.107 | 233.06      | 7.90   | 4.55 | 5.244   |
| Totals    | • | 907,799   | 800,346            | 58,459    | 7,741    | 0       | 0       |        | 1,774,345 |             |        |      | -,- · · |
| Crosse    | 4 | 27 147    | 467                | 29        | 0        | 0       | 0       | 0      | 77 947    | 6.01        |        | 4.02 | 4 633   |
| Greene    | 5 | 27,147    | 007                | 0         | Ő        | 0       | 0       | 0      | 27,042    | 0.01        | 0.0    | 4.02 | 4,032   |
| Totals    | - | 27,147    | 667                | 28        | 0        | 0       | 0       | 0      | 27,842    | <i>t</i> .c | ***    |      |         |
|           |   |           | <1 4 500           | 404 000   |          |         |         |        |           |             |        |      |         |
| Hamilton  | Ó | 592,976   | 014,598<br>802 756 | 491,903   | 273,987  | 108,064 | 1,800   | 0      | 2,083,394 | 352.43      | 0.0    | 5.13 | 5,911   |
| Totals    | 3 | 1 061 374 | 1 418 354          | 1 108 942 | 458 01 1 | 166 542 | 3 852   |        | 4 717 070 | 339.72      | 0.0    | 3.13 | 3,731   |
| LOLAID    |   | 1,001,320 | *,***,2,23*        | 1,100,742 | 720,711  | 100,244 | 3,033   | v      | 7,411,740 |             |        |      |         |
| Henry     | 6 | 187,294   | 0                  | 0         | 0        | 0       | 0       | 0      | 187,294   | 40.65       | 2.53   | 4.00 | 4,608   |
|           | 5 | 0         | 0                  | 0         | 0        | 0       | 0       | 0      | 0         | 0.0         | 0.0    |      |         |
| Totals    |   | 187,294   | 0                  | 0         | 0        | 0       | 0       | 0      | 187,294   |             |        |      |         |

|            |              | ,         |                    |               |               |          |        |        | 0                    | ounty totals*        |                      | County            | averagest             |
|------------|--------------|-----------|--------------------|---------------|---------------|----------|--------|--------|----------------------|----------------------|----------------------|-------------------|-----------------------|
|            |              |           |                    | Coal reserves | (thousands of | tons) by |        |        |                      | Area of coal         | Area‡                | Average<br>thick- | Av. tons<br>per sq mi |
| County     | Coal<br>seam | 4 ft      | 5 ft               | 6 ft          | 7 ft          | 8 ft     | 9 ft   | 10+ ft | Thousands<br>of tons | remaining<br>(sq mi) | mined out<br>(sq mi) | ness<br>(ft)      | (in thou-<br>sands)   |
| lackson    | 6            | 16.439    | 23,796             | 28,063        | 7,961         | 10,561   | 16.341 | 0      | 103.161              | 15.47                | 10.15                | 5.79              | 6.669                 |
| •          | 5            | 163,722   | 86,170             | 0             | 0             | 0        | 0      | 0      | 249,892              | 50.49                | 3.38                 | 4.30              | 4,949                 |
| Totals     |              | 180,161   | 109,966            | 28,063        | 7,961         | 10,561   | 16,341 | 0      | 353,053              | •                    |                      |                   |                       |
| Jasper     | 6            | 441,899   | 1,067,777          | 751,000       | 0             | 0        | 0      | 0      | 2,260,676            | 389.93               | 0.0                  | 5.03              | 5,798                 |
|            | 5            | 531,336   | 17,626             | 0             | 0             | 0        | 0      | 0      | 548,962              | 118.37               | 0.0                  | 4.03              | 4,638                 |
| Totals     |              | 973,235   | 1, <b>085,40</b> 3 | 751,000       | 0             | 0        | 0      | 0      | 2,809,638            |                      |                      |                   |                       |
| Jefferson  | 6            | 504,099   | 584,731            | 748,799       | 305,946       | 128,845  | 41,332 | 52,402 | 2,366,154            | 379.70               | 22.17                | 5.41              | 6,232                 |
|            | 5            | 1,690,091 | 807,274            | 139,683       | 2,984         | 0        | 0      | 0      | 2,640,032            | \$27.50              | 0.0                  | 4.34              | 5,005                 |
| Totals     |              | 2,194,190 | 1,392,005          | 888,482       | 308,930       | 128,845  | 41,332 | 52,402 | 5,006,186            |                      |                      |                   |                       |
| Jersey     | 6            | 28,949    | 0                  | 0             | 0             | 0        | 0      | 0      | 28,949               | 6.28                 | 0.0                  | 4.00              | 4,608                 |
|            | 5            | 0         | 0                  | 0             | 0             | 0        | 0      | 0      | 0                    | 0.0                  | 0.0                  |                   |                       |
| Totals     |              | 28,949    | 0                  | 0             | 0             | 0        | 0      | 0      | 28,949               |                      |                      |                   |                       |
| Кпох       | 6            | 214,687   | 0                  | 0             | 0             | 0        | 0      | 0      | 214,687              | 46.59                | 18.57                | 4.00              | 4,608                 |
|            | 5            | 81,654    | 0                  | 0             | 0             | 0        | 0      | 0      | 81,654               | 17.72                | 3.82                 | 4.00              | 4,608                 |
| Totals     |              | 296,341   | 0                  | 0             | 0             | 0        | 0      | 0      | 296,341              | •                    |                      |                   |                       |
| La Salle   | 6            | 63,839    | 11,903             | 0             | 0             | 0        | 0      | 0      | 75,742               | 15.92                | 11.01                | 4.13              | 4,758                 |
|            | 5            | 0         | 0                  | 0             | 0             | 0        | 0      | 0      | 0                    | 0.0                  | 0.0                  |                   |                       |
| Totals     |              | 63,839    | 11,903             | 0             | 0             | 0        | 0      | 0      | 75,742               |                      |                      |                   |                       |
| Lawrence   | 6            | 266,417   | 0                  | 0             | 0             | 0        | 0      | 0      | 266,417              | 57.82                | 0.0                  | 4.00              | 4,608                 |
|            | 5            | 371,213   | 205,045            | 8,328         | 0             | 0        | 0      | 0      | 584,586              | 117.36               | 0.0                  | 4.32              | 4,981                 |
| Totals     |              | 637,630   | 205,045            | 8,328         | 0             | 0        | 0      | 0      | 851,003              |                      |                      |                   |                       |
| Livingston | 6            | 24,653    | 0                  | 0             | 0             | 0        | 0      | 0      | 24,653               | 5.35                 | 2.85                 | 4.00              | 4,608                 |
|            | 5            | 0         | 0                  | 0             | 0             | 0        | 0      | 0      | 0                    | 0.0                  | 0.0                  |                   |                       |
| Totals     |              | 24,653    | 0                  | 0             | 0             | 0        | 0      | 0      | 24,653               |                      |                      |                   |                       |
| Logan      | 6            | 0         | 0                  | 0             | 0             | 0        | 0      | 0      | 0                    | 0.0                  | 0.0                  |                   |                       |
|            | 5            | 555,425   | 907,524            | 981,418       | 687           | 0        | 0      | 0      | 2,445,054            | 420.16               | 8.24                 | 5.05              | 5,819                 |
| Totals     |              | 555,425   | 907,524            | 981,418       | 687           | 0        | 0      | 0      | 2,445,054            |                      |                      |                   |                       |
| McLean     | 6            | 0         | 0                  | 0             | 0             | 0        | 0      | 0      | 0                    | 0.0                  | 0.0                  |                   |                       |
|            | 5            | 1,960,467 | 118,652            | 0             |               | 0        | 0      | 0      | 2,079,119            | 446.05               | 1.00                 | 4.05              | 4,661                 |
| Totals     |              | 1,960,467 | 118,652            | 0             | 0             | 0        | 0      | 0      | 2,079,119            |                      |                      |                   |                       |
| Macon      | 6            | 82,195    | 27,732             | 12,505        | 5,214         | 445      | 0      | 0      | 128,091              | 25.16                | 0.0                  | 4,42              | 5,092                 |
|            | 5            | 783,681   | 635,131            | 104,331       | 0             | 0        | 0      | 0      | 1,523,143            | 295.43               | 3.02                 | 4.48              | 5,156                 |
| Totals     |              | 865,876   | 662,863            | 116,836       | 5,214         | 445      | 0      | 0      | 1,651,234            |                      |                      |                   |                       |

| Macoupin   | 6 | 633,538   | 586,183 | 833,410   | 1,173,167 | 410,252   | 19,620   | 4,378 | 3,660,548 | 552.10 | 83.67 | 5.76 | 6,630 |
|------------|---|-----------|---------|-----------|-----------|-----------|----------|-------|-----------|--------|-------|------|-------|
| -          | 5 | 0         | 0       | 0         | 0         | 0         | 0        | 0     | 0         | 0.0    | 0.0   |      |       |
| Totals     |   | 633,538   | 586,183 | 833,410   | 1,173,167 | 410,252   | 19,620   | 4,378 | 3,660,548 |        |       |      |       |
| Madison    | 6 | 360.869   | 448.342 | 730.425   | 456.979   | 55.637    | 0        | 0     | 2.052.252 | 324.53 | 53.24 | 5.49 | 6.324 |
|            | 5 | 0         | 0       | 0         | 0         | 0         | õ        | ŏ     | 0         | 0.0    | 0.0   |      | 0,021 |
| Totals     |   | 360,869   | 448,342 | 730,425   | 456,979   | 55,637    | 0        | 0     | 2,052,252 |        |       |      |       |
| Marion     | 6 | 289,937   | 361,604 | 110,031   | 68,676    | 1,732     | 0        | 0     | 831,980   | 150.32 | 10.02 | 4.80 | 5,535 |
|            | 5 | 1,702,153 | 462,720 | 9,678     | 0         | 0         | 0        | 0     | 2,174,551 | 451.12 | 0.01  | 4.18 | 4,820 |
| Totals     |   | 1,992,090 | 824,324 | 119,709   | 68,676    | 1,732     | 0        | 0     | 3,006,531 |        |       |      |       |
| Menard     | 6 | 0         | 0       | 0         | 0         | 0         | 0        | 0     | 0         | 0.0    | 0.0   |      |       |
|            | 5 | 15,315    | 254,914 | 1,232,549 | 31,692    | 0         | 0        | 0     | 1,534,470 | 229.83 | 2.91  | 5.80 | 6,677 |
| Totals     |   | 15,315    | 254,914 | 1,232,549 | 31,692    | 0         | 0        | 0     | 1,534,470 |        | •     |      |       |
| Monroe     | 6 | 9,719     | 258     | 0         | 0         | 0         | 0        | 0     | 9,977     | 2.15   | 0.0   | 4.02 | 4,632 |
|            | 5 | 0         | 0       | 0         | 0         | 0         | 0        | 0     | 0         | 0.0    | 0.0   |      |       |
| Totals     |   | 9,719     | 258     | 0         | 0         | 0         | 0        | 0     | 9,977     |        |       |      |       |
| Montgomery | 6 | 117,591   | 199,460 | 440,668   | 1,357,263 | 1,526,642 | 57,904   | 9,854 | 3,709,382 | 464.30 | 43.86 | 6.93 | 7,989 |
|            | 5 | 0         | 0       | 0         | 0         | 0         | 0        | 0     | 0         | 0.0    | 0.0   |      |       |
| Totals     |   | 117,591   | 199,460 | 440,668   | 1,357,263 | 1,526,642 | 57,904   | 9,854 | 3,709,382 |        |       |      |       |
| Morgan     | 6 | 36,352    | 54,547  | 0         | 0         | 0         | 0        | 0     | 90,899    | 17.36  | 0.0   | 4.55 | 5,236 |
|            | 5 | 0         | 0       | 0         | 0         | 0         | 0        | 0     | 0         | 0.0    | 0.0   |      |       |
| Totals     |   | 36,352    | 54,547  | 0         | 0         | 0         | 0        | 0     | 90,899    |        |       |      |       |
| Moultrie   | 6 | 3,917     | 152,467 | 103,956   | 0         | 0         | 0        | 0     | 260,340   | 42.36  | 0.68  | 5.33 | 6,146 |
|            | 5 | 102,161   | 0       | 0         | 0         | 0         | 0        | 0     | 102,161   | 22.17  | 0.0   | 4.00 | 4,608 |
| Totals     |   | 106,078   | 152,467 | 103,956   | 0         | 0         | <u> </u> | 0     | 362,501   |        |       |      |       |
| Peoria     | 6 | 1,035,169 | 0       | 0         | 0         | 0         | 0        | 0     | 1,035,169 | 224.65 | 7.75  | 4.00 | 4,608 |
|            | 5 | 523,838   | 212,564 | 0         | 0         | 0         | 0        | 0     | 736,402   | 150.58 | 34.02 | 4.25 | 4,890 |
| Totals     |   | 1,559,007 | 212,564 | 0         | 0         | 0         | 0        | 0     | 1,771,571 |        |       |      |       |
| Репту      | 6 | 41,184    | 258,409 | 658,334   | 877,852   | 230,789   | 2        | 0     | 2,066,570 | 282.95 | 72.11 | 6.34 | 7,304 |
| ·          | 5 | 287,102   | 24,062  | 0         | 0         | 0         | 0        | 0     | 311,164   | 66.48  | 4.61  | 4.06 | 4,680 |
| Totals     |   | 328,286   | 282,471 | 658,334   | 877,852   | 230,789   | 2        | 0     | 2,377,734 |        |       |      |       |
| Piatt      | 6 | 0         | 0       | 0         | 0         | 0         | 0        | 0     | 0         | 0.0    | 0.0   |      |       |
|            | 5 | 1,036,517 | 0       | 0         | 0         | 0         | 0        | 0     | 1,036,517 | 224.94 | 0.0   | 4.00 | 4,608 |
| Totals     |   | 1,036,517 | 0       | 0         | 0         | 0         | 0        | 0     | 1,036,517 |        |       |      |       |
| Putnam     | 6 | 16,220    | 6,912   | 0         | 0         | 0         | 0        | 0     | 23,132    | 4.72   | 0.0   | 4.25 | 4,901 |
|            | 5 | 0         | 0       | 0         | 0         | 0         | 0        | 0     | 0         | 0.0    | 0.0   |      |       |
| Totals     |   | 16,220    | 6,912   | 0         | 0         | 0         | 0        | 0     | 23,132    |        |       |      |       |

