STRAWMAN OUTLINE
March 21, 2008

ISWS/ISGS REPORT ON THE OPPORTUNITIES AND CHALLENGES
OF MEETING WATER DEMAND IN EAST-CENTRAL ILLINOIS

REPORT TO BE DELIVERED TO THE RWSPC BY SEPTEMBER 30, 2008

Table of Contents
List of tables and diagrams
Acknowledgments
Executive Summary
1. Introduction
 1.1. Background (the importance of planning; Executive Order etc.)
 1.2. Scope of the report and caveats (first attempt to bring all the regional
 pieces together; uneven coverage and gaps; uncertain future; integration of
 water supply into regional planning)
 1.3. Overview of the study area
 1.4. Structure of the report
2. Geology
 2.1. Introduction
 2.2. Bedrock
 2.2.i. Bedrock surface topography
 2.2.ii. Regional characteristics of the bedrock
 a. Bedrock at edge of valley
 b. Silurian dolomite form an edge in Iroquois County
 c. Devonian and Mississippian rocks
 d. Pre-Pennsylvanian erosion causes Pennsylvanian rocks to
 lap directly onto Silurian
 2.2.iii. Bedrock units at bedrock surface
 a. Pennsylvanian rocks
 b. Mississippian rocks
 c. Devonian rocks
 d. Silurian rocks undifferentiated
 2.2.iv. Bedrock hydrogeology
 a. Pennsylvanian rocks
 b. Mississippian
 c. Devonian rocks
 d. Silurian rocks undifferentiated
 e. Ordovician rocks
 f. Hydrogeologic relationships with the Quaternary deposits
2.3. Quaternary Deposits
 2.3.i. General characteristics
 a. Thickness
 b. Areal extent
c. Mahomet bedrock valley vs tributary valleys

2.3.ii. Stratigraphy
 a. Wisconsin and Hudson Episodes
 - Wedron Group
 - Mason Group
 - Cahokia
 b. Illinois Episode
 - Upper Glasford Formation
 - Radnor Till
 - Lower Glasford Formation
 - Vandalia and Smithboro Till Members, Robein
 Silt Member, and Sangamon Geosol
 c. Pre-Illinois Episode (includes the Sankoty)
 - Upper Banner Formation
 - Middle and Lower Banner Formation

2.3.iii. Hydrogeology
 a. Mason Group
 b. Glasford Formation
 - Upper Glasford Formation
 - Lower Glasford Formation
 d. Banner Formation
 - Mahomet
 - Sankoty
 - Upper Banner

3. Water cycle
 3.1. Natural water cycle (components; linkages; and variability)
 3.1.i. Introduction
 3.1.ii. Climate
 3.1.iii. Surface water
 3.1.iv. Groundwater
 3.1.v. Water quality (includes changes as water moves from the
 surface to the aquifers)
 3.2. Human-induced changes to the water cycle
 3.2.i. Introduction
 3.2.ii. Land-use
 a. Rural
 - vegetation
 - drainage
 b. Urban
 - urbanization
 - streamflows and recharge
 c. Urban and rural
 - streamflows and recharge
 3.2.iii. Reservoirs, side channels and dams
 (includes loss of capacity with sedimentation)
 3.2.iv. Groundwater and other surface water withdrawals and use
a. Source by aquifer and stream
b. Quantity by sector
 - Average day
 - Peak day
 - Peak season
 - Per capita

3.2.v. Impacts of withdrawals (on aquifers, heads, recharge, existing wells, regional groundwater flow, streamflow, water quality etc)

3.2.vi. Waste water discharges
 - Quantity and impacts on low flows
 - Quality (including thermal) and impacts (source of nutrients, eutrophication, taste/odor problems
 - source of metals, organics, PPCPs, etc)

3.2.vii. Streamflows
 - Average
 - Low flows
 - Peak flows

3.2.viii. Water quality (includes USEPA drinking water standards; ecological standards/considerations; contaminants typical in rural (agricultural) areas (pesticides, nitrate, potassium, etc.); contaminants typical in urban areas (chloride, metals, organics, etc.)

