Effects of Pumping on Shallow Groundwater Circulation

George S. Roadcap, P.G.
Illinois State Water Survey
Illinois Department of Natural Resources

2007 Priority Places Workshop: Implementing a Sustainable Water Supply for Kane County's Future
What can we do with the model?

- Improve our conceptual understanding

- Quantify groundwater flow
 - Flow directions and gradient
 - Permeability and recharge values
 - Flow paths to water supply wells

- Predict impacts of future pumpage
 - Increase in withdraw from existing wells
 - Development of new supplies
The Shallow Aquifer Model

- Kane County plus buffer area
- 18 Layers
 - 9 aquifers
 - 9 aquitards
Model Results

- Shallow bedrock aquifer
- Groundwater elevation follows topography
Model Results

- Shallow bedrock aquifer
- Groundwater elevation follows topography

Flow direction
The Shallow Aquifer Model

- Ferson Creek watershed boundary
- East – west cross section
What does the local model look like?

- **Ferson Creek Watershed**

 - Watershed boundary
 - Fox River
 - Creeks
 - Principal drainage ways
What does the local model look like?

Permeability and Recharge

- Clay-rich diamicton
- Silts
- Shallow sands
- Intermediate sands
- Dolomite/shale
What does the local model look like?

- **Boundary conditions**
 - River cell
 - Drain Cell
 - Pumping well
 - Water level or stream flow target

"Priority Places Workshop: Implementing a Sustainable Water Supply for Kane County's Future"
Model Results – Shallow Aquifer System

- Shallow bedrock aquifer
 - Water level contours
 - Watershed boundary
 - Fox River
 - Creeks

2007 Priority Places Workshop: Implementing a Sustainable Water Supply for Kane County’s Future
Model Results – Shallow Aquifer System

- Shallow bedrock aquifer

- Water level contours
- Watershed boundary
- Fox River
- Creeks
Model Results – Shallow Aquifer System

Vertical profile

- Clays
- Silts
- Sands
- Dolomite/shale

West East

Marengo Ridge

Ferson Creek

Fox River

2007 Priority Places Workshop: Implementing a Sustainable Water Supply for Kane County’s Future
Model Results – Shallow Aquifer System

County Flow Budget

Inflows (MGD)
- Recharge: 92
- Lateral flow: 12
- Total: 104

Outflows (MGD)
- Streams: 87
- Wells: 17
- Total: 104

2007 Priority Places Workshop: Implementing a Sustainable Water Supply for Kane County’s Future
Model Results – Shallow Aquifer System

- Recharge per township (MGD)
 - To surface: 3.5
 - Through Tiskilwa Till: 1.0

2007 Priority Places Workshop: Implementing a Sustainable Water Supply for Kane County’s Future
Summary

- Construction of the model greatly enhances our conceptual understanding of flow
- Flow patterns generally follow the topography but are complicated by changes in geologic material
- Recharge limited through the Tiskilwa Till
- Groundwater flow though Kane County is ~ 104 MGD
 - Includes water unrecoverable by wells
 - Does not include additional water induced from streams

2007 Priority Places Workshop: Implementing a Sustainable Water Supply for Kane County’s Future