(Concluded on next pages)

|           |              |           |                 |               | <u>_</u>              |            |        |        | c                    |                      |                      | County       | averagest          |
|-----------|--------------|-----------|-----------------|---------------|-----------------------|------------|--------|--------|----------------------|----------------------|----------------------|--------------|--------------------|
|           |              |           |                 | Coal reserves | (thousands of         | f tons) by |        |        |                      | Area of coal         | Arest                | Average      | Av. tons           |
| County    | Coal<br>seam | 4 ft      | 5 ft            | ave<br>6 ft   | age thickness<br>7 ft | 8 ft       | 9 ft   | 10+ ft | Thousands<br>of tons | remaining<br>(sq mi) | mined out<br>(sq mi) | ness<br>(ft) | (in thou<br>sands) |
| Randolph  | 6            | 15.030    | 52.666          | 267.942       | 62.835                | 0          | 0      | 0      | 398,473              | 58.96                | 30.24                | 5.87         | 6.758              |
| ······    | 5            | 105,431   | 6,797           | 0             | 0                     | Ō          | Ō      | ò      | 112,228              | 24.06                | 2.78                 | 4.05         | 4,665              |
| Totals    |              | 120,461   | 59,463          | 267,942       | 62,835                | 0          | 0      | 0      | 510,701              |                      |                      |              |                    |
| Richland  | 6            | 675,791   | 599,156         | 97,498        | 0                     | 0          | 0      | 0      | 1,372,445            | 264.78               | 0.0                  | 4.50         | 5,183              |
|           | 5            | 529,513   | 1,387           | 0             | 0                     | 0          | 0      | 0      | 530,900              | 115.15               | 0.0                  | 4.00         | 4,610              |
| Totals    |              | 1,205,304 | 600,543         | 97,498        | 0                     | 0          | 0      | 0      | 1,903,345            |                      |                      |              |                    |
| St. Clair | 6            | 108,749   | 140,802         | 537,296       | 929,395               | 598,890    | 3,852  | 0      | 2,318,984            | 306.39               | 89.91                | 6.57         | 7,569              |
|           | 5            | 0         | 0               | 0             | 0                     | 0          | 0      | 0      | 0                    | 0.0                  | 0.0                  |              |                    |
| Totals    |              | 108,749   | 140,802         | 537,296       | 929,395               | 598,890    | 3,852  | 0      | 2,318,984            |                      |                      |              |                    |
| Saline    | 6            | 283,558   | 456,883         | 285,839       | 14,363                | 3,176      | 0      | 0      | 1,043,819            | 184.34               | 6.41                 | 4.92         | 5,663              |
|           | 5            | 138,776   | 444,348         | 245,002       | 52,794                | 4,332      | 0      | 0      | 885,252              | 149.72               | 80.80                | 5.13         | 5,913              |
| Totals    |              | 422,334   | 901,231         | 530,841       | 67,157                | 7,508      | 0      | 0      | 1,929,071            |                      |                      |              |                    |
| Sangamon  | 6            | 241,422   | 262,434         | 287,518       | 454,855               | 535,187    | 16,754 | 0      | 1, <b>798,170</b>    | 255.64               | 28.48                | 6.11         | 7,034              |
|           | 5            | 314,194   | 1,564,041       | 1,141,701     | 37,867                | 0          | 0      | 0      | 3,057,803            | 509.59               | 68.18                | 5.21         | 6,000              |
| Totals    |              | 555,616   | 1,826,475       | 1,429,219     | 492,722               | 535,187    | 16,754 | 0      | 4,855,973            |                      |                      |              |                    |
| Schuyler  | 6            | 0         | 0               | 0             | 0                     | 0          | 0      | 0      | 0                    | 0.0                  | 0.0                  |              |                    |
|           | 5            | 0         | 51,667          | 0             | 0                     | 0          | 0      | 0      | 51,667               | 8.97                 | 0.0                  | 5.00         | 5,760              |
| Totals    |              | 0         | 51,667          | 0             | 0                     | 0          | 0      | 0      | 51,667               |                      |                      |              |                    |
| Shelby    | 6            | 395,635   | 174,030         | 259,691       | 655,871               | 458,343    | 7,361  | 0      | 1,950,931            | 285.42               | 2.40                 | 5.93         | 6,835              |
|           | 5            |           | 21,082          | 0             | 0                     | 0          | 0      | 0      | 135,453              | 28.48                | 0.58                 | 4.13         | 4,75 <del>6</del>  |
| Totals    |              | 510,006   | 195,112         | 259,691       | 655,871               | 458,343    | 7,361  | 0      | 2,086,384            |                      |                      |              |                    |
| Stark     | 6            | 440,549   | 0               | 0             | 0                     | 0          | 0      | 0      | 440,549              | 95.61                | 3.28                 | 4.00         | 4,608              |
|           | 5            | 0         | 0               | 0             | 0                     | 0          | 0      | 0      | 0                    | 0.0                  | 0.0                  |              |                    |
| Totals    |              | 440,549   | 0               | 0             | 0                     | 0          | 0      | 0      | 440,549              |                      |                      |              |                    |
| Tazewell  | 6            | 0         | 0               | 0             | 0                     | 0          | 0      | 0      | 0                    | 0.0                  | 0.0                  |              |                    |
|           | 5            | 234,446   | 138,002         | 0             | 0                     | 0          | 0      | 0      | 372,448              | 74.84                | 7.40                 | 4.32         | 4,977              |
| Totals    |              | 234,446   | 138,002         | 0             | ٥                     | 0          | 0      | 0      | 372,448              |                      |                      |              |                    |
| Vermilion | 6            | 299,802   | <b>405,46</b> 1 | 311,510       | 52,871                | 92         | 0      | 0      | 1,069,736            | 187.09               | 36.83                | 4.96         | 5,718              |
|           | 5            | 0         | 0               | 0             | 0                     | 0          | 0      | 0      | 0                    | 0.0                  | 0.0                  |              |                    |
| Totals    |              | 299,802   | 405,461         | 311,510       | 52,871                | 92         | 0      | 0      | 1,069,736            |                      |                      |              |                    |
| Wabash    | 6            | 239,003   | 19,256          | 1,866         | 0                     | 0          | 0      | 0      | 260,125              | 55.48                | 0.0                  | 4.07         | 4,689              |
|           | 5            | 199,304   | 113,251         | 156,803       | 94,336                | 98,427     | 11,923 | 2,419  | 676,463              | 109.34               | 0.0                  | 5.37         | 6,187              |
| Totals    |              | 438,307   | 132,507         | 158,669       | 94,336                | 98,427     | 11,923 | 2,419  | 936,588              |                      |                      |              |                    |

| Washington   | 6<br>5 | 69,942<br>13,948 | 139,937<br>0        | 750,112<br>0 | 1,577,617<br>0 | 972,870<br>0 | 188,570<br>0 | 94,856<br>0 | 3,793,904  | 475.62   | 6.06<br>0.0 | 6.92<br>4.00 | 7,977<br>4,608 |
|--------------|--------|------------------|---------------------|--------------|----------------|--------------|--------------|-------------|------------|----------|-------------|--------------|----------------|
| Totals       | -      | 83,890           | 139,937             | 750,112      | 1,577,617      | 972,870      | 188,570      | 94,856      | 3,807,852  |          | 0.0         | 4.00         | 1,000          |
| Wayne        | 6      | 908,937          | 332,348             | 97,386       | 17,050         | 2,599        | 0            | 0           | 1,358,320  | 271.44   | 0.0         | 4.34         | 5,004          |
|              | 5      | 955,769          | 136,910             | 36,716       | 0              | 0            | 0            | 0           | 1,129,395  | 236.50   | 0.0         | 4.15         | 4,776          |
| Totals       |        | 1,864,706        | 469,258             | 134,102      | 17,050         | 2,599        | 0            | 0           | 2,487,715  |          |             |              |                |
| White        | 6      | 783,839          | 301,534             | 141,587      | 12,177         | 3,871        | 0            | 0           | 1,243,008  | 244.87   | 0.80        | 4.41         | 5,076          |
|              | 5      | 659,803          | 408,607             | 326,317      | 252,175        | 9,401        | 0            | 0           | 1,656,303  | 293.63   | 0.0         | 4.90         | 5,641          |
| Totals       |        | 1,443,642        | 710,141             | 467,904      | 264,352        | 13,272       | 0            | 0           | 2,899,311  |          |             |              |                |
| Williamson   | 6      | 23,395           | 110,063             | 233,194      | 130,795        | 54,525       | 19,803       | 0           | 571,775    | 81.97    | 106.04      | 6.06         | 6,976          |
|              | 5      | 838,513          | 68, <del>6</del> 02 | 0            | 0              | 0            | 0            | 0           | 907,115    | 193.88   | 18.52       | 4.06         | 4,679          |
| Totals       |        | 861,908          | 178,665             | 233,194      | 130,795        | 54,525       | 19,803       | 0           | 1,478,890  |          |             |              |                |
| Seam totals  |        |                  |                     |              |                |              |              |             | •          |          |             |              |                |
| Coal seam    | 6      | 13,300,102       | 12,657,243          | 12,290,311   | 11,586,777     | 7,831,170    | 1,018,906    | 256,668     | 58,941,177 | 9,269.00 | 927.18      | 5.52         | 6,359          |
| Coal seam    | 5      | 20,261,331       | 11,321,567          | 5,572,030    | 806,097        | 249,413      | 24,485       | 9,677       | 38,244,600 | 7,298.91 | 331.18      | 4.55         | 5,240          |
| Seate totals |        | 33,561,433       | 23,978,810          | 17,862,341   | 12,392,874     | 8,080,583    | 1,043,391    | 266,345     | 97,185,777 |          |             |              |                |

\* Does not include coal underlying oil and gas fields.

*†* Refers only to seams more than 42 inches thick.

*‡ Mined-out area reflects all areas mined regardless of seam thickness.* 

# TABLE B-DEMONSTRATED COAL RESERVES\* OF THE UNITED STATES AND ESTIMATED ENERGY POTENTIALS BY STATE

|                | Dem         | onstrated cod                  | al reserves base | 2#         | Coal beat content<br>(Btu) |                                   |                                  |            |  |  |
|----------------|-------------|--------------------------------|------------------|------------|----------------------------|-----------------------------------|----------------------------------|------------|--|--|
|                | Method of   | <u>(million sl</u><br>: mining | hort tons)       | Percentage | -<br>Range**               | Av. heat<br>content<br>value used | Potential<br>energy<br>available | Percentage |  |  |
| State          | Underground | Surface                        | Total            | total      | (Btu/lb)                   | (Btu/lb)                          | (Trillion Btu)                   | total      |  |  |
| Alabama        | 1,798       | 1,184                          | 2,982            | 0.68       | 12,620-14,160              | 13,410                            | 79,977                           | 0.90       |  |  |
| Alaska         | 4,246       | 7,399                          | 11,645           | 2.68       | 9,000-14,500               | 10,000                            | 232,900                          | 2.61       |  |  |
| Arizona        |             | 350                            | 350              | 0.08       | N. A.                      | N. A.                             | N. A.                            | N. A.      |  |  |
| Arkansas       | 402         | 263                            | 665              | 0.15       | 11,910-14,600              | 13,255                            | 17,629                           | 0.20       |  |  |
| Colorado       | 14,000      | 870                            | 14,870           | 3.43       | 9,060-13,680               | 11,370                            | 338,143                          | 3.79       |  |  |
| Georgia        | 1           |                                | 1                | 0.00       |                            |                                   | ,                                |            |  |  |
| Illinois       | 53,442      | 12,223                         | 65,665           | 15.14      | 9,700-12,700               | 11,260                            | 1,478,776                        | 16.59      |  |  |
| Indiana        | 8,949       | 1,674                          | 10,623           | 2.45       | 10,900-11,590              | 11,510                            | 244,541                          | 2.74       |  |  |
| Iowa           | 2,885       |                                | 2,885            | 0.67       | N. A.                      | N. A.                             |                                  |            |  |  |
| Kansas         |             | 1,388                          | 1,388            | 0.32       | 10,500-13,300              | 11,900                            | 33,034                           | 0.37       |  |  |
| Kentucky, East | 9,467       | 3,450                          | 12,917           | 2.98       | 12,300-14,200              | 13,110                            | 338,684                          | 3.80       |  |  |
| Kentucky, West | 8,720       | 3,904                          | 12,624           | 2.90       | 11,930-12,940              | 12,140                            | 306,511                          | 3.43       |  |  |
| Maryland       | 902         | 146                            | 1,048            | 0.24       | 12,890-14,480              | 13,680                            | 28,673                           | 0.32       |  |  |
| Michigan       | 118         | 1                              | 119              | 0.03       | N. A.                      | 11,570                            | 2,753                            | 0.03       |  |  |
| Missouri       | 6,074       | 3,414                          | 9,488            | 2.18       | 10,312-13,485              | 11,000                            | 208,736                          | 2.34       |  |  |
| Montana        | 65,165      | 42,562                         | 107,727          | 24.82      | 5,675-9,500                | 7,587                             | 1,634,649                        | 18.34      |  |  |
| New Mexico     | 2,136       | 2,258                          | 4,394            | 1.01       | 10,150-13,500              | 11,825                            | 103,918                          | 1.16       |  |  |
| North Carolina | 31          | +                              | 31               | 0.01       |                            |                                   | ,                                |            |  |  |
| North Dakota   |             | 16,003                         | 16,003           | 3.69       | 7,004                      | 7,004                             | 224,170                          | 2.51       |  |  |
| Ohio           | 17,423      | 3,654                          | 21,077           | 4.85       | 11,006-12,919              | 12,070                            | 508,726                          | 5.70       |  |  |
| Oklahoma       | 860         | 434                            | 1,294            | 0.29       | 13,500-13,755              | 13,627                            | 35,267                           | 0.39       |  |  |
| Oregon         | 1           | ÷                              | 1                | 0.00       |                            |                                   |                                  |            |  |  |
| Pennsylvania   | 29,819      | 1,181                          | 31,000           | 7.15       | 12,580-14,490              | 13,270                            | 822,740                          | 9.23       |  |  |
| South Dakota   |             | 428                            | 428              | 0.10       |                            |                                   |                                  |            |  |  |
| Tennessee      | 667         | 320                            | 987              | 0.22       | 10,980-14,380              | 13,250                            | 26,155                           | 0.29       |  |  |
| Texas          |             | 3,272                          | 3,272            | 0.75       | 7,800-11,500               | 10,600                            | 69,366                           | 0.77       |  |  |
| Utah           | 3,780       | 262                            | 4,042            | 0.93       | 10,400-13,220              | 11,200                            | 90,540                           | 1.01       |  |  |
| Virginia       | 2,971       | 679                            | 3,650            | 0.84       | 11,170-15,000              | 13,530                            | 98,769                           | 1.11       |  |  |
| Washington     | 1,446       | 508                            | 1,954            | 0.45       | up to 15,000               | 13,000                            | 50,804                           | 0.57       |  |  |
| West Virginia  | 34,378      | 5,212                          | 39,590           | 9.13       | 10,200-15,600              | 13,540                            | 1,072,097                        | 12.02      |  |  |
| Wyoming        | 27,554      | 23,674                         | 51,228           | 11.80      | 7,640-13,110               | 10,375                            | 1,062,981                        | 11.92      |  |  |
| Total          | 297,235     | 136,713                        | 433,948          | 100        | 5,675-15,600               | 10,272                            | 8,915,028                        | 100        |  |  |

(Compiled by Ramesh Malhotra, Illinois State Geological Survey Mineral Economics Group)

\* Demonstrated coal reserves are defined by the U. S. Bureau of Mines as in-place coals, 28 inches or more thick in bituminous coal or anthracite and 60 inches or more thick in sub-bituminous coal or lignite. Maximum depth is 1,000 feet for all except lignite, for which only strippable beds less than 120 feet deep are considered.

*†* Less than 1 million short tons.