3.3. Summary

4. Scenarios to 2050
 4.1 The nature of scenarios and the importance of planning
 4.2. Climate variability and change
 4.3. Growth, land-use and other changes
 4.4. Water withdrawal (3 scenarios & climate sensitivity from consultant’s report)
 4.4.i. Average day (by sector and source)
 4.4.ii. Peak day
 4.4.iii. Peak season
 4.4.iv. Per capita

4.5. Summary

5. Methods, data and analytical tools for evaluating the impacts of future scenarios
 5.1. Introduction
 5.2. Data
 5.3. Surface water accounting model
 5.4. Watershed model
 5.5. Geological and groundwater flow models
 5.6. Summary

6. Evaluations of the impacts of withdrawing and allocating water to meet water demand and drought and climate change scenarios to 2050
 6.1. Introduction
 6.2. Surface waters (impacts on streamflow, sedimentation, reservoir levels, water quality, existing intakes etc)
6.3. Aquifers (drawdown, recharge, existing wells, groundwater flow, streamflow, water quality (may release As, brine, Ra, Ba or other contaminants; higher TDS, road salt etc.))

6.4. Summary

7. Conclusions

7.1. Planning for an uncertain future (water availability and demand)

7.2. The importance of incorporating water supply in regional planning and determining acceptable impacts and costs of water withdrawals

7.3. Opportunities and challenges for management consideration

7.3.i. Sustainability (reasonable use, conservation, reuse etc.)

7.3.ii. Drought and climate change

7.3.iii. Surface waters (including storm water; re-use of treated wastewater; effects of re-use on water quality, salt build-up etc.)

7.4. iv. Groundwater (including recharge and desalination)

7.4. The need for continued water supply planning and integration in regional development planning

7.5. Improvements in data collection and analysis

References

Glossary

Appendices

The water resources of East-Central Illinois are complex, interrelated and variable over space and time. The future is uncertain for water availability and water demand, but it is certain that the demand for water will increase. Water supply planning in the context of regional development is necessary to assure adequate water supplies, avoid conflict and unacceptable consequences, and minimize costs.

The report provides data and information on the regional scale for use by the Regional Water Supply Planning Group in the development of an initial regional water supply plan. Describing the diversity of regional water resources will be a major focus of the report.

This is a pilot project conducted within a three-year time span with available resources. The geology and hydrology will be described at a level of detail sufficient for regional planning. The descriptions will not be of sufficient detail for local analysis or to provide adequate analyses for the selection and installation of individual facilities.

Data availability and analysis across the region are uneven. The significance of data gaps, strengths and limitations of analytical tools, and confidence levels on the data and model output will be described. Recommendations for improving the data bases and analytical tools will be made. It is hoped that a permanent process
will be implemented for regional water supply planning and periodic updates of the regional plan will be made.

Water quantity is the focus of these studies. Water quality will be included in the report as it is relevant to water supply. Return flows and discharges of treated water will be included in the analyses.

Economics, water rates, law, infrastructure, utility operations, water treatment, detailed water use and management are not included in the study in a substantial manner.

The climate and drought scenarios are described in a separate ISWS document entitled “Climate Change and Drought Scenarios for Water Supply Planning”.

The streamflow accounting model will be available for the Sangamon and Mackinaw watersheds and the watershed model for the Sangamon watershed.

The groundwater flow model for the Mahomet aquifer system is a 6-layer model extending vertically from the land surface to the bedrock surface and horizontally extending across major portions of 14 east-central Illinois counties. This model uses our best knowledge of geology and layer hydrogeologic/hydraulic properties to simulate flow within and across model layers, principally including the Mahomet aquifer and overlying shallow aquifers, e.g., the Glasford aquifer. The flow model simulates heads (groundwater elevations) within each layer and is calibrated to head values observed in the field – principally from wells drilled into the Mahomet and Glasford aquifers. The model is linked to surface streams where such linkages are known to occur; therefore, the model will permit estimation of impacts to streamflow resulting from groundwater withdrawals. Recharge will be varied to simulate climate change and drought. The model will be run to simulate the impacts of a) continuing withdrawals at the current pumping rates and locations, b) the 3 water demand scenarios to 2050 produced by the consultant with increased pumping at existing locations, and c) climate change and drought scenarios.