Sources of data: (‡) U. S. Bureau of Mines, 1974; ('\*) Library of Congress Congressional Research Service, 1973, Science Policy Research Division.

| County     | Danville<br>(No. 7) | Herrin<br>(No. 6) | Harrisburg-<br>Springfield<br>(No. 5) | Summum<br>(No. 4) | Colchester<br>(No. 2) | De Koven | Davis   | Rock<br>Island<br>(No. 1) | Misc.<br>coals | Total     | Percent<br>s:trippable | Total<br>strippable<br>coal |
|------------|---------------------|-------------------|---------------------------------------|-------------------|-----------------------|----------|---------|---------------------------|----------------|-----------|------------------------|-----------------------------|
|            | ( )                 | (                 | (                                     | ( )               | ( ) )                 |          |         | ( )                       |                |           | 0.0.1                  | (10 (00                     |
| Adams      |                     | 2 451 050         |                                       | 200 0/7           | 624.556               |          |         |                           |                | 624.556   | 99.1                   | 618.690                     |
| Bona       |                     | 2,451.950         |                                       | 299.867           | 2.092                 |          |         |                           | 2.472          | 2,756.381 | 0.0                    | 0.0                         |
| Brown      | 101 110             | ( 15 00 (         |                                       |                   | 385.672               |          |         |                           |                | 385.672   | 100.0                  | 385.672                     |
| Bureau     | 424.110             | 645.286           |                                       |                   | 1,221.789             |          |         |                           |                | 2,291.185 | 19.6                   | 448.260                     |
| Calnoun    |                     |                   |                                       |                   | 15.015                |          |         |                           |                | 15.015    | 100.0                  | 15.015                      |
| Cass       |                     | 101 001           | 104.933                               |                   | 452.957               |          |         |                           |                | 557.890   | 43.9                   | 244.903                     |
| Champaign  |                     | 181.884           |                                       |                   |                       |          |         |                           |                | 181.884   | 0.0                    | 0.0                         |
| Christian  | 61.454              | 3,429.950         | 1,336.120                             |                   |                       |          |         |                           | 86.660         | 4,914.180 | 0.0                    | 0.0                         |
| Clark      | 316.655             | 11.848            | 511.149                               |                   |                       |          |         |                           | 379.885        | 1,219.537 | 0.0                    | 0.0                         |
| Clay       |                     | 916.819           | 702.311                               |                   |                       |          |         |                           |                | 1,619.130 | 0.0                    | 0.0                         |
| Clinton    |                     | 3,233.922         |                                       | 552.248           |                       |          |         |                           |                | 3,786.170 | 0.0                    | 0.0                         |
| Coles      | 312.112             | 153.769           | 44.046                                |                   |                       |          |         |                           |                | 509.927   | 0.0                    | 0.0                         |
| Crawford   | 211.152             | 571.817           | 929.166                               |                   |                       |          |         |                           | 736.948        | 2,449.083 | 1.8                    | 43.162                      |
| Cumberland |                     | 162.249           | 171.260                               |                   |                       |          |         |                           | 3.845          | 337.354   | 0.7                    | 2.385                       |
| De Witt    |                     |                   | 173.619                               |                   |                       |          |         |                           |                | 173.619   | 0.0                    | 0.0                         |
| Douglas    |                     | 698.279           | 11.011                                |                   |                       |          |         |                           | 10.063         | 719.353   | 0.0                    | 0.0                         |
| Edgar      | 950.564             | 721.363           | 441.259                               |                   |                       |          |         |                           | 878.903        | 2,992.089 | 0.0                    | 0.0                         |
| Edwards    |                     | 684.316           | 1,031.565                             |                   |                       |          |         |                           |                | 1,715.881 | 0.0                    | 0.0                         |
| Effingham  |                     | 622.072           | 1,164.351                             |                   |                       |          |         |                           | 1.248          | 1,787.671 | 0.1                    | 1.248                       |
| Fayette    | 296.023             | 2,773.953         | 159.646                               |                   |                       |          |         |                           | 0.595          | 3,231.617 | 0.1                    | 1.995                       |
| Franklin   |                     | 1,932.538         | 1,977.950                             |                   |                       | 362.147  | 507.878 |                           | 64.989         | 4,845.492 | 0.1                    | 2.949                       |
| Fulton     | 58.882              | 242.309           | 630.310                               | 5.448             | 1,293.242             |          |         | 5.266                     |                | 2,235.457 | 86.2                   | 1,926.658                   |
| Gallatin   |                     | 1,311.641         | 1,298.862                             |                   |                       | 650.600  | 856.675 |                           | 6.836          | 4,124.613 | 5.6                    | 229.238                     |
| Greene     |                     | 97.274            |                                       | 25.199            | 583.351               |          |         |                           |                | 705.824   | 84.7                   | 597.777                     |
| Grundy     |                     |                   |                                       | 32.912            | 843.040               |          |         |                           |                | 875.952   | 39.3                   | 344.214                     |
| Hamilton   |                     | 2,611.967         | 2,192.953                             |                   |                       | 3.557    | 5.336   |                           |                | 4.813.809 | 0.0                    | 0.0                         |
| Hancock    |                     |                   | ŕ                                     |                   | 54.299                |          |         |                           |                | 54.299    | 54.9                   | 29.829                      |
| Hardin     |                     |                   |                                       |                   |                       | 1.177    | 2.421   |                           |                | 3.598     | 0.0                    | 0.0                         |
| Henderson  |                     |                   |                                       |                   | 53.111                |          |         |                           |                | 53.111    | 100.0                  | 53,111                      |
| Henry      | 58.878              | 260.289           |                                       |                   | 668.819               |          |         | 16.374                    |                | 1.004.359 | 56.1                   | 563.665                     |
| Jackson    |                     | 204.036           | 216.742                               |                   |                       |          |         |                           | 265.346        | 686.124   | 54.1                   | 371.489                     |
| Jasper     |                     | 1.861.661         | 1,415.200                             |                   |                       |          |         |                           |                | 3.276.861 | 0.0                    | 0.0                         |
| Jefferson  | -                   | 2,699.818         | 2,442.508                             |                   |                       |          |         |                           | 23.842         | 5,166 164 | 0.5                    | 23 842                      |
| Jersev     | 10.482              | 71.256            | ,                                     |                   | 197.747               |          |         |                           | 201012         | 279 485   | 78.9                   | 220 461                     |
| Kankakee   | 10000               |                   |                                       | 35.845            | 83,903                |          |         |                           |                | 110 748   | 10.9                   | 220.401                     |

# TABLE C-REMAINING COAL RESERVES IN ILLINOIS, BY COUNTY AND COAL SEAM, JANUARY 1975\*

(in millions of tons)

| County      | Danville<br>(No. 7) | Herrin<br>(No. 6) | Harrisburg-<br>Springfield<br>(No. 5) | Summum<br>(No. 4) | Colchester<br>(No. 2) | De Koven | Davis     | Rock<br>Island<br>(No. 1) | Misc.<br>coals | Total     | Percent<br>strippable | Total<br>strippable<br>coal |
|-------------|---------------------|-------------------|---------------------------------------|-------------------|-----------------------|----------|-----------|---------------------------|----------------|-----------|-----------------------|-----------------------------|
| Knox        | 2.523               | 214.221           | 643.471                               |                   | 803.634               |          |           | 57.526                    |                | 1,721.375 | 89.2                  | 1,535.181                   |
| La Salle    | 489.782             | 217.016           |                                       |                   | 1,430.898             |          |           |                           |                | 2,137.696 | 13.1                  | 280.404                     |
| Lawrence    | 223.427             | 1,186.698         | 985.024                               |                   |                       |          |           |                           | 424.738        | 2,950.929 | 0.0                   | 0.0                         |
| Livingston  | 257.569             | 354.555           |                                       | 16.060            | 2,351.608             |          |           |                           |                | 2,979.792 | 1.7                   | 49.226                      |
| Logan       |                     |                   | 2,588.664                             |                   |                       |          |           |                           |                | 2,588.664 | 0.0                   | 0.0                         |
| McDonough   |                     |                   |                                       |                   | 584.320               |          |           |                           |                | 584.320   | 100.0                 | 584.320                     |
| McLean      | 603.370             |                   | 316.337                               |                   | 296.406               |          |           |                           |                | 1,216.113 | 0.0                   | 0.0                         |
| Macon       |                     | 162.928           | 1,689.960                             |                   |                       |          |           |                           |                | 1,852.888 | 0.0                   | 0.0                         |
| Macoupin    | 15.510              | 3,932.400         |                                       | 75.354            | 1,657.211             |          | 126.363   |                           | 697.334        | 6,504.160 | 4.2                   | 275.605                     |
| Madison     |                     | 1,917.752         |                                       |                   | 660.361               |          | 4.675     |                           | 8.015          | 2,590.802 | 23.8                  | 615.350                     |
| Marion      |                     | 1,216.002         | 748.495                               |                   |                       |          |           |                           |                | 1,964.497 | 0.0                   | 0.0                         |
| Marshall    | 337.381             | 9.749             |                                       |                   | 858.033               |          |           |                           |                | 1,205.163 | 9.6                   | 116.023                     |
| Mason       |                     |                   | 23.271                                |                   |                       |          |           |                           |                | 23.271    | 0.0                   | 0.0                         |
| Menard      |                     |                   | 1,598.550                             |                   | 23.775                |          |           |                           |                | 1,622.325 | 33.7                  | 545.943                     |
| Mercer      |                     |                   |                                       |                   | 17.859                |          |           | 53.959                    |                | 71.818    | 96.1                  | 69.024                      |
| Monroe      |                     | 6.726             |                                       |                   |                       |          |           |                           |                | 6.726     | 100.0                 | 6.726                       |
| Montgomery  | 24.972              | 3,721.394         |                                       | 609.721           | 558.844               |          | 133.353   |                           | 513.415        | 5,561.691 | 0.0                   | 0.0                         |
| Morgan      |                     | 621.585           | 18.021                                | 22.531            | 1,322.351             |          |           |                           |                | 1,984.488 | 41.7                  | 827.534                     |
| Moultrie    |                     | 355.524           |                                       |                   |                       |          |           |                           |                | 355.524   | 0.0                   | 0.0                         |
| Peoria      | 282.537             | 1,044.423         | 1,189.911                             |                   | 429.868               |          |           |                           |                | 2,946.739 | 72.6                  | 2,138.070                   |
| Perry       |                     | 2,107.053         | 400.565                               |                   |                       |          |           |                           |                | 2,507.618 | 35.3                  | 885.104                     |
| Piatt       |                     |                   | 10.698                                |                   |                       |          |           |                           |                | 10.698    | 0.0                   | 0.0                         |
| Pike        |                     |                   |                                       |                   | 144.401               |          |           |                           |                | 144.401   | 100.0                 | 144.401                     |
| Putnam      | 197.035             | 78.676            |                                       |                   | 467.893               |          |           |                           |                | 743.604   | 0.0                   | 0.0                         |
| Randolph    |                     | 424.499           | 171.947                               |                   |                       |          |           |                           |                | 596.396   | 64.4                  | 384.323                     |
| Richland    |                     | 1,191.832         | 932.509                               |                   |                       |          |           |                           | 5.192          | 2,129.533 | 0.2                   | 5.192                       |
| Rock Island |                     |                   |                                       |                   |                       |          |           | 62.133                    |                | 62.133    | 67.6                  | 42.000                      |
| St. Clair   |                     | 2,278.792         |                                       | 621.565           |                       |          |           |                           |                | 2,900.357 | 36.2                  | 1,048.720                   |
| Saline      | 78.422              | 1,327.901         | 917.924                               | 6.885             | 7.768                 | 691.250  | 1,133.060 |                           | 3.178          | 4,166.387 | 11.8                  | 491.469                     |
| Sangamon    |                     | 2,139.717         | 3,324.204                             |                   | 280.804               |          |           |                           | 4.086          | 5,748.801 | 7.3                   | 418.366                     |
| Schuyler    |                     |                   | 113.394                               |                   | 597.672               |          |           |                           |                | 711.066   | 100.0                 | 711.066                     |
| Scott       |                     | 6.120             |                                       |                   | 249.499               |          |           |                           |                | 255.619   | 88.7                  | 226.609                     |
| Shelby      | 125.267             | 1,183.577         | 304.861                               |                   |                       |          |           |                           | 90.945         | 1,704.650 | 5.0                   | 84.570                      |
| Stark       | 57.703              | 427.678           |                                       |                   | 25.781                |          |           |                           |                | 511.162   | 100.0                 | 511.124                     |
| Tazewell    | 4.152               | 69.686            | 129.019                               |                   | 202.528               |          |           |                           |                | 405.385   | 37.0                  | 150.005                     |

(Concluded on next page)

| County                 | Danville<br>(No. 7) | Herrin<br>(No. 6) | Harrisburg-<br>Springfield<br>(No. 5) | Summum<br>(No. 4) | Colchester<br>(No. 2) | De Koven  | Davis     | Rock<br>Island<br>(No. 1) | Misc.<br>coals | Total            | Percent<br>strippabl | Total<br>strippable<br>e coal |
|------------------------|---------------------|-------------------|---------------------------------------|-------------------|-----------------------|-----------|-----------|---------------------------|----------------|------------------|----------------------|-------------------------------|
| Vermilion              | 1 677 961           | 698.070           |                                       |                   |                       |           |           |                           | 44.521         | 2.420.552        | 8.7                  | 209.980†                      |
| Wabash                 | 1,077.901           | 575.908           | 880.457                               |                   |                       |           |           |                           | 158.473        | 1.614.838        | 9.8                  | 158.473                       |
| Warren                 |                     |                   | 0.807                                 |                   | 415.271               |           |           | 38.928                    |                | 455.006          | 88.5                 | 402.593                       |
| Washington             |                     | 3,461.731         |                                       | 650.598           |                       |           |           |                           |                | 4,112.328        | 0.0                  | 0.0                           |
| Wayne                  |                     | 2,349.795         | 2,275.301                             |                   |                       |           |           |                           |                | 4,625.094        | 0.0                  | 0.0                           |
| White                  |                     | 2,364.131         | 2,248.345                             |                   |                       | 13.823    | 17.204    |                           |                | 4,643.496        | 0.0                  | 0.0                           |
| Will                   |                     |                   |                                       |                   | 9.460                 |           |           |                           |                | 9.460            | 100.0                | 9.460                         |
| Williamson             | 57.022              | 634.708           | 910.562                               | 2.648             |                       | 742.119   | 615.894   |                           | 188.386        | 3,151.337        | 17.9                 | 564.069                       |
| Woodford               | <u>38.560</u>       |                   | <u>144.770</u>                        |                   | <u>990.850</u>        |           |           |                           |                | <u>1,174.180</u> | 0.0                  | 0.0                           |
| Total                  | 7,173.473           | 64,832.960        | 39,347.823                            | 3,075.118         | 20,866.625            | 2,464.672 | 3,402.857 | 1,225.322                 | 4,599.915      | 146,988.765      | 13.4                 | 19,637.689                    |
| Additions to reservest |                     | 3,558.602         | <u>11,098.763</u>                     |                   |                       |           |           |                           |                | 14,657.365       |                      |                               |
| Revised total          | 7,173.473           | 68,391.562        | 50,446.586                            | 3,075.118         | 20,866.625            | 2,464.672 | 3,402,857 | 1,225.322                 | 4,599.915      | 161,646.130      | 12.1                 | 19,637.689                    |

TABLE C-Concluded

\* Totals include coal seams 28 inches or more thick in all cases of reliability, as defined in this report and previous Illinois State Geological Survey publications. Strippable coals include coals 18 inches or more thick under 150 feet or less overburden.

*†* These additions reflect new reserves of coal identified in the remapping of the coal seams in this study.

‡ Not based on detailed study.

|            | Reservoir | Pool    |         | Storage        | Watershed    | Net    |
|------------|-----------|---------|---------|----------------|--------------|--------|
| Country    | site      | area    | Storage | (million       | area         | yield* |
|            | по.       | (acre)  | (ac-1t) | gai)           | (sq mi)      | (mga)  |
| Adams      | 12        | 1,980   | 42,900  | 14,000         | 34.7         | 7.3    |
| Adams      | 13        | 3,250   | 69,300  | 22,600         | 206.0        | 22.2   |
| Adams      | 26        | 25,885  | 906,010 | 295,178        | 346.9        | 91.4   |
| Adams      | 26A       | 15,288  | 433,156 | 141,122        | 346.9        | 76.4   |
| Adams      | 27        | 3,813   | 63,558  | 20,707         | 103.5        | 15.0   |
| Alexander  | 2A        | 1,363   | 38,164  | 12,434         | 25.8         | 12.4   |
| Bond       | 8         | 12,000  | 204,000 | 66,463         | 471.7        | 60.9   |
| Bond       | 11        | 6,850   | 134,000 | 43,657         | 297.0        | 38.8   |
| Boone      | 3         | 1,040   | 15,600  | 5,082          | 69.0         | 12.2   |
| Brown      | 14A       | 1,344   | 53,760  | 17,515         | 30.6         | 8.2    |
| Brown      | 15        | 6,100   | 164,700 | 53,700         | 324.0        | 48.6   |
| Brown      | 18        | 1,324   | 35,307  | 11,503         | 37.2         | 6.9    |
| Bureau     | 2         | 1,060   | 12,370  | 4,020          | 98.0         | 7.2    |
| Bureau     | 3         | 973     | 17,800  | 5,800          | 85.4         | 10.0   |
| Bureau     | 4         | 1,730   | 34,600  | 11,260         | 186.6        | 17.2   |
| Carroll    | 1.        | 2.138   | 57.000  | 18.600         | 35.1         | 11.7   |
| Carroll    | 2         | 2.310   | 50,100  | 16,300         | 57.0         | 13.3   |
| Carroll    | 6         | 9.646   | 212.212 | 69,139         | 157.8        | 41.3   |
| Christian  | 13        | 2,195   | 29.267  | 9 535          | 83.1         | 6.8    |
| Christian  | 14        | 6.466   | 64.659  | 21.066         | 247.3        | 17.6   |
| Christian  | 15        | 3 814   | 50,853  | 16 568         | 97.5         | 10.9   |
| Clark      | 2         | 1410    | 28 200  | 9 185          | 48.0         | 63     |
| Clark      | 2<br>0    | 1,410   | 30,980  | 10,090         | 40.0<br>80.0 | 7.2    |
| Clark      | 9A        | 2.320   | 50,267  | 16 377         | 80.0         | 14.0   |
| Clark      | 18        | 2,403   | 36.045  | 11 743         | 85.0         | 11.5   |
| Clark      | 10        | 1 1 3 8 | 24 657  | 8 033          | 25.1         | 6.6    |
| Clay       | 19        | 12 000  | 160,000 | 52 130         | 472.0        | 46.2   |
| Clay       | 3         | 2,000   | 28 700  | 9 3 5 0        | 50.0         | 6.8    |
| Clay       | 11        | 13 500  | 230,800 | 75 195         | 661.0        | 68.5   |
| Clinton    | 10        | 3 060   | 21 420  | 6 979          | 131.0        | 93     |
| Clinton    | 10        | 4 054   | 40,540  | 12 208         | 140.1        | 7.1    |
| Coles      | 13        | 3 100   | 40,340  | 15,208         | 303.0        | 15.5   |
| Coles      | 1         | 1,050   | 24,800  | 8,080<br>6,000 | 303.0        | 15.5   |
| Coles      | 2A<br>9   | 2 700   | 21,180  | 0,900          | 30.0         | 0.3    |
| Coles      | 0<br>14   | 5,700   | 71,300  | 25,290         | 015.0        | 10.4   |
| Coles      | 14        | 10,700  | 170.057 | 152,429        | )15.0        | 47.5   |
| Coles      | 14A       | 18,500  | 470,957 | 153,438        | 915.0        | 1//.1  |
| Coles      | 15        | 2,207   | 20,599  | 0,/11          | 526.5        | 14.0   |
| Coles      | 10        | 5,008   | 40,348  | 13,145         | 500.9        | 21.4   |
| Coles      | 17        | 5,443   | 08,945  | 12,402         | 24.0         | 52.2   |
| Crawlord   | 15        | 2,408   | 40,117  | 13,070         | 34.9         | 0.0    |
| Crawford   | 18        | 3,229   | 41,977  | 13,676         | 30.3         | 8.0    |
| Cumberland |           | 2,059   | 37,748  | 12,298         | 32.0         | 8.9    |
| Cumberland | 5         | 2,470   | 54,340  | 17,700         | 32.0         | 9.5    |
| Cumberland | 8A        | 1,612   | 26,867  | 8,753          | 62.0         | 8.2    |
| Cumberland | 12A       | 1,922   | 32,033  | 10,436         | 55.0         | 9.1    |
| Cumberland | 19        | 2,922   | 38,960  | 12,693         | 134.8        | 13.4   |
| Cumberland | 19A       | 6,466   | 129,320 | 42,132         | 134.8        | 34.8   |
| Cumberland | 20        | 2,142   | 34,272  | 11,166         | 58.3         | 9.6    |
| Cumberland | 20A       | 3,764   | 85,317  | 27,796         | 58.3         | 18.3   |
| De Witt    | 3         | 2,682   | 5,000   | 16,300         | 118.4        | 18.0   |

# TABLE D-POTENTIAL RESERVOIRS IN ILLINOIS

| Consta    | Reservoir<br>site | Pool<br>area   | Storage | Storage<br>(million | Watershed<br>area | Net<br>yield* |
|-----------|-------------------|----------------|---------|---------------------|-------------------|---------------|
| County    | no.               | (acre)         | (ac-II) | gai)                | (sqm1)            | (mga)         |
| De Witt   | 8                 | 5,000          | 76,750  | 25,005              | 298.3             | 62.5          |
| De Witt   | 9                 | 2,677          | 31,232  | 10,175              | 227.4             | 16.3          |
| Edgar     | 2                 | 2,000          | 58,000  | 15,640              | 145.0             | 13.8          |
| Effingham | 9                 | 10,616         | 212,320 | 69,174              | 218.8             | 48.1          |
| Effingham | 10                | 9,372          | 124,960 | 40,712              | 554.1             | 41.2          |
| Fayette   | 9                 | 5,100          | 136.000 | 44.309              | 91.1              | 26.6          |
| Favette   | 10                | 4.341          | 86.820  | 28.286              | 119.0             | 21.9          |
| Favette   | 11                | 1,930          | 32,167  | 10,480              | 47.7              | 8.7           |
| Favette   | 12                | 3,394          | 67,880  | 22 115              | 44 4              | 14.6          |
| Favette   | 13                | 4.732          | 94,640  | 30.834              | 84.8              | 18.2          |
| Envette   | 14                | 3.047          | 78.040  | 25,718              | 02.0              | 10.1          |
| Fayette   | 14                | 1 160          | 100,000 | 25,718              | 93.9              | 19.1          |
| Fayette   | 15                | 2,000          | 86,000  | 28,010              | 84.0<br>81.0      | 20.4          |
| Fayette   | 16                | 5,900          | 128 242 | 28,019              | 81.0              | 17.0          |
| Fayette   | 10A<br>16P        | 2,929<br>2,000 | 130,343 | 45,072              | 0U.2              | 24.3<br>11.7  |
|           | 10B               | 2,998          | 49,967  | 10,279              | 80.2              | 11./          |
| Franklin  | 4A                | 2,014          | 26,853  | 8,749               | 20.8              | 7.2           |
| Fulton    | 5                 | 1,100          | 29,300  | 9,500               | 32.1              | 8.4           |
| Fulton    | 13                | 2,110          | 35,200  | 11,500              | 91.2              | 13.9          |
| Fulton    | 14A               | 1,753          | 35,060  | 11,423              | 50.8              | 12.5          |
| Fulton    | 31                | 1,024          | 27,307  | 8,897               | 27.8              | 7.9           |
| Fulton    | 32                | 8,911          | 237,627 | 77,419              | 292.9             | 78.0          |
| Fulton    | 35                | 1,825          | 24,333  | 7,928               | 55.4              | 9.2           |
| Fulton    | 35A               | 4,356          | 101,639 | 33,114              | 55.4              | 18.9          |
| Fulton    | 36                | 11,746         | 234,920 | 76,437              | 1,846.5           | 185.6         |
| Fulton    | 36A               | 22,926         | 840,620 | 273,873             | 1,846.5           | 372.4         |
| Gallatin  | 1                 | 5,920          | 39,467  | 12,860              | 417.0             | 22.2          |
| Gallatin  | 1A                | 7,007          | 46,713  | 15,219              | 417.0             | 20.3          |
| Gallatin  | 1B                | 27,510         | 275,100 | 89,644              | 417.0             | 78.0          |
| Gallatin  | 1C                | 14,404         | 144,040 | 46,938              | 417.0             | 50.0          |
| Gallatin  | 5                 | 2,250          | 42,500  | 13,849              | 16.6              | 6.7           |
| Greene    | 16                | 4.344          | 75 296  | 24 531              | 146 3             | 13.8          |
| Greene    | 26                | 7 808          | 140 544 | 45 789              | 278.0             | 34.9          |
| Greene    | 17                | 15 858         | 343 590 | 111 942             | 367.3             | 48.5          |
| Hancock   | 11                | 1 920          | 30,100  | 9 800               | 61.2              | 87            |
| Hancock   | 12                | 7 040          | 129,000 | 42,000              | 285.0             | 41.0          |
| Hancock   | 22                | 2 5 2 1        | 129,000 | 16,060              | 205.0             | 11.0          |
| Hancock   | 32                | 3,521          | 49,294  | 16,060              | 80.2              | 11.4          |
| Hancock   | 33                | 2,726          | 49,977  | 16,282              | 82.0              | 14.6          |
| Hancock   | 34                | 1,629          | 21,720  | /,0/6               | 84.2              | 8.3           |
| Hancock   | 36                | 1,236          | 26,780  | 8,725               | 37.3              | /.6           |
| Hardin    | IA                | 1,361          | 32,664  | 10,642              | 10.4              | 6.3           |
| Hardin    | 5                 | 1,830          | 36,600  | 11,926              | 39.0              | 12.5          |
| Hardin    | 5A                | 2,711          | 63,257  | 20,609              | 36.9              | 15.9          |
| Henry     | 16                | 2,010          | 20,100  | 6,549               | 57.3              | 10.2          |
| Jasper    | 8                 | 1,750          | 26,200  | 8,536               | 46.9              | 6.5           |
| Jasper    | 11                | 2,345          | 31,267  | 10,187              | 59.3              | 8.7           |
| Jasper    | 12                | 2,810          | 37,467  | 12,207              | 75.7              | 9.2           |
| Jefferson | 1A                | 5,795          | 115,900 | 37,760              | 42.0              | 15.0          |
| Jefferson | 1B                | 3,904          | 65,067  | 21.199              | 42.0              | 11.6          |
| Jefferson | 1C                | 2,403          | 32,040  | 10,439              | 42.0              | 7.8           |
| Jefferson | 2                 | 4.224          | 77.400  | 25.234              | 47.9              | 18.0          |

TABLE D-Continued

| County     | Reservoir<br>site<br>no. | Pool<br>area<br>(acre) | Storage<br>(ac-ft) | Storage<br>(million<br>gal) | Watershed<br>area<br>(sq mi) | Net<br>yield*<br>(mgd)   |
|------------|--------------------------|------------------------|--------------------|-----------------------------|------------------------------|--------------------------|
| Iefferson  | 3                        | 3 846                  | 66 664             | 21 723                      | 48.0                         | 17.5                     |
| Jefferson  | 8                        | 6 6 5 5                | 133 100            | 43 364                      | 46.8                         | 19.7                     |
| Jefferson  | 84                       | 2 537                  | 33 827             | 11 021                      | 46.8                         | 0.1                      |
| Jefferson  | 0                        | 5 279                  | 114 378            | 37 264                      | 38 /                         | 17.0                     |
| Jefferson  | 94                       | 2,215                  | 33 225             | 10 825                      | 38.4                         | 9.2                      |
| Jefferson  | 10                       | 0.720                  | 194 780            | 62 450                      | 50.7                         | 22 1                     |
| Jefferson  | 10                       | 9,739                  | 71 173             | 03,439                      | 50.2                         | 15.0                     |
| Jefferson  | 10A<br>10B               | 3,338                  | 50 227             | 25,166                      | 50.2                         | 12.0                     |
| Jersey     | 7                        | 2 580                  | 68 800             | 22 410                      | 83.0                         | 12.3                     |
| Jersey     | 0                        | 1 980                  | 49,500             | 16 130                      | 40.8                         | 6.5                      |
|            | 9                        | 1,500                  | 47,500             | 5 800                       | 40.8                         | 0.5                      |
| Jo Daviess | 2                        | 662                    | 17,700             | 5,800                       | 20.6                         | 6.0                      |
| Jo Daviess | 5                        | 810                    | 26,400             | 8,600                       | 17.1                         | 6.1                      |
| Jo Daviess | 9                        | 8//                    | 18,400             | 6,000                       | 25.2                         | 1.2                      |
| Jo Daviess | 10                       | 66/                    | 17,787             | 5,795                       | 20.4                         | 6.4                      |
| Johnson    | 2                        | 2,900                  | 20,300             | 6,615                       | 40.0                         | 7.6                      |
| Johnson    | 2A .                     | 3,773                  | 50,307             | 16,390                      | 37.9                         | 15.9                     |
| Johnson    | 6A                       | 1,981                  | 33,017             | 10,757                      | 21.7                         | 9.2                      |
| Johnson    | 11                       | 8,883                  | 118,440            | 38,587                      | 113.3                        | 35.7                     |
| Johnson    | 12                       | 1,402                  | 46,733             | 15,226                      | 269.9                        | 31.6                     |
| Knox       | 4A                       | 1,873                  | 31,217             | 10,170                      | 26.1                         | 7.2                      |
| Knox       | 20                       | 1,697                  | 22,627             | 7,372                       | 46.2                         | 8.1                      |
| Knox       | 21                       | 2,207                  | 44,140             | 14,381                      | 36.3                         | 9.9                      |
| Knox       | 22                       | 2,201                  | 29,347             | 9,561                       | 67.9                         | 10.7                     |
| Knox       | 23                       | 1,324                  | 26,480             | 8,627                       | 24.9                         | 7.0                      |
| Knox       | 24                       | 1,435                  | 35,875             | 11,688                      | 28.5                         | 8.4                      |
| Knox       | 26                       | 1,069                  | 23,162             | 7,546                       | 25.6                         | 6.7                      |
| La Salle   | 5                        | 698                    | 20,900             | 6,800                       | 123.0                        | 7.7                      |
| La Salle   | 11                       | 763                    | 13,995             | 4,560                       | 241.3                        | 9.6                      |
| Livingston | 6                        | 2.805                  | 37.400             | 12.185                      | 1,071.1                      | 24.3                     |
| Logan      | 7                        | 2,001                  | 21,344             | 6,954                       | 316.0                        | 21.5                     |
| Logan      | 74                       | 3 678                  | 51 492             | 16 776                      | 316.0                        | 36.3                     |
| McDonough  | 13                       | 1 170                  | 21,060             | 6 900                       | 41 1                         | 62                       |
| McDonough  | 14                       | 2 148                  | 35,800             | 11 664                      | 67.9                         | 11.3                     |
| McDonough  | 15                       | 1 344                  | 29,120             | 9 487                       | 60.6                         | 10.1                     |
| McHenry    | 2                        | 1,280                  | 8.960              | 2,919                       | 21.6                         | 7.3                      |
| McLean     | 10                       | 1,200                  | 30,130             | 12 748                      | 37 /                         | 8.8                      |
| Macoupin   | 27                       | 2 871                  | 38 270             | 12,740                      | 210.8                        | 13 /                     |
| Macoupin   | 27                       | 10.833                 | 216 660            | 70 588                      | 210.8                        | 13. <del>4</del><br>28.2 |
| Macoupin   | 27.5                     | 11 850                 | 213,000            | 60 546                      | 400.0                        | 53.8                     |
| Madison    | 154                      | 4 026                  | 45 628             | 14 866                      | 112.2                        | 12.8                     |
| Madison    | 17                       | 4,020                  | 122.080            | 20.774                      | 102.5                        | 10.5                     |
| Madison    | 17                       | 4,378                  | 122,080            | 39,774                      | 105.5                        | 19.5                     |
| Madison    | 19                       | 4,020                  | 80,700<br>41,678   | 28,200                      | 109.4<br>85.0                | 17.0                     |
| Marian     | 20                       | 3,200                  | 41,078             | 13,579                      | 83.9<br>06.1                 | 11.0                     |
| Marion     | 13                       | 10 550                 | 170.400            | 59 440                      | 210.0                        | 14.5                     |
|            | 14                       | 2 0 1 7                | 179,400            | 30,449                      | 210.0                        | 40.0                     |
| Marion     | 15                       | 3,017                  | 36,204             | 11,795                      | 90.6                         | 9.6                      |
| Marshall   | 14                       | 941                    | 21,957             | 7,154                       | 33.4                         | 6.1                      |
| Marshall   | 15                       | 3,256                  | 113,960            | 37,128                      | 127.1                        | 27.2                     |
| Menard     | 1                        | 1,382                  | 31,315             | 10,200                      | 38.8                         | 7.1                      |
| Menard     | 1A                       | 2,296                  | 52,808             | 17,205                      | 51.6                         | 11.0                     |

TABLE D-Continued

| Menard         1B         2,751         73,360         38,573         51.3         12.1           Mercer         1         804         16,100         5.200         31.6         6.7           Mercer         2         2,496         49,900         16,300         54.0         15.3           Mercer         12         1,158         15,800         5,100         35.8         6.8           Mercer         13         5,000         116,700         38,000         92.5         29.2           Monroe         4         2,562         51,240         16,694         36.1         9.8           Monroe         9         5,941         79,213         25,808         164.8         23.8           Montgomery         10         9,859         177,460         57,816         32.6.5         48.5           Montgomery         14         2,571         35.994         11,727         62.6         8.3           Morgan         6         2,123         37,525         12,200         104.4         9.0           Morgan         2         2,680         24,400         9,254         48.0         8.5           Perry         12         4,855         64                                                                                                                                                 | County     | Reservoir<br>site<br>no. | Pool<br>area<br>(acre) | Storage<br>(ac-ft) | Storage<br>(million<br>gal) | Watershed<br>area<br>(sq mi) | Net<br>yield*<br>(mgd) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------|------------------------|--------------------|-----------------------------|------------------------------|------------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Menard     | 1R                       | 2 751                  | 73 360             | 38 573                      | 51.3                         | 12.1                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mercer     | 1                        | 2,701                  | 16,100             | 5,200                       | 31.6                         | 67                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mercer     | 2                        | 2 4 9 6                | 49 900             | 16 300                      | 54.0                         | 15.3                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marcar     | 11                       | 2,470                  | 2 420              | 788                         | 37                           | 6.0                    |
| Mercer         12         1120         12000         116,000         21,100         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000         20,000 | Mercer     | 12                       | 1 1 1 5 8              | 15 800             | 5 100                       | 35.8                         | 6.8                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Moreor     | 12                       | 5 000                  | 116 700            | 3,100                       | 02.5                         | 20.2                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monroo     | 13                       | 2 562                  | 51 240             | 16 604                      | 92.5                         | 29.2                   |
| Monroe         9         2,9,05         7,5,010         24,050         50.2         14.4           Monroe         9         5,941         79,213         25,808         164.8         23.8           Montgomery         10         9,859         177,460         57,816         326.5         48.5           Montgomery         14         2,571         35,994         11,727         62.6         8.3           Morgan         20         5,619         112,380         36,613         159.6         19.0           Peoria         3         1,062         27,612         9,000         42.7         7.8           Peoria         20         3,155         90,422         29,500         61.3         19.2           Perry         2         2,080         28,400         9,254         48.0         8.5           Perry         12         4,855         64,733         21,090         45.9         13.1           Perry         13         9,055         120,733         39,335         99.0         25.4           Perry         14         5,729         76,387         24,887         107.2         20.5           Pike         2         4,950         <                                                                                                                                             | Monroe     | 4A<br>0                  | 2,302                  | 51,240<br>75 616   | 10,094                      | 56.2                         | 9.0                    |
| Montgomery         10         9, 5, 941         79, 213         25, 803         164, 8         25, 8           Montgomery         10A         17, 555         403, 765         131, 547         331, 6         61, 3           Mortgomery         14         2, 571         35, 994         11, 727         62, 6         8, 3           Morgan         6         2, 125         37, 525         12, 200         104, 4         9, 0           Morgan         20         5, 619         112, 380         36, 613         159, 6         19, 0           Peoria         20         3, 155         90, 422         29, 500         61, 3         19, 2           Perry         2         2, 080         28, 400         9, 254         48, 0         8, 5           Perry         13         9, 055         120, 733         39, 335         99, 0         25, 4           Perry         14         5, 729         76, 387         24, 887         109, 21, 5         21, 5           Pike         2         4, 950         132, 000         43, 000         92, 0         21, 6           Pike         24         4, 150         166, 000         54, 083         50, 2         26, 4                                                                                                                         | Mannaa     | 0                        | 2,303                  | 75,010             | 24,030                      | 50.2                         | 14.4                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Montgomery | 9                        | 5,941                  | 19,213             | 25,808                      | 104.8                        | 23.8<br>49.5           |
| Montgomery         10A         17,555         403,765         131,547         331.6         61.3           Montgomery         14         2,571         35,994         11,727         62.6         8.3           Morgan         20         5,619         112,380         36,613         159.6         19.0           Peoria         3         1,062         27,612         9,000         42.7         7.8           Peoria         20         3,155         90,422         29,500         61.3         19.2           Perry         2         2,080         28,400         9,254         48.0         8.5           Perry         13         9,055         120,733         39,335         99.0         25.4           Perry         13         9,055         120,733         39,335         99.0         25.6           Perry         15         6,511         86,813         28,284         107.2         20.5           Pike         10         1,410         28,200         9,200         39.1         6.9           Pike         24         4,150         166,000         54,083         50.2         26.4           Pike         26         1,903 <t< td=""><td>Montgomery</td><td>10</td><td>9,859</td><td>177,400</td><td>57,810</td><td>326.5</td><td>48.5</td></t<>                                  | Montgomery | 10                       | 9,859                  | 177,400            | 57,810                      | 326.5                        | 48.5                   |
| Montgomery         14         2,571         35,994         11,727         62.6         8.3           Morgan         6         2,125         37,525         12,200         104.4         9.0           Morgan         20         5,619         112,380         36,613         159.6         19.0           Peoria         3         1,062         27,612         9,000         42.7         7.8           Peoria         20         3,155         90,422         29,500         61.3         19.2           Perry         2         2,080         28,400         9,254         48.0         8.5           Perry         12         4,855         64,733         21,090         45.9         13.1           Perry         14         5,729         76,387         24,887         109.9         21.5           Perry         15         6,511         86,813         28,284         107.2         20.5           Pike         2         4,950         132,000         43,000         92.0         39.1         6.9           Pike         23         3,034         96,077         31,302         39.1         18.4           Pike         26         1,903                                                                                                                                                      | Montgomery | 10A                      | 17,555                 | 403,765            | 131,547                     | 331.6                        | 61.3                   |
| Morgan62,12537,52512,200104,49,00Morgan205,619112,38036,613159,619,0Peoria31,06227,6129,00042.77,8Peoria203,15590,42229,50061,319,2Perry22,08028,4009,25448.08,5Perry124,85564,73321,09045.913,1Perry139,055120,73339,33599.025,4Perry145,72976,38724,887109,921,5Pirry156,51186,81328,284107,220,5Pike101,41028,2009,20039,16,9Pike244,150166,00054,08350,226,4Pike261,90366,60521,70027,813,3Pike261,90366,60521,70027,88,7Pike281,85458,71019,12827,712,3Pike302,51150,22016,36279,011,3Pope390026,00011,73024,08,8Pope390026,00011,73024,08,8Pope390026,00011,73024,08,8Pope390026,00031,28181,029,1Pope478018,2005,33039,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Montgomery | 14                       | 2,571                  | 35,994             | 11,727                      | 62.6                         | 8.3                    |
| Morgan20 $5,619$ 112,380 $36,613$ 159.619.0Peoria3 $1,062$ $27,612$ $9,000$ $42.7$ $7.8$ Peoria20 $3.155$ $90,422$ $29,500$ $61.3$ $19.2$ Perry2 $2,080$ $28,400$ $9,254$ $48.0$ $8.5$ Perry12 $4,855$ $64,733$ $21,090$ $45.9$ $13.1$ Perry13 $9,055$ $120,733$ $39,335$ $99.0$ $25.4$ Perry14 $5,729$ $76,387$ $24,887$ $109.9$ $21.5$ Perry15 $6,511$ $86,813$ $28,284$ $107.2$ $20.5$ Pike2 $4,950$ $132,000$ $43,000$ $92.0$ $21.6$ Pike10 $1,410$ $28,200$ $9,200$ $39,1$ $6.9$ Pike23 $3,034$ $96,077$ $31,302$ $39.1$ $18.4$ Pike24 $4,150$ $166,000$ $54,083$ $50.2$ $26.4$ Pike26 $1,903$ $66,605$ $21,700$ $27.8$ $13.3$ Pike26A $1,196$ $33,887$ $11,040$ $27.8$ $8.7$ Pike26 $1,903$ $65,000$ $11,730$ $24.0$ $8.8$ Pope3 $900$ $26,000$ $11,730$ $24.0$ $8.8$ Pope3 $900$ $26,000$ $11,730$ $24.0$ $8.8$ Pope3 $900$ $26,000$ $11,730$ $24.0$ $8.8$ Pope<                                                                                                                                                                                                                                                                                                                                                                                                                                      | Morgan     | 6                        | 2,125                  | 37,525             | 12,200                      | 104.4                        | 9.0                    |
| Peoria3 $1,062$ $27,612$ $9,000$ $42.7$ $7.8$ Peoria8 $1,312$ $27,985$ $9,100$ $34.4$ $7.8$ Peoria20 $3.155$ $90,422$ $29,500$ $61.3$ $19.2$ Perry2 $2,080$ $28,400$ $9,254$ $48.0$ $8.5$ Perry12 $4,855$ $64,733$ $21,090$ $45.9$ $13.1$ Perry13 $9,055$ $120,733$ $39,335$ $99.0$ $25.4$ Perry14 $5,729$ $76,387$ $24,887$ $109.9$ $21.5$ Perry15 $6,511$ $86,813$ $28,284$ $107.2$ $20.5$ Pike2 $4,950$ $132,000$ $43,000$ $92.0$ $29.1$ $6.9$ Pike2 $4,950$ $132,000$ $43,000$ $92.0$ $29.1$ $6.9$ Pike2 $22,574$ $85,800$ $27,954$ $59.0$ $15.6$ Pike $24$ $4,150$ $166,000$ $54,083$ $50.2$ $26.4$ Pike $26$ $1,903$ $66,655$ $21,700$ $27.8$ $8.7$ Pike $26A$ $1,166$ $33,887$ $11,040$ $27.8$ $8.7$ Pike $26A$ $1,166$ $33,887$ $10,9128$ $27.7$ $12.3$ Pike $26A$ $1,196$ $33,887$ $10,9128$ $27.7$ $12.3$ Pike $26A$ $1,196$ $33,887$ $10,400$ $27.8$ $8.7$ Pike $30$ $2,511$ $50,220$                                                                                                                                                                                                                                                                                                                                                                                                             | Morgan     | 20                       | 5,619                  | 112,380            | 36,613                      | 159.6                        | 19.0                   |
| Peoria         8         1,312         27,985         9,100         34.4         7.8           Peoria         20         3.155         90,422         29,500         61.3         19.2           Perry         2         2,080         28,400         9,254         48.0         8.5           Perry         12         4,855         64,733         21,090         45.9         13.1           Perry         13         9,055         120,733         39,335         99.0         25.4           Perry         14         5,729         76,387         24,887         109.9         21.5           Pike         2         4,950         132,000         43,000         92.0         39.1         6.9           Pike         10         1,410         28,200         9,200         39.1         16.9           Pike         24         4,150         166,000         54,083         50.2         26.4           Pike         26         1,903         66,605         21,700         27.8         8.7           Pike         26         1,903         65,600         1,710         24.0         8.8           Pike         30         2,511                                                                                                                                                                   | Peoria     | 3                        | 1,062                  | 27,612             | 9,000                       | 42.7                         | 7.8                    |
| Peoria         20         3.155         90,422         29,500         61.3         19.2           Perry         2         2,080         28,400         9,254         48.0         8.5           Perry         12         4,855         64,733         21,090         45.9         13.1           Perry         13         9,055         120,733         39,335         99.0         25.4           Perry         14         5,729         76,387         24,887         109.9         21.5           Pike         2         4,950         132,000         43,000         92.0         21.6           Pike         10         1,410         28,200         9,200         39.1         6.9           Pike         23         3,034         96,077         31,302         39.1         18.4           Pike         24         4,150         166,000         54,083         50.2         26.4           Pike         26         1,903         66,605         21,700         27.8         8.7           Pike         28         1,854         58,710         19,128         27.7         12.3           Pike         30         2,511         50,220                                                                                                                                                              | Peoria     | 8                        | 1,312                  | 27,985             | 9,100                       | 34.4                         | 7.8                    |
| Perry         2         2,080         28,400         9,254         48.0         8.5           Perry         12         4,855         64,733         21,090         45.9         13.1           Perry         13         9,055         120,733         39,335         99.0         25.4           Perry         14         5,729         76,387         24,887         109.9         21.5           Pike         2         4,950         132,000         43,000         92.0         21.6           Pike         10         1,410         28,200         9,200         39.1         6.9           Pike         22         2,574         85,800         27,954         59.0         15.6           Pike         23         3,034         96,077         13.102         39.1         18.4           Pike         24         4,150         166,000         54,083         50.2         26.4           Pike         26         1,903         66,605         21,700         27.8         8.7           Pike         26         1,9103         36,887         11,040         27.8         8.7           Pike         30         2,511         50,220         <                                                                                                                                                      | Peoria     | 20                       | 3.155                  | 90,422             | 29,500                      | 61.3                         | 19.2                   |
| Perry       12       4,855       64,733       21,090       45.9       13.1         Perry       13       9,055       120,733       39,335       99.0       25.4         Perry       14       5,729       76,387       24,887       109.9       21.5         Perry       15       6,511       86,813       28,284       107.2       20.5         Pike       2       4,950       132,000       92.0       39.1       6.9         Pike       10       1,410       28,200       9,200       39.1       6.9         Pike       22       2,574       85,800       27,954       59.0       15.6         Pike       23       3,034       96,077       31,302       39.1       18.4         Pike       26       1,903       66,605       21,700       27.8       13.3         Pike       26       1,903       66,605       21,700       27.8       8.7         Pike       28       1,854       58,710       19,128       27.7       12.3         Pike       30       2,511       50,220       16,362       79.0       11.3         Pope       3       900       26,000                                                                                                                                                                                                                                                 | Perry      | 2                        | 2,080                  | 28,400             | 9,254                       | 48.0                         | 8.5                    |
| Perry         13         9,055         120,733         39,335         99.0         25.4           Perry         14         5,729         76,387         24,887         109.9         21.5           Perry         15         6,511         86,813         28,284         107.2         20.5           Pike         2         4,950         132,000         43,000         92.0         39.1         6.9           Pike         10         1,410         28,200         9,200         39.1         16.9           Pike         22         2,574         85,800         27,954         59.0         15.6           Pike         23         3,034         96,077         31,302         39.1         18.4           Pike         26         1,903         66,605         21,700         27.8         13.3           Pike         26         1,903         66,605         21,700         27.8         8.7           Pike         28         1,854         58,710         19,128         27.7         12.3           Pike         30         2,511         50,220         16,362         79.0         11.3           Pope         3         900                                                                                                                                                                   | Perry      | 12                       | 4,855                  | 64,733             | 21,090                      | 45.9                         | 13.1                   |
| Perry145,72976,38724,887109.921.5Perry156,51186,81328,284107.220.5Pike24,950132,00043,00092.021.6Pike101,41028,2009,20039.16.9Pike222,57485,80027,95459.015.6Pike233,03496,07731,30239.118.4Pike244,150166,00054,08350.226.4Pike261,90366,60521,70027.813.3Pike261,90366,60521,70027.88.7Pike281,85458,71019,12827.712.3Pike302,51150,22016,36279.011.3Pope22,83075,46724,59037.018.4Pope390026,00011,73024.08.8Pope3A1,26050,40016,42023.812.1Pope63,60096,00031,28181.029.1Pope93,375101,25032,98754.826.1Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.0 <td< td=""><td>Perry</td><td>13</td><td>9,055</td><td>120,733</td><td>39,335</td><td>99.0</td><td>25.4</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Perry      | 13                       | 9,055                  | 120,733            | 39,335                      | 99.0                         | 25.4                   |
| Perry156,51186,81328,284107.220.5Pike24,950132,00043,00092.021.6Pike101,41028,2009,20039.16.9Pike222,57485,80027,95459.015.6Pike233,03496,07731,30239.118.4Pike244,150166,00054,08350.226.4Pike261,90366,60521,70027.813.3Pike26A1,19633,88711,04027.88.7Pike281,85458,71019,12827.712.3Pike302,51150,22016,36279.011.3Pope22,83075,46724,59037.018.4Pope390026,00011,73024.08.8Pope390026,00031,28181.029.1Pope478018,2005,33039.07.0Pope81,88650,29316,38542.012.4Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam12,65035,33311,51384.010.8 <td>Perry</td> <td>14</td> <td>5,729</td> <td>76,387</td> <td>24,887</td> <td>109.9</td> <td>21.5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Perry      | 14                       | 5,729                  | 76,387             | 24,887                      | 109.9                        | 21.5                   |
| Pike24,950132,00043,00092.021.6Pike101,41028,2009,20039.16.9Pike222,57485,80027,95459.015.6Pike233,03496,07731,30239.118.4Pike244,150166,00054,08350.226.4Pike261,90366,60521,70027.813.3Pike261,90366,60521,70027.813.3Pike281,85458,71019,12827.712.3Pike281,85458,71019,12827.712.3Pike302,51150,22016,36279.011.3Pope22,83075,46724,59037.018.4Pope390026,00011,73024.08.8Pope390026,00031,28181.029.1Pope478018,2005,33039.07.0Pope63,60096,00031,28181.029.1Pope93,375101,25032,98754.826.1Pope93,375101,25032,98754.826.1Pope93,375101,25032,0035.06.0Putnam11,10025,7008,40035.99.7Putnam257016,2005,30035.06.0 <td>Perry</td> <td>15</td> <td>6,511</td> <td>86,813</td> <td>28,284</td> <td>107.2</td> <td>20.5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Perry      | 15                       | 6,511                  | 86,813             | 28,284                      | 107.2                        | 20.5                   |
| Pike101,41028,2009,20039,16.9Pike222,57485,80027,95459.015.6Pike233,03496,07731,30239,118.4Pike244,150166,00054,08350.226.4Pike261,90366,60521,70027.813.3Pike26A1,19633,88711,04027.88.7Pike281,85458,71019,12827.712.3Pike302,51150,22016,36279.011.3Pope22,83075,46724,59037.018.4Pope390026,00011,73024.08.8Pope3A1,26050,40016,42023.812.1Pope478018,2005,33039.07.0Pope63,60096,00031,28181.029.1Pope93,375101,25032,98754.826.1Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam12,65035,33311,51384.010.8Randolph12,65035,33311,51384.010.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pike       | 2                        | 4,950                  | 132,000            | 43,000                      | 92.0                         | 21.6                   |
| Pike222,574 $85,800$ $27,954$ $59.0$ $15.6$ Pike233,034 $96,077$ $31,302$ $39.1$ $18.4$ Pike24 $4,150$ $166,000$ $54,083$ $50.2$ $26.4$ Pike26 $1,903$ $66,605$ $21,700$ $27.8$ $13.3$ Pike $26A$ $1,196$ $33,887$ $11,040$ $27.8$ $8.7$ Pike $28$ $1,854$ $58,710$ $19,128$ $27.7$ $12.3$ Pike $30$ $2,511$ $50,220$ $16,362$ $79.0$ $11.3$ Pope $2$ $2,830$ $75,467$ $24,590$ $37.0$ $18.4$ Pope $3$ $900$ $26,000$ $11,730$ $24.0$ $8.8$ Pope $3A$ $1,260$ $50,400$ $16,420$ $23.8$ $12.1$ Pope $4$ $780$ $18,200$ $5,330$ $39.0$ $7.0$ Pope $6$ $3,600$ $96,000$ $31,281$ $81.0$ $29.1$ Pope $8$ $1,886$ $50,293$ $16,385$ $42.0$ $12.4$ Pope $9$ $3,375$ $101,250$ $32,987$ $54.8$ $26.1$ Pope $10$ $2,155$ $71,833$ $23,403$ $54.4$ $21.0$ Putnam $1$ $1,100$ $25,700$ $8,400$ $53.9$ $9.7$ Putnam $2$ $570$ $16,200$ $5,300$ $35.0$ $6.0$ Putnam $2$ $2,650$ $35,333$ $11,513$ $84.0$ $10.8$ <td>Pike</td> <td>10</td> <td>1,410</td> <td>28,200</td> <td>9,200</td> <td>39.1</td> <td>6.9</td>                                                                                                                                                                                                                                                                                                       | Pike       | 10                       | 1,410                  | 28,200             | 9,200                       | 39.1                         | 6.9                    |
| Pike233,03496,07731,30239.118.4Pike244,150166,00054,08350.226.4Pike261,90366,60521,70027.813.3Pike26A1,19633,88711,04027.88.7Pike281,85458,71019,12827.712.3Pike302,51150,22016,36279.011.3Pope22,83075,46724,59037.018.4Pope390026,00011,73024.08.8Pope3A1,26050,40016,42023.812.1Pope478018,2005,33039.07.0Pope63,60096,00031,28181.029.1Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph11,0032200,64065,36983.233.4Randolph21,46017,5205,70990.06.5Randolph21,46017,5205,70990.0 <t< td=""><td>Pike</td><td>22</td><td>2,574</td><td>85,800</td><td>27,954</td><td>59.0</td><td>15.6</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pike       | 22                       | 2,574                  | 85,800             | 27,954                      | 59.0                         | 15.6                   |
| Pike244,150166,00054,08350.226.4Pike261,90366,60521,70027.813.3Pike26A1,19633,88711,04027.88.7Pike281,85458,71019,12827.712.3Pike302,51150,22016,36279.011.3Pope22,83075,46724,59037.018.4Pope390026,00011,73024.08.8Pope3A1,26050,40016,42023.812.1Pope478018,2005,33039.07.0Pope63,60096,00031,28181.029.1Pope81,88650,29316,38542.012.4Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph14,6017,5205,70990.06.5Randolph14,6021,0006,84371.06.7Randolph204,80280,03326,07581.819.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pike       | 23                       | 3,034                  | 96,077             | 31,302                      | 39.1                         | 18.4                   |
| Pike261,90366,60521,70027.813.3Pike26A1,19633,88711,04027.88.7Pike281,85458,71019,12827.712.3Pike302,51150,22016,36279.011.3Pope22,83075,46724,59037.018.4Pope390026,00011,73024.08.8Pope3A1,26050,40016,42023.812.1Pope478018,2005,33039.07.0Pope63,60096,00031,28181.029.1Pope81,88650,29316,38542.012.4Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph1A10,032200,64065,36983.233.4Randolph141,50021,0006,84371.06.7Randolph215,211104,22033,95584.722.9Randolph215,211104,22033,95584.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pike       | 24                       | 4,150                  | 166,000            | 54,083                      | 50.2                         | 26.4                   |
| Pike26A1,19633,88711,04027.88.7Pike281,85458,71019,12827.712.3Pike302,51150,22016,36279.011.3Pope22,83075,46724,59037.018.4Pope390026,00011,73024.08.8Pope3A1,26050,40016,42023.812.1Pope478018,2005,33039.07.0Pope63,60096,00031,28181.029.1Pope81,88650,29316,38542.012.4Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph141,50021,0006,84371.06.7Randolph204,80280,03326,07581.819.3Randolph215,211104,22033,95584.722.9Randolph215,211104,22033,95584.722.9Randolph215,211104,22033,955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pike       | 26                       | 1,903                  | 66,605             | 21,700                      | 27.8                         | 13.3                   |
| Pike281,85458,71019,12827.712.3Pike302,51150,22016,36279.011.3Pope22,83075,46724,59037.018.4Pope390026,00011,73024.08.8Pope3A1,26050,40016,42023.812.1Pope478018,2005,33039.07.0Pope63,60096,00031,28181.029.1Pope81,88650,29316,38542.012.4Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph1A10,032200,64065,36983.233.4Randolph141,50021,0006,84371.06.7Randolph215,211104,22033,95584.722.9Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,318 <td>Pike</td> <td>26A</td> <td>1,196</td> <td>33,887</td> <td>11,040</td> <td>27.8</td> <td>8.7</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pike       | 26A                      | 1,196                  | 33,887             | 11,040                      | 27.8                         | 8.7                    |
| Pike302,51150,22016,36279.011.3Pope22,83075,46724,59037.018.4Pope390026,00011,73024.08.8Pope3A1,26050,40016,42023.812.1Pope478018,2005,33039.07.0Pope63,60096,00031,28181.029.1Pope81,88650,29316,38542.012.4Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph1A10,032200,64065,36983.233.4Randolph141,50021,0006,84371.06.7Randolph204,80280,03326,07581.819.3Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pike       | 28                       | 1,854                  | 58,710             | 19,128                      | 27.7                         | 12.3                   |
| Pope22,83075,46724,59037.018.4Pope390026,00011,73024.08.8Pope3A1,26050,40016,42023.812.1Pope478018,2005,33039.07.0Pope63,60096,00031,28181.029.1Pope81,88650,29316,38542.012.4Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph1A10,032200,64065,36983.233.4Randolph141,50021,0006,84371.06.7Randolph141,50021,0006,84371.06.7Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pike       | 30                       | 2,511                  | 50,220             | 16,362                      | 79.0                         | 11.3                   |
| Pope390026,00011,73024.08.8Pope3A1,26050,40016,42023.812.1Pope478018,2005,33039.07.0Pope63,60096,00031,28181.029.1Pope81,88650,29316,38542.012.4Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph1A10,032200,64065,36983.233.4Randolph141,50021,0006,84371.06.7Randolph215,211104,22033,95584.722.9Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pope       | 2                        | 2,830                  | 75,467             | 24,590                      | 37.0                         | 18.4                   |
| Pope3A1,26050,40016,42023.812.1Pope478018,2005,33039.07.0Pope63,60096,00031,28181.029.1Pope81,88650,29316,38542.012.4Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph1A10,032200,64065,36983.233.4Randolph21,46017,5205,70990.06.5Randolph141,50021,0006,84371.06.7Randolph215,211104,22033,95584.722.9Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pope       | 3                        | 900                    | 26,000             | 11,730                      | 24.0                         | 8.8                    |
| Pope478018,2005,33039.07.0Pope63,60096,00031,28181.029.1Pope81,88650,29316,38542.012.4Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph1A10,032200,64065,36983.233.4Randolph21,46017,5205,70990.06.5Randolph141,50021,0006,84371.06.7Randolph215,211104,22033,95584.722.9Randolph215,31153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pope       | 3A                       | 1,260                  | 50,400             | 16,420                      | 23.8                         | 12.1                   |
| Pope63,60096,00031,28181.029.1Pope81,88650,29316,38542.012.4Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph1A10,032200,64065,36983.233.4Randolph21,46017,5205,70990.06.5Randolph141,50021,0006,84371.06.7Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pope       | 4                        | 780                    | 18,200             | 5,330                       | 39.0                         | 7.0                    |
| Pope81,88650,29316,38542.012.4Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph1A10,032200,64065,36983.233.4Randolph21,46017,5205,70990.06.5Randolph141,50021,0006,84371.06.7Randolph204,80280,03326,07581.819.3Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pope       | 6                        | 3,600                  | 96,000             | 31,281                      | 81.0                         | 29.1                   |
| Pope93,375101,25032,98754.826.1Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph1A10,032200,64065,36983.233.4Randolph21,46017,5205,70990.06.5Randolph141,50021,0006,84371.06.7Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pope       | 8                        | 1,886                  | 50,293             | 16,385                      | 42.0                         | 12.4                   |
| Pope102,15571,83323,40354.421.0Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph1A10,032200,64065,36983.233.4Randolph21,46017,5205,70990.06.5Randolph141,50021,0006,84371.06.7Randolph204,80280,03326,07581.819.3Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pope       | 9                        | 3,375                  | 101,250            | 32,987                      | 54.8                         | 26.1                   |
| Putnam11,10025,7008,40053.99.7Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph1A10,032200,64065,36983.233.4Randolph21,46017,5205,70990.06.5Randolph141,50021,0006,84371.06.7Randolph204,80280,03326,07581.819.3Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pope       | 10                       | 2,155                  | 71,833             | 23,403                      | 54.4                         | 21.0                   |
| Putnam257016,2005,30035.06.0Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph1A10,032200,64065,36983.233.4Randolph21,46017,5205,70990.06.5Randolph141,50021,0006,84371.06.7Randolph204,80280,03326,07581.819.3Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Putnam     | 1                        | 1,100                  | 25,700             | 8,400                       | 53.9                         | 9.7                    |
| Putnam369818,6006,10035.46.4Randolph12,65035,33311,51384.010.8Randolph1A10,032200,64065,36983.233.4Randolph21,46017,5205,70990.06.5Randolph141,50021,0006,84371.06.7Randolph204,80280,03326,07581.819.3Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Putnam     | 2                        | 570                    | 16,200             | 5,300                       | 35.0                         | 6.0                    |
| Randolph12,65035,33311,51384.010.8Randolph1A10,032200,64065,36983.233.4Randolph21,46017,5205,70990.06.5Randolph141,50021,0006,84371.06.7Randolph204,80280,03326,07581.819.3Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Putnam     | 3                        | 698                    | 18,600             | 6,100                       | 35.4                         | 6.4                    |
| Randolph1A10,032200,64065,36983.233.4Randolph21,46017,5205,70990.06.5Randolph141,50021,0006,84371.06.7Randolph204,80280,03326,07581.819.3Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Randolph   | 1                        | 2,650                  | 35,333             | 11,513                      | 84.0                         | 10.8                   |
| Randolph21,46017,5205,70990.06.5Randolph141,50021,0006,84371.06.7Randolph204,80280,03326,07581.819.3Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Randolph   | 1A                       | 10,032                 | 200,640            | 65,369                      | 83.2                         | 33.4                   |
| Randolph141,50021,0006,84371.06.7Randolph204,80280,03326,07581.819.3Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Randolph   | 2                        | 1,460                  | 17,520             | 5,709                       | 90.0                         | 6.5                    |
| Randolph204,80280,03326,07581.819.3Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Randolph   | 14                       | 1,500                  | 21,000             | 6.843                       | 71.0                         | 6.7                    |
| Randolph215,211104,22033,95584.722.9Randolph21A3,23153,85017,54484.716.6Richland93,47434,74211,31859.49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Randolph   | 20                       | 4,802                  | 80,033             | 26,075                      | 81.8                         | 19.3                   |
| Randolph         21A         3,231         53,850         17,544         84.7         16.6           Richland         9         3,474         34,742         11,318         59.4         9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Randolph   | 21                       | 5,211                  | 104,220            | 33.955                      | 84.7                         | 22.9                   |
| Richland 9 3,474 34,742 11,318 59,4 9,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Randolph   | 21A                      | 3,231                  | 53,850             | 17,544                      | 84.7                         | 16.6                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Richland   | 9                        | 3,474                  | 34,742             | 11,318                      | 59.4                         | 9.5                    |

TABLE D-Contmued

| County      | Reservoir<br>site<br>no. | Pool<br>area<br>(acre) | Storage (ac-ft) | Storage<br>(million<br>gal) | Watershed<br>area<br>(sq mi) | Net<br>yield*<br>(mgd) |
|-------------|--------------------------|------------------------|-----------------|-----------------------------|------------------------------|------------------------|
| Richland    | 11                       | 27 794                 | 370 591         | 120 738                     | 23.0                         | 12.5                   |
| Rock Island | 1                        | 1 037                  | 15 500          | 5 100                       | 46.6                         | 62                     |
| Rock Island | 4                        | 1,037                  | 21 600          | 7,000                       | 40.0<br>60.4                 | 8.5                    |
| St Clair    | 12                       | 2,204                  | 29 387          | 9 574                       | 41.9                         | 7.8                    |
| St. Clair   | 12                       | 3 665                  | 36 650          | 11 941                      | 81.8                         | 10.7                   |
| Saline      | 15                       | 3,005                  | 121,000         | 20.428                      | 26.0                         | 10.7                   |
| Salina      | 4                        | 1 546                  | 212 147         | 59,420<br>60,117            | 20.9                         | 10.7                   |
| Salina      | 4A<br>4B                 | 1 002                  | 50 720          | 16 525                      | 28.5                         | 10.0                   |
| Sanaamon    | 4D<br>0D                 | 3 837                  | 56,720          | 10,525                      | 20.3                         | 0.7                    |
| Sangamon    | 9D<br>21                 | 12 500                 | 208 300         | 21,008                      | 04.J                         | 9.9                    |
| Sangamon    | 21                       | 2,000                  | 208,300         | 07,804                      | 809.0                        | 05.8                   |
| Sangamon    | 22                       | 2,088                  | 38,280          | 12,472                      | 93.9                         | 7.3                    |
| Sangamon    | 23A                      | 2,475                  | 37,950          | 12,364                      | 38.5                         | 6.6                    |
| Sangamon    | 24A                      | 1,932                  | 25,760          | 8,393                       | 54.6                         | 6.9                    |
| Sangamon    | 24B                      | 4,131                  | 68,850          | 22,431                      | 54.6                         | 11.5                   |
| Sangamon    | 25                       | 2,105                  | 29,470          | 9,601                       | 52.9                         | 7.6                    |
| Schuyler    | 8                        | 1,856                  | 52,580          | 17,100                      | 52.0                         | 12.5                   |
| Schuyler    | 21                       | 4,440                  | 78,440          | 25,600                      | 87.0                         | 18.9                   |
| Schuyler    | 25                       | 1,559                  | 33,778          | 11,005                      | 62.0                         | 10.5                   |
| Schuyler    | 26                       | 2,883                  | 86,490          | 28,178                      | 33.4                         | 10.2                   |
| Schuyler    | 26A                      | 1,706                  | 39,807          | 12,969                      | 33.4                         | 8.3                    |
| Schuyler    | 27                       | 2,324                  | 46,480          | 15,143                      | 161.8                        | 19.4                   |
| Schuyler    | 28                       | 1,912                  | 28,680          | 9,344                       | 94.5                         | 11.5                   |
| Schuyler    | 28A                      | 3,491                  | 75,638          | 24,643                      | 94.5                         | 21.1                   |
| Schuyler    | 30                       | 1,500                  | 37,500          | 12,218                      | 27.3                         | 7.3                    |
| Scott       | 5                        | 2,029                  | 39,221          | 12,800                      | 63.8                         | 7.1                    |
| Scott       | 11                       | 2,628                  | 42,048          | 13,699                      | 127.1                        | 9.5                    |
| Scott       | 14                       | 2,815                  | 51,608          | 16,814                      | 125.2                        | 12.2                   |
| Shelby      | 8                        | 3,246                  | 43,280          | 14,101                      | 114.2                        | 11.6                   |
| Shelby      | 9                        | 2,216                  | 22,160          | 7,220                       | 102.7                        | 6.1                    |
| Shelby      | 10                       | 4,080                  | 89,760          | 29,244                      | 85.1                         | 19.2                   |
| Stark       | 6                        | 2,770                  | 53,500          | 17,400                      | 64.4                         | 15.6                   |
| Stark       | 7                        | 5,070                  | 92,950          | 30,283                      | 194.3                        | 37.6                   |
| Stark       | 8                        | 5,041                  | 84,017          | 27,373                      | 130.6                        | 28.9                   |
| Stephenson  | 2                        | 640                    | 6,400           | 2,100                       | 27.4                         | 6.0                    |
| Stephenson  | 5                        | 448                    | 5,200           | 1,700                       | 31.0                         | 6.3                    |
| Stephenson  | 7                        | 1,427                  | 19,000          | 6,200                       | 49.7                         | 12.1                   |
| Tazewell    | 8A                       | 1,507                  | 32,652          | 10,638                      | 33.6                         | 8.0                    |
| Tazewell    | 11                       | 1,206                  | 24,120          | 7,858                       | 42.9                         | 6.9                    |
| Tazewell    | 12                       | 2,079                  | 41,580          | 13,547                      | 49.0                         | 10.8                   |
| Union       | 10                       | 1,830                  | 39,650          | 12,920                      | 38.6                         | 15.0                   |
| Union       | 10A                      | 2.138                  | 35.633          | 11.609                      | 35.0                         | 12.5                   |
| Union       | 14A                      | 1.013                  | 16.883          | 5,500                       | 19.3                         | 6.5                    |
| Union       | 15                       | 1,200                  | 12,000          | 3,910                       | 24.3                         | 6.1                    |
| Union       | 15A                      | 2,277                  | 30,360          | 9.891                       | 22.4                         | 10.3                   |
| Union       | 16                       | 3,310                  | 88,267          | 28,762                      | 48.6                         | 25.1                   |
| Union       | 16A                      | 2,536                  | 50.720          | 16.525                      | 47.7                         | 19.2                   |
| Vermilion   | 2                        | 2,500                  | 42,500          | 13,900                      | 500.0                        | 27.4                   |
| Vermilion   | 13                       | 3,800                  | 81,067          | 26 412                      | 434 4                        | 45.6                   |
| Vermilion   | 14                       | 1.345                  | 20,175          | 6 573                       | 175.1                        | 15.7                   |
| Warren      | 9                        | 1,146                  | 19,482          | 6,300                       | 31.5                         | 6.0                    |

TABLE D-Continued

(Concluded on next Page)
| County     | Reservoir<br>site<br>no. | Pool<br>area<br>(acre) | Storage<br>(ac-ft) | Storage<br>(million<br>gal) | Watershed<br>area<br>(sqmi) | Net<br>yield*<br>(mgd) |
|------------|--------------------------|------------------------|--------------------|-----------------------------|-----------------------------|------------------------|
| Warren     | 11                       | 954                    | 13,356             | 4,400                       | 102.3                       | 8.6                    |
| Washington | 11                       | 2,696                  | 35,000             | 11,403                      | 52.2                        | 8.3                    |
| Washington | 11A                      | 3,351                  | 44,680             | 14,557                      | 51.8                        | 10.7                   |
| Washington | 13                       | 5,529                  | 71,877             | 23,418                      | 71.0                        | 16.0                   |
| Wayne      | 5                        | 6,204                  | 62,040             | 20,213                      | 160.7                       | 19.9                   |
| Whiteside  | 7                        | 1,304                  | 17,387             | 5,665                       | 142.5                       | 22.7                   |
| Will       | 5                        | 580                    | 5,025              | 1,636                       | 40.0                        | 6.1                    |
| Williamson | 8A                       | 3,456                  | 103,680            | 33,779                      | 32.9                        | 13.3                   |
| Williamson | 8C                       | 1,808                  | 42,187             | 13,749                      | 32.9                        | 8.5                    |
| Williamson | 11                       | 5,357                  | 71,667             | 23,349                      | 58.4                        | 19.8                   |
| Woodford   | 3A                       | 1,593                  | 53,114             | 17,304                      | 28.8                        | 8.5                    |
| Woodford   | 11                       | 1,574                  | 34,090             | 11,100                      | 71.8                        | 8.1                    |
| Woodford   | 11A                      | 3,741                  | 99,772             | 32,505                      | 1.8                         | 19.9                   |
| Woodford   | 13                       | 3,251                  | 55,270             | 18,000                      | 130.9                       | 11.9                   |
| Woodford   | 13A                      | 8,401                  | 196,021            | 63,863                      | 130.9                       | 35.3                   |
| Woodford   | 20                       | 3,940                  | 63,032             | 20,536                      | 340.5                       | 17.2                   |

TABLED-Concluded

\* Based on using half the reservoir capacity during a 40-year drouth.

# TABLE E-QUALITY OF SURFACE WATER FROM THE MAIN WATERSHEDS OF ILLINOIS

|                                                                                                                                                                         | Sampling station                                                                         |                                               | Alkalinity                                       |                                                      |                                               | Hardness                                          |                                                      |                                                      | Total dissolved<br>minerals                          |                                                      |                                                      |                                         | Nitrate                                    |                                                |                                              | Turbidity                             |                                         |                                                | peratur                                          | e (°F)                                     | Number<br>Sampling of                                                                                |                                              | Watershed                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------|--------------------------------------------|------------------------------------------------|----------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------|
| Watershed                                                                                                                                                               | Location                                                                                 | Number                                        | 10%                                              | 50%                                                  | 90%                                           | 10%                                               | 50%                                                  | 90%                                                  | 10%                                                  | 50%                                                  | 90%                                                  | 10%                                     | 50%                                        | 90%                                            | 10%                                          | 50%                                   | 90%                                     | 10%                                            | 50%                                              | 90%                                        | period sampl                                                                                         | unples                                       | s (sq mi)                                              |
| WISCONSIN DRIFTLESIS<br>Apple River                                                                                                                                     | S REGION<br>Hanover                                                                      | 14                                            | 195                                              | 285                                                  | 315                                           | 240                                               | 325                                                  | 345                                                  | 285                                                  | 345                                                  | 370                                                  | 2                                       | 5.5                                        | 8.5                                            | 7                                            | 2                                     | 0.4                                     | 32                                             | 54                                               | 75.5                                       | 1957-1961                                                                                            | 46                                           | 244                                                    |
| ROCK RIVER HILLS<br>Rock River                                                                                                                                          | Como                                                                                     | 23                                            | 175                                              | 240                                                  | 270                                           | 225                                               | 290                                                  | 330                                                  | 280                                                  | 340                                                  | 390                                                  | 2                                       | 6.5                                        | 12                                             | 7                                            | 3                                     | 0.6                                     | 32                                             | 56                                               | 78                                         | 1957-1961                                                                                            | 59                                           | 8,700                                                  |
| WHEATON MORAINAL<br>Fox River<br>Du Page River                                                                                                                          | REGION<br>Algonquin<br>Troy                                                              | 2<br>6                                        | 200<br>160                                       | 230<br>240                                           | 280<br>285                                    | 275<br>330                                        | 315<br>400                                           | 380<br>470                                           | 340<br>420                                           | 385<br>530                                           | 450<br>630                                           | 3<br>2.5                                | 6<br>10.5                                  | 11<br>17                                       | 5<br>10                                      | 2<br>3                                | 0.5<br>0.2                              | 33<br>33                                       | 55<br>56                                         | 77<br>79                                   | 1957-1961<br>1945-1950                                                                               | 60<br>51                                     | 1,364<br>325                                           |
| GREEN RIVER LOWLA<br>Green River                                                                                                                                        | ND<br>Geneseo                                                                            | 26                                            | 165                                              | 235                                                  | 255                                           | 255                                               | 350                                                  | 385                                                  | 315                                                  | 405                                                  | 445                                                  | 0.5                                     | 4                                          | 12                                             | 20                                           | 4                                     | 0.5                                     | 32                                             | 60                                               | 74                                         | 1945-1950                                                                                            | 53                                           | 958                                                    |
| BLOOMINGTON RIDGE<br>Fox River                                                                                                                                          | D PLAIN-NO<br>Dayton                                                                     | RTH<br>30                                     | 185                                              | 230                                                  | 290                                           | 275                                               | 320                                                  | 375                                                  | 350                                                  | 400                                                  | 480                                                  | 3.5                                     | 7.5                                        | 13.5                                           | 7                                            | 3                                     | 0.7                                     | 32.5                                           | 60                                               | 78                                         | 1956-1961                                                                                            | 60                                           | 2,570                                                  |
| KANKAKEE PLAIN<br>Vermilion River<br>Vermilion River<br>Iroquois River<br>Kankakee River                                                                                | Pontiac<br>Lowell<br>Iroquois<br>Wilmington                                              | 38<br>39<br>36<br>32                          | 170<br>155<br>95<br>145                          | 220<br>220<br>200<br>190                             | 255<br>260<br>225<br>210                      | 265<br>250<br>140<br>255                          | 350<br>355<br>305<br>315                             | 455<br>460<br>355<br>345                             | 340<br>310<br>220<br>330                             | 415<br>445<br>375<br>390                             | 530<br>685<br>420<br>435                             | 2<br>3<br>2<br>1.5                      | 9<br>11<br>10<br>6                         | 28<br>28<br>17<br>19                           | 25<br>10<br>10<br>20                         | 4<br>2<br>4<br>2                      | 0.7<br>0.4<br>0.1<br>0.4                | 33<br>32<br>32<br>32.5                         | 56<br>57.5<br>49.5<br>56                         | 80.5<br>78.5<br>78<br>78                   | 1957-1961<br>1957-1961<br>1950-1956<br>1956-1961                                                     | 51<br>54<br>51<br>52                         | 568<br>1,230<br>682<br>5,250                           |
| GALESBURG PLAIN<br>La Moine River<br>La Moine River<br>Spoon River<br>Spoon River                                                                                       | Colmar<br>Ripley<br>London Mill<br>London Mill                                           | 73<br>72<br>Is 49<br>Is 49                    | 80<br>70<br>110<br>160                           | 205<br>165<br>230<br>260                             | 250<br>220<br>270<br>310                      | 105<br>110<br>175<br>230                          | 255<br>225<br>315<br>350                             | 285<br>290<br>375<br>440                             | 190<br>150<br>210<br>315                             | 320<br>270<br>385<br>440                             | 380<br>350<br>495<br>625                             | 1.5<br>1.5<br>0.5<br>1.5                | 3.5<br>5<br>6.5<br>6.5                     | 10<br>10.5<br>13.5<br>14.5                     | 100<br>90<br>55<br>45                        | 4<br>10<br>7<br>4                     | 0.8<br>2<br>2<br>0.7                    | 32<br>33<br>32<br>32.5                         | 57<br>57<br>55<br>59                             | 74<br>76<br>80<br>78                       | 1957-1961<br>1945-1950<br>1945-1950<br>1957-1961                                                     | 50<br>49<br>47<br>48                         | 655<br>1,310<br>1,070<br>1,070                         |
| INTERSECTIONAL<br>Illinois River<br>Illinois River<br>Illinois River                                                                                                    | Meredosia<br>Peoria<br>Peoria                                                            | 104<br>102<br>102                             | 125<br>120<br>135                                | 155<br>150<br>160                                    | 180<br>180<br>180                             | 195<br>200<br>225                                 | 245<br>250<br>260                                    | 300<br>300<br>320                                    | 295<br>255<br>330                                    | 360<br>330<br>385                                    | 415<br>400<br>450                                    | 4.5<br>5.5<br>3.4                       | 17<br>9.5<br>10                            | 27.5<br>16<br>18                               | 25<br>100<br>70                              | 8<br>31<br>37                         | 4<br>10<br>13                           | 33<br>34<br>32                                 | 56<br>59<br>54                                   | 81<br>80<br>81                             | 1955-1960<br>1945-1949<br>1957-1961                                                                  | 60<br>48<br>50                               | 25,300                                                 |
| LINCOLN HILLS<br>Hadley Creek                                                                                                                                           | Barry                                                                                    | 75                                            | 80                                               | 160                                                  | 190                                           | 110                                               | 180                                                  | 215                                                  | 165                                                  | 230                                                  | 260                                                  | 0.5                                     | 2                                          | 6                                              | 25                                           | 2                                     | 0.5                                     | 34.5                                           | 61                                               | 85                                         | 1956-1961                                                                                            | 59                                           | 40.6                                                   |
| SPRINGFIELD PLAIN<br>Embarras River<br>Kaskaskia River<br>Kaskaskia River<br>Kaskaskia River<br>Sangamon River<br>Little Wabash River<br>Indian Creek<br>Macoupin Creek | Ste. Marie<br>Vandalia<br>New Athens<br>New Athens<br>Oakford<br>Wilcox<br>Wanda<br>Kane | 84<br>106<br>81<br>81<br>71<br>86<br>79<br>78 | 145<br>105<br>40<br>50<br>155<br>50<br>125<br>75 | 210<br>210<br>125<br>135<br>235<br>105<br>210<br>200 | 270<br>265<br>215<br>215<br>265<br>190<br>250 | 200<br>130<br>75<br>80<br>205<br>85<br>175<br>125 | 280<br>275<br>185<br>210<br>305<br>175<br>305<br>265 | 310<br>315<br>305<br>300<br>330<br>275<br>355<br>345 | 255<br>170<br>130<br>150<br>265<br>165<br>245<br>160 | 330<br>345<br>285<br>315<br>380<br>285<br>385<br>330 | 385<br>445<br>435<br>500<br>430<br>435<br>440<br>440 | 1<br>2<br>1.5<br>1.5<br>0.5<br>1.5<br>1 | 5.5<br>3.5<br>5<br>4.5<br>5<br>2<br>4<br>4 | 16<br>12.5<br>10<br>9<br>13.5<br>5.5<br>8<br>8 | 25<br>25<br>50<br>55<br>25<br>20<br>30<br>70 | 3<br>3<br>10<br>9<br>2<br>3<br>5<br>7 | 0.5<br>0.5<br>2<br>2<br>0.5<br>0.9<br>1 | 33<br>34<br>34<br>34<br>34<br>33.5<br>34<br>34 | 59.5<br>54<br>59<br>57<br>60.5<br>53<br>55<br>56 | 79<br>81<br>78<br>75.5<br>80<br>77<br>78.5 | 1956-1961<br>1950-1956<br>1945-1950<br>1957-1961<br>1957-1961<br>1950-1955<br>1945-1950<br>1945-1950 | 60<br>50<br>55<br>48<br>60<br>60<br>58<br>60 | 1,513<br>1,980<br>5,220<br>5,120<br>1,130<br>37<br>875 |
| BLOOMINGTON RIDGE<br>Kaskaskia River<br>Sangamon River<br>Salt Creek<br>Mackinaw River<br>Vermilion River                                                               | D PLAIN-SOU<br>Shelbyville<br>Monticello<br>Rowell<br>Green Valley<br>Catlin             | UTH<br>105<br>60<br>65<br>y 103<br>101        | 80<br>165<br>140<br>150<br>170                   | 200<br>235<br>260<br>250<br>230                      | 255<br>300<br>315<br>320<br>300               | 125<br>225<br>180<br>195<br>225                   | 320<br>320<br>305<br>320<br>290                      | 625<br>350<br>335<br>350<br>340                      | 170<br>270<br>230<br>260<br>285                      | 405<br>375<br>355<br>350<br>390                      | 1080<br>485<br>460<br>390<br>560                     | 0.5<br>2.5<br>3<br>1.5<br>4             | 8<br>8.5<br>7<br>6.5<br>13.5               | 23.5<br>27<br>17.5<br>18.5<br>20.5             | 10<br>8<br>20<br>25<br>7                     | 2<br>2<br>2<br>2<br>1                 | 0.2<br>0.3<br>0.3<br>0.5<br>0.4         | 33<br>33<br>33.5<br>35<br>34                   | 60<br>51.5<br>54<br>50<br>52                     | 78<br>74.5<br>76<br>80<br>78               | 1956-1961<br>1956-1961<br>1950-1956<br>1950-1956<br>1950-1956                                        | 60<br>60<br>59<br>60<br>60                   | 1,030<br>550<br>334<br>1,100<br>959                    |

(Highest concentration or highest measured value in mg/l for indicated percentage of samples analyzed)

(Concluded on next page)

|                     | Sampling station |              | Alkalinity |     | Hardness |     |     | Total dissolved<br>minerals |     |     | Nitrate |     |     | Turbidity |     |       | Temperature (°F) |      |      | Number<br>Sampling of |          | Watershed |           |
|---------------------|------------------|--------------|------------|-----|----------|-----|-----|-----------------------------|-----|-----|---------|-----|-----|-----------|-----|-------|------------------|------|------|-----------------------|----------|-----------|-----------|
| Watershed           | Location         | Number       | 10%        | 50% | 90%      | 10% | 50% | 90%                         | 10% | 50% | 90%     | 10% | 50% | 90%       | 10% | 50% 9 | 20%              | 10%  | 50%  | 90%                   | period s | ample     | s (sq mi) |
| MT. VERNON HILLS    |                  |              |            |     |          |     |     |                             |     |     |         |     |     |           |     |       |                  |      |      |                       |          |           |           |
| Skillet Fork        | Wayne City       | 88           | 15         | 60  | 105      | 60  | 170 | 260                         | 115 | 295 | 435     | 0.5 | 2   | 3.5       | 30  | 6     | 2                | 33   | 56.5 | 76.5                  | 1945-195 | 0 54      | 475       |
| Skillet Fork        | Wayne City       | 88           | 25         | 55  | 115      | 60  | 135 | 295                         | 125 | 260 | 530     | 1   | 2.5 | 4.5       | 25  | 5     | 2                | 33   | 60   | 78                    | 1957-196 | 1 51      | 475       |
| Big Muddy River     | Plumfield        | 92           | 10         | 30  | 70       | 60  | 145 | 335                         | 110 | 295 | 675     | 1   | 2.5 | 6.5       | 20  | 10    | 2                | 35   | 57   | 79.5                  | 1945-195 | 0 58      | 753       |
| Big Muddy River     | Murphysboro      | <b>)</b> 107 | 25         | 50  | 100      | 100 | 200 | 440                         | 205 | 425 | 795     | 1.5 | 3.5 | 5         | 30  | 5     | 2                | 36   | 58.5 | 77                    | 1956-196 | 1 55      | 2,170     |
| Crab Orchard Lake   | Wolf Creek       | 109          | 20         | 40  | 60       | 100 | 120 | 140                         | 175 | 210 | 240     |     |     |           | 5   | 3     | 1                | 37   | 58   | 82.5                  | 1951-195 | 6 55      |           |
| Crab Orchard Lake   | Station 5        | 108          | 20         | 35  | 50       | 85  | 100 | 120                         | 150 | 165 | 220     | 0.5 | 1   | 2.5       | 5   | 1     | 0.5              | 37   | 56.5 | 83                    | 1951-195 | 6 55      |           |
| Little Wabash River | Carmi            | 89           | 30         | 75  | 150      | 65  | 150 | 240                         | 140 | 280 | 470     | 1.5 | 3   | 5.5       | 35  | 5     | 2                | 33.5 | 61   | 78                    | 1957-196 | 1 50      | 3,111     |
| Saline River        | Junction         | 90           | 20         | 75  | 165      | 65  | 265 | 655                         | 120 | 460 | 1010    | 1.5 | 2.5 | 3.5       | 20  | 5     | 1                | 35   | 60   | 79                    | 1945-195 | 0 41      | 1,040     |
| SHAWNEE HILLS       |                  |              |            |     |          |     |     |                             |     |     |         |     |     |           |     |       |                  |      |      |                       |          |           |           |
| Cache River         | Forman           | 96           | 30         | 55  | 95       | 40  | 70  | 110                         | 75  | 120 | 165     | 1   | 2   | 3.5       | 40  | 6     | 2                | 34   | 59   | 77                    | 1957-196 | 1 60      | 243       |
| INTERSECTIONAL      |                  |              |            |     |          |     |     |                             |     |     |         |     |     |           |     |       |                  |      |      |                       |          |           |           |
| Wabash River        | Riverton, Ind    | I. 117       | 110        | 180 | 220      | 165 | 260 | 325                         | 225 | 340 | 405     | 3.5 | 12  | 26        | 45  | 9     | 2                | 38   | 59.5 | 82                    | 1955-196 | 0 60      | 13,100    |
| Wabash River        | Mt. Carmel       | 116          | 115        | 180 | 225      | 165 | 250 | 310                         | 215 | 305 | 395     | 2   | 6   | 10.5      | 25  | 3     | 1                |      |      |                       | 1950-195 | 6 56      | 28,600    |
| Ohio River          | Metropolis       | 115          | 45         | 70  | 90       | 85  | 120 | 150                         | 125 | 170 | 215     | 1.5 | 3.5 | 6         | 9   | 3     | 0.5              | 34   | 59   | 77                    | 1950-195 | 6 52      | 203,000   |
| Ohio River          | Cairo            | 114          | 60         | 75  | 95       | 100 | 135 | 165                         | 150 | 205 | 255     | 1.5 | 4   | 6.5       | 10  | 4     | 0.9              | 34.5 | 66   | 83                    | 1958-196 | 1 42      |           |
| Mississippi River   | Keokuk, Iow      | a 110        | 100        | 135 | 160      | 125 | 170 | 190                         | 165 | 200 | 230     | 0.5 | 3   | 6.5       | 30  | 3     | 0.7              | 32.5 | 54   | 81                    | 1950-195 | 5 56      | 119,000   |
| Mississippi River   | East St. Loui    | s 111        | 120        | 150 | 180      | 155 | 205 | 245                         | 210 | 280 | 300     | 2.5 | 6   | 11        | 60  | 8     | 1                | 34   | 62   | 82.5                  | 1958-196 | 1 41      |           |
| Mississippi River   | Chester          | 112          | 110        | 135 | 190      | 160 | 200 | 250                         | 230 | 290 | 360     | 1.5 | 7   | 18        | 75  | 20    | 6                | 33   | 56.5 | 82                    | 1955-196 | 0 60      | 712,600   |
| Mississippi River   | Thebes           | 113          | 115        | 150 | 175      | 160 | 200 | 240                         | 235 | 300 | 370     | 2   | 4.5 | 7.5       | 75  | 20    | 5                |      |      |                       | 1951-195 | 6 59      | 717,200   |

TABLE E-Concluded

APPENDIX 2 METHODS USED TO COMPILE ESTIMATES OF COAL RESERVES

# METHODS USED TO COMPILE ESTIMATES OF COAL RESERVES

Jay P. Hoeflinger and Lawrence E. Bengal

### INTRODUCTION

The basic data for this report were drawn from the Illinois Geological Survey's comprehensive compilation of the estimated coal reserves of the state, made in 1952 (Cady and others, 1952). For that study, the Illinois coal field was divided into 33 areas (text figure 18). For each area a base map on a scale of approximately 1 inch to the mile was constructed by combining eight 15-minute quadrangle maps in two horizontal rows of four. Drill holes, mined-out areas, coal outcrops, and the thickness of each coal seam were plotted on the base maps. The reserves were then planimetered by hand to obtain area measurements for each increment of thickness and reliability used in the classification scheme shown in text table 3. The results were tabulated on punched cards by county, township, coal seam, coal seam thickness, and reliability of data. Tabulating machines (Parker, 1946) were then used to compute and tally the total tonnages of coal.

For the present study, two computer programs, the Coal Resource System and GEOMAPS, were developed at the Illinois Geological Survey for computing areas and volumes of coal within each of the reserve categories. The heart of the two systems is ILLIMAP, which also was developed at the Illinois Geological Survey in 1970 by Swann and his co-workers. ILLIMAP draws base maps of all or any part of Illinois to any desired scale. Its effectiveness lies in its data base, which consists of coordinates obtained from U.S. Geological Survey 7.5-minute quadrangle maps on which every section corner in the state is expressed in rectangular coordinates of the Lambert coordinate system (DuMontelle et al., 1968). This is a significant feature because it provides a basis for accurate location of datum points. ILLI-MAP also includes all of the county and state boundaries and Indian treaty lines in Illinois.

### COAL RESOURCE SYSTEM

### **Data Preparation**

At the beginning of this study of coal reserves, the maps showing the thickness of the Herrin (No. 6) and Harrisburg-Springfield (No. 5) Coals that were made for the 1952 study were updated to include all the information that had been collected since 1952. To simplify the updating, transparent Mylar base maps were prepared on the same scale as the 1952 base maps, and new drill-hole information, boundaries of areas mined out since 1952, and information from studies of specific areas made in recent years were plotted on the Mylar bases. The Mylar maps were then placed over the 1952 base maps so that information from both could be used in mapping the extent of the Herrin and Harrisburg-Springfield Coals in Illinois and in interpreting the thickness of the coals.

After the interpreted maps of the coal seams had been prepared, the operation was fully computerized. The first step was the entry of the updated information and the reinterpreted coal-thickness lines. An Autotrol digitizer at the State Water Survey was used for this process. To be handled by the digitizer, our basic map unit had to be reduced from the eight quadrangles used in the 1952 study to two quadrangles. Each map unit was digitized and given a specific code to identify its location within the state.

Because of the type of data available, interpreted coal isopachs and other hand-drawn lines representing coal features, rather than actual point data, were digitized. This information was then recorded on a magnetic tape for entry into the computer.

#### **Program Procedure**

The digitizer-tape loading program reads successive records from the tape and records the Lambert coordinates of the map corners for use by ILLIMAP and other routines in the system. Every point is assigned a two-digit decimal value, which identifies that point. Because interpreted data instead of actual point data were digitized, the two-digit decimal value represents an isoline on the map. The coordinates of every point on an isoline and the value for each are stored in the coordinate files. The coordinate files include a feature-coordinate file and a coal-coordinate file. The coal-coordinate file holds lines representing all other coal features affecting the calculation of reserves (fig. A). Both types of files are then read by the Coal Resource System and are used for calculations of area and volume.

The Coal Resource System program accesses the coalcoordinate and feature-coordinate files for a particular map. In several steps the program builds a numerical surface that represents the coal surface portrayed on the hand-drawn coal-reserve work maps. This numerical surface is then used by the program to calculate the coal reserves for that particular map and to categorize the reserves into the classes that are necessary for further processing. By interfacing this coal surface with ILLIMAP, the coal reserves can be calculated by township, county, and seam thickness, as is demonstrated in table A (Appendix 1). These estimates of coal reserves are then stored in a statis-



Figure A. The two types of coordinate files used to form the computer-generated mathematical surfaces for coal reserve estimates.

tics file, where they can be accessed by several display and correction programs.

## GEOMAPS

GEOMAPS is the mapping and surface graphics system developed at the Illinois State Geological Survey. The system is composed of the ILLIMAP program, the FORMA-TION program, and IBM's STAMPEDE (IBM Corporation, 1968). STAMPEDE is a series of programs for forming and manipulating numerical surfaces. It can approximate arrays of datum points by a uniform grid, generate trend surfaces of the first through the eighth order, evaluate polynomial representations of surfaces, and perform normal contouring on a plotter or printer.

The basic ILLIMAP program was modified to convey base-map parameters to the STAMPEDE program and the Coal Resource System. These modifications allow an individual program to interrogate the ILLIMAP coordinate file in order to orient itself to the geographical area under study. ILLIMAP also conveys the scale, map limits, angle of orientation, plotter limits, and scale-conversion factors. The Geological Survey's routine called FORMATION was added to facilitate plotting the coal-feature lines from digitized point data.

#### MAPPING TECHNIQUES

An important feature of the Coal Resource System is its ability to plot information. Digitized lines for coal thickness and coal features are stored in coordinate files that can be accessed by the system's plotting routines, which are based on GEOMAPS. GEOMAPS can draw on a plotter unlimited combinations of digitized lines to any desired scale for any part of Illinois.

With format-free control cards the user can (1) call for particular lines by name; (2) cause symbols to be drawn on any of these lines at a predetermined frequency; (3) cause characters to be entered in the townships of any or all counties to represent tons per square mile, total tons of coal, total area of coal, weighted average thickness, or total square miles of mined-out area; and (4) cause lines to be drawn in different colors.

In this study the reserve estimates for each coal were factored into tons of coal in the average square mile for each township that contained Herrin or Harrisburg-Spring-field Coals 42 or more inches thick. Six categories were set up for tons of coal in the average square mile, beginning with 4 to 5 million tons and progressing in million-ton increments to 9 or more million tons. Each category was assigned an alphabetic symbol, with A the smallest and F the largest. These symbols were plotted on a base map (fig. B) (Smith and Miller, 1975). The lettered map was translated into colors that represented the coal reserves in individual townships, as shown on plates 1 and 2, which accompany this report.

### CONCLUSIONS

A unique feature of the system devised for this study was the use of interpreted coal-thickness data as computer input in place of actual point data. This approach had the advantage of saving much time and expense in the making of a point-oriented data base.

The key factor in the development of the Coal Resource System was the availability of the computer-based mapping system, ILLIMAP. ILLIMAP was used not only to plot the final maps, but also to locate input maps in relation to each other and to provide tabulations of coal reserves by geographical area. A coal reserves mapping system with the capabilities outlined here could probably not be developed without a mapping system similar to ILLIMAP.

The relative error of the computerized approach was compared to that of a manual approach by planimetering



Figure B. A computer-generated map of letter symbols that represent colors to be used for a choropleth map of the average tons of coal in place per square mile for each township in which the Herrin Coal has been mapped. A similar map was made for the Harrisburg-Springfield Coal. The values range from letter A (4 million tons per square mile) to the letter F (9 or more million tons per square mile). The crosses are registration marks.

several test townships. In general, the difference between the two approaches was 5 percent or less. The errors in this computerized approach are inherent in any uniformgrid, numerical-surface technique; they arise from the size of the grid used to represent the coal surface. This error becomes insignificant as the grid interval approaches zero; however, the execution time, and therefore the cost factor, increases rapidly as the grid interval decreases.

## **REFERENCES FOR APPENDIX 2**

- Cady, G. H., and others, 1952, *Minable coal reserves of Illinois:* Illinois Geological Survey Bulletin 78,138 p.
- DuMontelle, P. B., P. C. Heigold, Manoutchehr Heidari, and D. H. Swann, 1968, Computer-calculated Lambert Conformal Conic Projection tables for Illinois: Illinois Geological Survey Industrial Minerals Note 35, 25 p.
- IBM Corporation, 1968, Surface techniques, annotation, and mapping programs for exploration, development and engineering (STAMPEDE): DOS System 360-370 program number 360D-17.4.001. Program documentation is available from IBM Corporation, Data Processing Division, White Plains, N. Y. Documentation for an OS System 360-370 version of STAMPEDE is available from Wright State University, Dayton, Ohio.
- Parker, M. A., 1946, Use of International Business Machine technique in tabulating drilling data: Illinois Academy of Science Transactions, v. 39, p. 92-95; Illinois Geological Survey Circular 135, p. 92-95, 1947.
- Smith, W. H., and W. G. Miller, Mapping and evaluation of coal resources by computer-graphics at the Illinois State Geological Survey: Proceedings of the American Congress on Surveying and Mapping, 35th Annual Meeting, March 1975, Washington, D.C., p. 271-275.
- Swann, D. H., P. B. DuMontelle, R. F. Mast, and L. H. Van Dyke, 1970, *ILLIMAP—A computer-based mapping system for Illinois:* Illinois Geological Survey Circular 451, 24 p.